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ABSTRACT

This paper examines the effectiveness of using stock index futures contracts as substitutes for fixed-income securities in implementing expected 
shortfall targeting strategy. We find that the futures-based implementation outperforms its index-and-bill counterpart both in terms of downside 
protection and risk-adjusted performance at daily rebalancing frequency. This outperformance is driven not only by the transaction cost advantage, 
but also by the replication imperfections due to futures mispricing providing over the long term a better participation in upward market movements. 
When less frequent rebalancing intervals are used, the futures-based implementation becomes less effective at protecting the downside risk but still 
capture better the upside potential of the index.

Keywords: Stock Index Futures, Tail Risk Protection, Target Risk Strategies, Value-at-Risk, Expected Shortfall, Extreme Value Theory 
JEL Classifications: C53, G11

1. INTRODUCTION

Recurring financial crises have contributed to an extensive strand 
of literature focused on tail risk protection strategies designed 
to mitigate tail risk in order to protect investment portfolios 
against the dire effects of a significant market down draught.1 
The growing interest for tail risk and its mitigation is largely 
motivated by the serious limitations of portfolio diversification as 
a risk management tool. This is primarily owed to the empirical 
observation that correlations across asset classes tend to increase 
during market drawdowns and become more intense in periods 
of crisis. For example, Chabi-Yo et al. (2018) find an increased 
dependence in the left tail of stock returns in times of market 
crashes. 2 Additionally to the simultaneous increase of correlations, 

1 Tail risk refers to the extreme losses at the left tail of an asset’s or portfolio’s 
return distribution return.

2 Longin and Solnik (2001), Campbell et al. (2002), Buraschi et al. (2010) 
and Christoffersen et al. (2012) among others for studies with a focus on 
time-varying asset class correlations.

Bollerslev et al. (2018) observe strong similarities in realized 
volatilities patterns within and across equities, bonds, commodities 
and currencies. Furthermore, Jondeau and Rockinger (2003) find 
that also co-movements of higher moments of stock-index and 
foreign-exchange returns are strongly related and become more 
intensive during agitated periods. According to Bhansali (2011) 
and Benson et al. (2013), the reason behind all these dependencies 
is that many non-equity asset classes are exposed to an equity 
market risk factor that explains the largest portion of cross-
sectional asset class return variance. Additionally, other relevant 
factors such as increased globalization, stock market contagion and 
liquidity shocks tend to reduce portfolio diversification benefits 
(Poon et al., 2004).

Given these limitations, the financial research has been oriented 
towards alternative investments strategies likely to involve 
substantial reduction in a portfolio’s downside risk while 
simultaneously keeping most of its upside potential. Among these, 
the risk targeting strategies have received extensive attention 
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from both academics and practitioners.3 They aim to keep the 
ex-ante risk of a portfolio, typically consisting of a risky asset 
and a riskless asset, at a pre-specified constant target level. To 
achieve this, the investment exposure of the portfolio is continually 
adjusted in inverse relation to updated risk forecasts of the risky 
asset, i.e. upwards if the predicted risk decreases and downwards 
if it increases. By doing so, the risk targeting strategies control 
the portfolio risk over time by taking advantage of the so-called 
leverage effect whereby, at least for equities and indices, the 
returns tend to be negatively correlated with risk, which is in 
turn allows capturing the upside potential of the risky asset while 
simultaneously drawdowns are mitigated (Wang et al., 2012; 
Hallerbach, 2015; Harvey et al., 2018).

The majority of prior research has concentrated on target 
volatility strategy. Giese (2012) demonstrated that it always 
delivers a better Sharpe ratio than the underlying index in the 
long term as long as the volatility target is chosen below a certain 
threshold, irrespective of the underlying index and the volatility 
distribution. He also argued that the improvement in the Sharpe 
ratio is positively related to the volatility of volatility because 
more variable equity volatility creates more opportunities for 
the strategy to outperform the underlying index by responding to 
volatility. Hallerbach (2012, 2015) proved a similar finding that 
the volatility targeting mechanism improves the risk-adjusted 
performance even if the portfolio mean return is constant over 
time and outlines two theoretical arguments for the superiority of 
managed volatility portfolios: the negative relationship between 
the return and volatility and the performance enhancing abilities 
of risk control over time.

Risk targeting strategies have been extensively backtested using 
historical data (Cooper, 2010; Giese, 2012; Ilmanen and Kizer, 
2012; Kirby and Ostdiek, 2012; Hocquard et al., 2013). All 
these papers provide evidence that the application of a volatility 
targeting strategy for equities offers an enhanced risk-return 
performance compared to a buy-and-hold equity investment, 
despite a lower return due to the drag on performance during bull 
markets. Dreyer and Hubrich (2019) find that the Sharpe ratio 
benefit of the application of volatility targeting strategy for equities 
is period dependent. Comparing across asset classes, Perchet 
et  al. (2016) and Harvey et al. (2018) observe that the volatility 
targeting reduces tail risks irrespective of the asset class, which 
is the main driver of the outperformance of volatility targeting, 
while the improvement in the Sharpe ratio is limited to equities 
and corporate bonds due to the leverage effect for those assets. 
Dachraoui (2018) theoretically shows that a negative risk-return 
relation is not needed to provide an enhanced risk-return profile of 
volatility targeting. Furthermore, Bollerslev et al. (2018) show that 
using realized volatility models in a volatility targeting strategy 
translated into better risk-adjusted performance and higher utility 
gains in comparison with less accurate forecasting models that do 
not incorporate the information in high-frequency intraday data. 
A similar result is also found by Perchet et al. (2016), Moreira 
and Muir (2017) and di Persio et al. (2021).

3 Other strategies include mainly the methods of portfolio insurance such as 
the option based portfolio insurance (OBPI) and the constant proportion 
portfolio insurance (CPPI) as well as its dynamic extension (DPPI).

As stated above, previous studies on risk targeting have almost 
exclusively used volatility as a measure of risk. However, for tail 
risk protection, a downside risk measure should be preferred to 
volatility for at least three reasons. First, prospect theory asserts 
that most investors seek upside potential and downside protection, 
i.e. they are risk-seeking above a certain threshold return, but 
risk-averse below this threshold. Loss-averse investors should 
therefore adopt strategies that deal with negative returns and 
not return deviations to enhance their utility (Ang et al., 2006a; 
Bollerslev et al., 2015). Second, due to the empirical facts that 
asset returns are typically asymmetric and exhibit excess kurtosis, 
volatility underestimates the extreme events of low probability and 
can thus lead to insufficient protection against extreme negative 
market moves (Poon et al., 2004, Gormsen and Jensen, 2020) 
and/or severe drag on performance in times of huge positive 
returns. Third, downside risk measures implicitly incorporate the 
information contained in higher moments, which may enhance 
the effectiveness of the tail risk protection strategies in particular 
in periods of high market volatility when the return distributions 
tend to be more negatively skewed and fait-tailed (Bali et al., 
2009; Gormsen and Jensen, 2020). Consequently, target a set level 
of downside risk, measured by value-at-risk (VaR) or expected 
shortfall (ES), instead of volatility is better suited for loss control 
in severe market downturns. This is confirmed by Strub (2013) 
and Rickenberg (2020) who find that tail risk targeting strategies 
outperform the volatility based strategy in terms of risk-adjusted 
performance and drawdown in times of bear markets. Rickenberg 
(2020) also observes that the performance can be enhanced by 
switching between volatility and ES targeting based on estimates of 
whether the market will be in a bull or bear regime. Happersberger 
et al. (2020) conduct a historical block-bootstrap analysis for the 
ES targeting strategy applied to a multi-asset portfolio and find that 
this strategy is more profitable when the portfolio ES is estimated 
using a forecast combination technique based on a loss function 
of Fissler and Ziegel (2016).

Risk targeting strategies are typically implemented by combining 
an equity index fund with a money market instrument like treasury 
bills and then shifting money between them to keep the risk of the 
portfolio constant over time. This implementation strategy requires 
frequent trading in the index which can lead to high transaction 
costs. A possible alternative, that would achieve the same goal 
without ever trading in the index, is to short exchange-listed futures 
written on the index (Hocquard et al., 2013; Papageorgiou et al, 
2017; Bongaerts et al., 2020). The short position is then adjusted 
dynamically to changes in a risk forecast, i.e. shorting more futures 
contracts when the risk forecast increases and reduce the short 
position as the risk forecast falls.

The advantage of using stock index futures is that they are highly 
liquid and transaction costs are small. This raises the question of 
whether the cost advantage of the futures-based implementation 
translates into better risk-adjusted performance and downside 
protection. This question has previously been addressed for 
dynamic insurance portfolio strategies. Using futures contracts on 
the Australian all ordinaries index, Do and Faff (2004) performed 
historical simulations for the synthetic put and CPPI strategies. 
Based on daily rebalancing, they find that the futures-based 
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implementation achieves the desired floor more often and incurs 
a lower cost of insurance than its index-and-bill rival during the 
period from March 1992 to December 2002, using either the 
synthetic put or CPPI approach. By regenerating the simulations 
based on theoretical futures prices from the cost-of-carry model, 
it turned out that the underperformance of the futures-based 
implementation during the period from March 1988 to December 
1991 is owed to the futures mispricing problem. Furthermore, 
when less frequent rebalancing intervals are used, for 1% and 
2% market move triggers, the CPPI appears unaffected while 
the futures-based synthetic put records higher mean returns. In 
the same vein, Loria et al. (1991) simulated the performance of 
a futures-based synthetic put strategy and reported that there is 
no perfect guarantee of loss prevention under any scenario. They 
state that the strategy provides downside protection against severe 
market declines, but not for small downward movements.

The purpose of this paper is to provide detailed evaluations and 
comparisons of two procedures of implementing an ES targeting 
strategy: via index and bills, and via futures markets. We empirically 
examine the ability of the futures-based implementation to provide 
better downside protection and risk-adjusted performance than its 
index-and-bill counterpart. We seek to contribute to the existing 
literature by conducting an empirical comparison of the two 
implementation strategies in the tail risk protection framework. 
To the best of our knowledge, no prior studies have examined the 
performance of futures-based ES targeting strategies.

The remainder of this paper is structured as follows. In Section 
2 we present the risk targeting strategy and describe its two 
implementation procedures. Section 3 briefly describes the 
methods employed for forecasting and backtesting VaR and ES. 
Section 4 presents the data and the empirical results of our study 
and section 5 concludes.

2. RISK TARGETING STRATEGIES

Risk targeting is a strategy that rebalances between a risky asset and 
a non-risky asset in order to target a constant level of risk over time. 
For this purpose, the portfolio’s exposure is dynamically adjusted 
conditional on a forecast of the risky asset’s risk. Specifically, the 
protection is performed by falling back on the risk-free asset when 
the portfolio’s current risk is higher than the predefined target 
level. In the opposite scenario, the investment in the risk-free 
asset is reduced in favour of a higher exposure to the risky asset. 
The basic idea of maintaining a constant level of risk over time is 
to adjust market exposure inversely proportional to market risk, 
thereby taking advantage of the negative relationship between risk 
and future returns. Times of high tail risk marked by a negative 
skewness and/or high kurtosis are generally followed by low 
returns on one hand (Gormsen and Jensen, 2020), and empirical 
evidence suggests that bull market periods are accompanied by 
high returns and low risk, on the other. Therefore, by conditioning 
their exposure market risk, investors can therefore capture the 
upside potential while simultaneously drawdowns are mitigated.

Throughout the paper, we consider a risk-averse investor who 
seeks to protect his investment in a risky asset, e.g. an equity 

index, against extreme market losses over an investment period 
through a risk targeting strategy. The price of the risky asset at 
time t is denoted as St such that the logarithmic return over the 
time period from t to t+1, representing 1 day, is rt+1=log (St+1/St). 
At the beginning of the investment period, the investor sets a target 
risk level that should be kept constant over time. To this end, one 
methodology is to manage a protected portfolio combining the 
risky asset with a risk-free asset, e.g. treasury bills. Specifically, 
the allocation to the risky asset has to be chosen as:

 ( )1ˆt
t t t

w
r


 +
=

F
 (1)

where   represents the chosen risk target level and ( )1ˆt t trρ + F  

denotes the downside risk forecast of the risky asset from t to t+1 
conditional on the available information,Ft . Denote by Vt the 
value of the protected portfolio at time t, the investment exposure 
to the risky asset is Et=wtVt and the remaining funds Bt=(1–wt)Vt 
are invested in the riskless asset.

The protected portfolio is thus routinely adjusted based on 
updated risk forecasts such that the ex ante risk remains close 
to the chosen risk target level over time. In this way, the risk 
targeting strategy represents a consistent active approach that 
dynamically allocates funds between the risky and the riskless asset 
in response to the prevailing market risk conditions. However, 
with such an implementation procedure, the strategy is subject to 
potential liquidity constraints that prevent portfolio rebalancing 
and high transaction costs that can extinguish its efficiency and 
performance.

An alternative implementation of the risk targeting strategy, that 
can overcome such limitations, is to short exchange-traded futures 
contracts written on the underlying risky asset as monetary market 
transaction substitutes. In that case, the funds are fully invested in 
the risky asset and an overlay of long and short futures contracts 
is used to keep the portfolio risk in line with the risk target level. 
Let rf,t and qt denote, respectively, the riskless asset return and the 
dividend yield on the risky asset at time t (both are annualized 
and expressed with continuous compounding). The futures-based 
implementation involves maintaining a short position in a number 
of futures:
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Where T is the remaining life of the futures contract, expressed 
in years (Appendix for proof).

This equation must however be modified to avoid trading in the 
risky asset resulting from having to settle gains and losses in the 
futures market:
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where t denotes the accumulated gains at time t resulting from 
futures settlement (Do and Faff, 2004).
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In order to implement a risk targeting strategy, we need first to 
choose the risk measure to target according to performance and 
protection objectives. As the investor’s primary objective was 
to mitigate extreme negative returns, targeting a tail-related risk 
measure, such as VaR or ES, is more appropriate than volatility. 
Then we must specify an adequate risk model to forecast the 
daily downside risk of the risky asset. The choice of this model is 
of paramount importance to optimize the investor’s benefit from 
risk targeting strategy (Rickenberg, 2020; Bollerslev et al., 2018; 
Happersberger et al., 2020).

3. CONSTRUCTING AND EVALUATING 
RISK FORECASTS

In this section, we provide a short description of the two 
downside risk measures VaR and ES, then we briefly present the 
risk forecasting models considered in this paper and the main 
backtesting procedures employed to assess the accuracy of the 
forecasts.4

3.1. Downside Risk Measures
VaR and ES are basically the two most popular and widely 
used measures of downside risk (Jorion, 2021). VaR is defined 
as the minimum potential return of an asset (or a portfolio) 
over a certain time horizon for a given confidence (1–p), 
where p∈(0,1) is the significance level (typically 1% or 5%). 
Therefore, the p-level VaR forecast from t to t+1 corresponds 
to the p-quantile of the conditional return distribution function 
at time t+1, that is:

 VaR F r r F r pt t
p

p t t t t t+
−

+ + += ( ) = ( ) ≥{ }1
1

1 1 1F Finf :  (4)

where F(.) denotes the cumulative distribution function, assumed 
to be continuous and strictly increasing with finite mean such that 
its inverse function is well defined.

VaR has the main disadvantage of disregarding the risk of extreme 
losses beyond the confidence level which may induce large losses 
(Basak and Shapiro, 2001). Moreover, it does not satisfy the 
subadditivity, which is one of the essential proprieties of coherent 
risk measure, and hence does not reward diversification (Artzner 
et al., 1999). To cope with these shortcomings, (Artzner et al., 
1999) and Basak and Shapiro (2001) propose the use of the ES as 
an alternative measure of risk. ES, also referred to as conditional 
VaR or expected tail loss, is defined as the conditional expectation 
of the return given that it is less than the VaR (Yamai and Yoshiba, 
2002; Taylor, 2008). Specifically, the p-level ES forecast from t 
to t+1 can be written as:

 ES E r r VaR
p

VaR u dut t
p

t t t
p

t
pp

+ + + + += ≤( ) = ( )∫1 1 1 1 1
0

1  (5)

ES is a coherent measure because it satisfies the subadditivity 
propriety and consequently can be reduced by diversification. 

4 While we abstract in our empirical study from the use of VaR in the 
implementation of the risk targeting strategy, this section also deals with 
both VaR and ES since the ES tests of McNeil and Frey (2000) and Nolde 
and Ziegel (2017) require both VaR and ES forecasts as input variables.

Further, it directly controls the risk in the left tail of the return 
distribution, so that extreme losses beyond the confidence level 
are explicitly taken into account as a conditional expectation.

3.2. Risk Forecasting Models
A large number of methods for estimating VaR and ES have been 
proposed in the literature and are often categorized into three 
main categories: parametric methods, nonparametric methods 
and semi-parametric methods (Engle and Manganelli, 2004). 
Nonparametric approach has the advantage of practical and easy 
implementation since it requires no distributional assumptions. 
In contrast, parametric approach simply assume that the observed 
returns follow a specific probability distribution, such as a Normal 
or a Student’s t. Semi-parametric estimation methods combine the 
parametric and nonparametric approaches.

In what follows, we will only focus on the most methods that are 
widely used by practitioners and in the academic literature.5 In 
particular, all the methods presented here will be used to make 
one-step-ahead VaR and ES forecasts at a probability level p with 
a rolling window of length n.

3.2.1. Historical simulation
The simplest existing method would be the historical simulation 
which is one of the non-parametric approaches. If the fundamental 
pre-requisite for it to work is to assume that the past returns are 
i.i.d. and will recur in future (Dowd, 2005), it main difficulty lies 
in choosing a relevant window’s width.6 Let r1,n ≤ r2,n ≤ …≤ rn,n

denote the returns within this window (i.e. from t+1–n to t) sorted 
in ascending order. Then, the VaR for t+1 is simply given by the 
[np]-th order statistic, that is:

  VaR rt t
p

np n+ [ ]=1 ,  (6)

Correspondingly, the ES estimate for t+1 can be computed based 
on the ordered returns by:
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3.2.2. Gaussian normal distribution
Despite the typical features of financial assets such as fat tails 
and non-normality, the central limit theorem states that, when the 
sample is large enough, the normal distribution can be regarded 
as sufficient to fit the returns well. Assuming that the returns are 
normally distributed, the one-step-ahead VaR is given by:

 VaR pt t
p

t t+ + +
−= + ( )1 1 1

1˘ ˘µ σ Φ  (8)

5 We recommend Kuester et al. (2006), Christoffersen (2016), Andersen et al. 
(2011), Righi and Ceretta (2015) and Lazar and Zhang (2019) for a more 
comprehensive discussion of different VaR and ES estimation techniques. 

6 Several implementations can be added to the basic historical simulation 
for improving the estimated risk measures, such as bootstrapping, 
weighting (according to age, volatility or correlation) and combination 
of nonparametric density function. Dowd (2005) chapter 4 for a rigorous 
discussion of different generalizations of the basic historical simulation.
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where 1ˆ t +  and ̆ t+1  are computed by the sample mean and sample 
standard deviation, and Φ  denotes the standard normal cumulative 
distribution function.

Correspondingly, the one-step-ahead ES can be derived as:

  ES
p

pt t
p

t t+ + +

−

= −
( )( )

1 1 1

1

˘ ˘µ σ
ϕ Φ

 (9)

Where Φ denotes the probability density function of the standard 
Gaussian distribution.

3.2.3. Student’s t distribution
The symmetric t-Student’s is used to address the issue of heavy 
tails and more peak in the distribution of the standardized returns 
in comparison with the normal. If we consider that the standardized 
returns follow a Student’s t distribution, the VaR forecast for t+1 
can be computed as:

 VaR v v t pt t
p

t t v+ + +
− −= + −( ) ( )1 1 1

1 12˘ ˘µ σ  (10)

where t pv
− ( )1  is the p-quantile of the standardized returns 

following a Student’s t distribution with estimated degree of 
freedom v larger than 2.

Correspondingly, the ES forecast for t+1 can be calculated as:
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where ftv  is the probability density function of the Student’s t 

density function with v  degree of freedom, defined as follows:
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where Γ .( )  denotes the Gamma function.

3.2.4. Cornish fisher expansion
The Cornish Fisher expansion is a semi-parametric estimation 
method that incorporates the skewness and kurtosis of the returns 
distribution into the VaR and ES forecasts, without any assumption 
on this distribution. Specifically, the VaR for t+1 is obtained 
through an extension of the normal quantile function by including 
the sample skewness ζ1 and the sample excess kurtosis ζ2:

 VaR CF pt t
p

t t+ + +
−= + ( )1 1 1

1˘ ˘µ σ  (13)
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The ES for t+1 is determined as follows:
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3.2.5. Exponentially weighted moving average
The methods presented above rest on the moving window of 
historical returns to capture time-varying in the risk estimates. 
In financial markets characterized by unexpected shocks and 
persistence of extreme volatility, known as volatility clustering, 
weighting all past observations equally (for the historical simulation 
approach) or using sample moments (for the others approaches) may 
be insufficient to capture the degree of time-varying and ensure a 
rapid response to current market conditions. This limited capacity for 
incorporating conditionality leads to a clustering of VaR violations 
during turbulent market periods and conversely to unnecessarily 
higher VaR forecasts during calmer periods (Roncoroni et al., 2015).

To remedy these shortcomings, the generalized autoregressive 
conditional heteroskedasticity (GARCH) type models or the 
exponentially weighted moving average volatility (EWMA) 
model can be considered to estimate the time-varying conditional 
volatility. The idea behind the EWMA model is to vary the 
volatility over time to assign a higher weighting to the most recent 
data. Starting with the sample variance, the conditional variance 
is chronologically adjusted according to the following formula:

  ˘ ˘σ λσ λt t tr+ = + −( )1
2 2 21  (15)

with λ is a smoothing parameter, typically fixed to 0.94 for daily 
returns.

Assuming that the returns follow a Student’s t distribution with 
zero-mean, the VaR and ES forecasts are then computed as:

 VaR v v t pt t
p

t v+ +
− −= −( ) ( )1 1

1 12̆  (16)
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f t p
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3.2.6. GARCH with extreme value theory
A semi-parametric approach proposed by McNeil and Frey (2000) 
draws on the extreme value theory (EVT) to model the tail of the 
conditional distribution, regardless the whole distribution of 
returns. This approach is a two-step procedure that fits firstly a 
GARCH(1,1) model to the previous n returns to generate the 
conditional volatility ̆ t+1  and afterwards estimates the generalized 
Pareto distribution (GPD) parameters from the negative of the 
standardized residuals of the GARCH(1,1) model. In particular, 
the peak-over-threshold method is used to fit the GPD to excesses 
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over a specified threshold.7

The probability density function for the GPD with shape parameter 
ξ>0, scale parameter β>0, and threshold parameter u≥0, is

 GPD x u x u
>( ) = +

−





− −

; ,ξ β
β

ξ
β

ξ1
1

1
1

 (18)

The quantile can be estimated as:
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where nu is the number of peaks over the threshold.

The VaR and ES forecasts are then obtained as:
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3.3. Evaluating Risk Forecasts Accuracy
The accuracy of risk estimates is typically examined via 
backtesting which is a technique of model validation based on 
the comparison of the ex-ante risk forecasts from a specific model 
with the ex-post realizations of returns. Below, we briefly describe 
the most common VaR and ES tests as well as two statistical loss 
functions used for better comparing the forecasting performance 
of the different risk models.

3.3.1. VaR tests
To evaluate the performance of the above VaR models, we first 
considered the unconditional coverage test suggested by Kupiec 
(1995). This test assesses the unconditional coverage propriety 
of VaR estimates under which the overall average of VaR 
violations is not significantly different from its probability level 
p. It compares the observed number of violations to the expected 
number of violations by testing the hypothesis that the observed 
violations follow a binomial distribution with parameter p. One 
important weakness of Kupiec’s test is that it considers only the 
frequency of VaR violations and not their magnitude, which may 
result in an underestimation of risk and lead to very large losses 
in the worse case scenarios. The risk map proposed by Colletaz 
et al. (2013) offers a remedy by introducing the concept of super 
violation, defined as the VaR violations at a very low probability 
level much smaller than p. A likelihood ratio test is applied to 
assess whether the empirical frequencies of VaR violations and 
super violations significantly deviate from the theoretical ones. 
As the two preceding tests do not examine the independence of 
violations over time, which may cause an acceptation of a model 
that produces clustered violations, we also consider the conditional 
coverage test of Christoffersen (1998). Assuming that VaR 

7 We set the threshold at the 90% quantile of the negative of standardized 
residuals.

violations are modelled with a first-order Markov chain, this test 
examines whether the unconditional coverage and independence 
properties of correct specified VaR model are jointly fulfilled. 
In addition to the above suggested tests, we also examine the 
clustering of violations using the duration test of Christoffersen 
and Pelletier (2004). According to these authors, this clustering is 
related to the existence of no-violations durations which are either 
relatively short by reason of high market volatility or relatively 
long when the market is calmed down. The authors test the null 
hypothesis of independence of violations by testing whether the 
durations are from an exponential distribution, a special case of 
Weibull distribution under the alternative hypothesis.

3.3.2. ES tests
In order to assess the validity of the ES forecasts, we first consider 
the exceedance residual test of McNeil and Frey (2000) which 
is one of the early proposed ES backtests. This test is based on 
the concept of exceedance residuals, defined as the differences 
between the actual returns and the ES forecasts conditional on 
VaR being violated, which should behave like an i.i.d. sample 
from a random variable with mean zero under the null hypothesis 
of a correctly specified risk model. The authors thus propose to 
test whether the exceedance residuals have an expected value of 
zero, where the null distribution of the exceedance residuals is 
obtained via non-parametric bootstrap. In addition, we consider 
the conditional calibration test of Nolde and Ziegel (2017), which 
is based on a Wald-type test statistic that checks whether the 
expected value of a strict identification function for the VaR and 
ES is zero. As the two previous tests are formally joint backtests 
for VaR and ES, we further consider the strict ES regression test 
of Bayer and Dimitriadis (2020) which only requires ES forecasts 
as input parameters. That test consists to run a regression of 
realized returns on the ES forecasts and an intercept term using 
a linear regression equation. A Wald-type test statistic is used 
to check whether the intercept and slope parameters equal zero 
and one, respectively, under the null hypothesis of a correctly 
specified ES model.8

3.3.3. Loss functions
The VaR and ES tests discussed above are mainly meant to evaluate 
a model adequacy in isolation and not to compare competing 
models (Acerbi and Szekely, 2014). To remedy this, we consider 
two loss functions, also known as scoring functions, to compare 
the forecasting performance of the different risk models: the 
smaller the average loss given by a scoring function, the better 
the forecasting model.

A commonly used scoring function for comparing the forecasting 
accuracy of competing VaR models is the quantile loss function 
proposed by González-Rivera et al. (2004), also known as the 
piecewise linear or tick loss function:

 LQ=(p–I(r≤VaR))(r–VaR) (22)

Contrary to the VaR, the ES is not an elicitable risk measure and 

8 For more details on the VaR tests in use, see Hamidi et al. (2015) and Zhang 
and Nadarajah (2017). For ES tests, refer to Bayer and Dimitriadis (2020) 
and Hallin and Trucíos (2021).



Zouari: On the Effectiveness of Stock Index Futures for Tail Risk Protection

International Journal of Economics and Financial Issues | Vol 12 • Issue 3 • 202244

thus does not admit a strictly consistent scoring function. That 
problem was overcome by Fissler and Ziegel (2016) by showing 
that ES is jointly elicitable with VaR. They have thus proposed 
the following loss function for a joint evaluation of VaR and ES 
forecasts:

L
pES

I r VaR VaR r VaR
ES

ESFZ = − ≤( ) −( ) + + −( ) −1
1log  (23)

4. DATA DESCRIPTION

In this study, we consider an index fund that mimics the 
composition and the performance of the Spanish IBEX 35 index as 
risky asset. This index is comprised of the 35 most liquid Spanish 
stocks traded in the continuous market the last 6 months. The high 
liquidity ensures the execution of portfolio rebalancing operations 
even during times of increasing volatility that coincide with 
downturns in market liquidity (Ang et al., 2006b). The futures-
based ES targeting strategy is thus implemented using prices of 
futures contracts on the IBEX 35 index.

The prices are daily closing prices sourced from the official market 
of these futures, Mercado Español de Futuros Financieros (MEFF), 
from January 3, 2000 to July 31, 2014. This period was marked by 
the occurrence of several events, particularly the September attacks 
in 2001, the bursting of the technology bubble in 2001–2002, the 
global financial crisis of 2007-2008 and the European sovereign 
debt crisis of 2010–2012.

In the MEFF, there are at least six futures contracts traded on each 
trading day. 9 We consider the nearest maturing contracts as they 
provide the highest liquidity. In regard to rolling a futures position 
as maturity approaches, we switch to the next-to-nearest maturity 
contract 10 calendar days before a contract expires to avoid thin 
markets and expiration effects. Given these implementation 
choices, the used futures contracts have maturities ranging from 
10 through 45 calendar days.

The risk-free rate is the secondary market 1–3 month Spain 
Treasury bill daily rates taken from the Spanish national central 
bank website for the same period as that of the futures contracts. 
Further, a constant dividend yield on the IBEX 35 index is used 
for each calendar year from 2000 to 2014, for which data was 
retrieved from Bloomberg. To make one-step ahead VaR and ES 
forecasts, we follow Taylor (2008), Lazar and Zhang (2019) and 
Happersberger et al. (2020) and use a rolling window of 1000 
past returns to re-estimate parameters for the various risk models 
on a daily basis. Hence, we consider 4691 daily observations of 
the IBEX 35 index from December 28, 1995 till July 31, 2014. 
The index closing values were collected from finance.yahoo.com.

This table reports summary statistics for the IBEX 35 log returns 
over the period from December 28, 1995 to July 31, 2014. Mean 
and standard deviation are annualized using a 250-day year. The 
results of the D’Agostino normality tests for skewness, kurtosis 

9 The number of futures contracts has increased from 6 to 10 on July 2004 
and then to 18 on February 2005. 

and omnibus are shown in the bottom panel.

A summary and test statistics for the daily log returns of the IBEX 
35 index over the whole time period is provided in Table 1. The 
annualized return fluctuated around an average of 5.81% and 
featured a standard deviation of 23.89%. The largest decline in the 
index was 9.59% in October 10, 2008 at the height of the global 
financial crisis while the best performance was 13.48% and was 
recorded on May 10, 2010. Moreover, the D’Agostino-Pearson 
omnibus test strongly rejects the null hypothesis of normality. 
In particular, the unconditional return distribution is symmetric 
around its mean but and exhibits significant excess kurtosis, 
i.e. extremes tend to be more pronounced than for a normally 
distributed random variable, reflecting a need for downside 
protection among investors.

5. EMPIRICAL RESULTS

In the following, we evaluate the accuracy of the VaR and ES 
forecasts made by the different risk models in order to find out the 
best. Then, we provide evaluations and comparisons of the two 
procedures of implementing the ES targeting strategy.

5.1. VaR and ES Forecasting Results
Given the time period covered by the futures data, the out-of-
sample period consists of 3690 trading days, ranging from January 
4, 2000 until July 31, 2014. VaR and ES are forecasted by the risk 
models discussed above for one trading day ahead in this period 
using a rolling window of 1000 daily returns at the probability 
level 1%.

The development of the daily 1% VaR and ES forecasts 
associated with the different risk models as well as the IBEX 
35 returns are depicted in Figure 1. A first glance at the time 
series of the index returns reveals the typical features of financial 
assets such as time-varying volatility and volatility clustering. 
The latter appears notably during times of significant financial 
market stress. Furthermore, we observe that only the forecasts 
made the dynamic conditional risk models, EWMA and 
GARCH(1,1)-EVT, exhibit pronounced variability in time which 
reflect their substantial response to continuing changes in market 
conditions. Quite the contrary, unconditional models produce 
time series of VaR and ES estimates that are extremely smooth 
(Gaussian Normal and Student’s t distributions) or flat and 
characterized by sudden changes on different scales (historical 
simulation and Cornish-Fisher expansion). This confirms the 

Table 1: Summary and tests statistics of IBEX 35 stock 
index returns
Mean Standard 

deviation
Skewness kurtosis Minimum Maximum

0.0581 0.2389 0.0039 7.7361 –0.0959 0.1348
D’Agostino- 
Pearson 
Normality test

Skewness Kurtosis Omnibus

Statistic 0.1094 22.3511 499.5839
P-value 0.9129 0.0000 0.0000
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need for conditional variance models in constructing downside 
risk forecasts. Using only a rolling window of the most recent 
observations is not enough on its own to deliver acceptable 
forecasts that capture the degree of time-varying and ensure a 
rapid response to current market conditions. The consequence 
is a clustering of VaR violations in time, especially during the 
global financial market crisis.10

The first result from Table 2, which reports the descriptive statistics 
of the risk estimates, is the broad similarity between the two 
conditional models EWMA and GARCH(1,1)-EVT. In particular, 
the VaR and ES forecasts issued from these two models have 
almost the same mean, standard deviation and maximum values. 
The only difference is that the GARCH(1,1)-EVT model produced 
significantly lower forecasts in times of extreme market stress, 
especially in January and October 2008 and in May 2010. Second, 

10 A VaR violation is the situation where an ex-post negative return is larger, 
in absolute value, than the VaR.

the descriptive statistics confirm the substantial differences 
between unconditional and conditional risk models. By the use 
of conditional variance models, the EWMA and GARCH(1,1)-
EVT methods generate both the highest, the lowest and the most 
volatile VaR and ES forecasts. We note furthermore that, for all risk 
models, ES exhibited greater variability than VaR. This stylized 
fact confirms the higher sensitivity of ES to changes in market 
conditions and justify the preference for the ES as a downside 
risk measure.

This Figure displays the development over the out-of-sample 
period from January 4, 2000 to July 31, 2014 of the IBEX 
35 realized returns (gray dots) as well as the 1%VaR (dashed 
black line) and the 1%ES (blue line) forecasts made by various 
risk models using a rolling window of 1000 observations. VaR 
violations are marked with red squares.

This table reports descriptive statistics for the daily 1% VaR and 
ES estimates made by various forecasting models over the out-of-

Figure 1: VaR and ES forecasts over time
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sample period from January 4, 2000 to July 31, 2014. We report 
the mean, standard deviation, minimum and maximum

This table reports the results of VaR and ES tests for evaluating 
1% VaR and 1% ES forecasts issued from various forecasting 
models over the out-of-sample period from January 4, 2000 to July 
31, 2014. We evaluate the VaR forecasts using the unconditional 
coverage (UC), the risk map (RM), the conditional coverage 
(CC) and the duration (DU) test. For testing ES, we consider the 
exceedance residual (ER), the conditional calibration (CAL) and 
the strict ES regression (ESR) test. For these ES tests, P-values 
are given for two-sided hypotheses. We report p-values in bold 
if >0.10, indicating no evidence against optimality at the 10% 
significance level. Values between 0.05 and 0.10 are in italics. 
Furthermore, the second column contains the number of realized 
VaR violations knowing that expected number of violations is 37 
over the whole out-of-sample period. The last two columns report 
the average loss (scaled by 100) using the quantile loss function 
(LQ) and the FZ loss function (LFZ), respectively.

Table 3 gives the number of VaR violations for the various risk 
models as well as the results for the VaR and ES tests and the 
average out-of-sample losses based on the FZ loss function and 
the quantile loss function. Since the expected number of violations 
is 37, the Cornish-Fisher expansion method clearly overestimates 
the risk. All the other models produce a number of violations 
greater than the theoretical value, with an underestimation of 
risk that is particularly flagrant for the unconditional parametric 
models, i.e. the Gaussian Normal and Student’s t models. The 
GARCH(1,1)-EVT model has the observed number of violations 
closest the expected one and therefore performs the best in terms 
of unconditional coverage. The historical simulation approach 
ranks second, followed by the EWMA model.

According to the P-values from the various VaR tests, the Gaussian 
Normal, Student’s t and Cornish-Fisher expansion models fail all 
the tests due to the large deviation from the expected number of 
violations. Although the historical simulation approach delivers 

adequate frequency and magnitude of violations and therefore 
passes the unconditional coverage and risk map tests, it fails the 
conditional coverage and duration tests, which shows that these 
violations are clustered over time. The EWMA model passes the 
unconditional coverage and risk map tests only at the significance 
level of 5% because of the large number of violations, and the 
remainder of VaR test at the significance level of 10%. This gives 
evidence that the VaR violations occur independently and do not 
cluster. As expected, the GARCH(1,1)-EVT model performs 
the best since it is the only model passing all VaR tests at the 
significance level of 10%.

As can be seen from the ES tests results, the GARCH(1,1)-
EVT is once again the only model passing all ES tests at the 
10% significance level. The EWMA model fails the conditional 
calibration test of Nolde and Ziegel (2017). For the other risk 
models, the ES tests are not meaningful since they fail to provide 
accurate VaR estimates.

To enable a better comparison of the risk models according to 
their predictive accuracy of VaR and ES, we further provide in 
Table 3 the average out-of-sample losses, based on the quantile loss 
function and the FZ loss function. Clearly, the conditional models, 
i.e. the EWMA and GARCH(1,1)-EVT, are the most accurate 
models since they record the lowest values for both loss functions. 
Particularly, the GARCH(1,1)-EVT is the best-performing model, 
yielding the lowest average loss based on the FZ loss function. 
Given the similarity between the average losses from the quantile 
function, the GARCH(1,1)-EVT model outperforms the EWMA 
model in predicting ES. Not surprisingly, the unconditional 
parametric models, Gaussian Normal and Student’s t, achieve the 
worst results. This shows that conditionality plays a crucial role 
in giving accurate VaR and ES estimates.

By these evidences, we conclude that the GARCH(1,1)-EVT 
model delivers the most accurate VaR and ES estimates, enabling 
reliable capture of the stylized facts observed for the IBEX 35 
index returns such as time-varying volatility, non-normality, fat 

Table 2: Descriptive statistics for out-of-sample VaR and ES forecasts
Mean Standard deviation Minimum Maximum 

VaR ES VaR ES VaR ES VaR ES
Historical simulation –0.041 –0.053 0.008 0.011 –0.053 –0.068 –0.022 –0.029
Gaussian Normal –0.035 –0.040 0.007 0.008 –0.047 –0.054 –0.018 –0.020
Student’s t –0.039 –0.050 0.008 0.011 –0.052 –0.068 –0.019 –0.025
Cornish-Fisher –0.048 –0.067 0.013 0.024 –0.074 –0.123 –0.023 –0.029
EWMA –0.036 –0.046 0.017 0.023 –0.126 –0.170 –0.012 –0.015
GARCH (1,1)-EVT –0.037 –0.045 0.018 0.022 –0.164 –0.212 –0.013 –0.017

Table 3: Backtesting on out-of-sample VaR and ES forecasts
VaR tests ES tests Average loss

Viol UC RM DU CC ER CAL ESR LQ LFZ

Historical simulation 46 0.15 0.13 0.00 0.00 0.51 0.40 0.05 0.055 1.738
Gaussian Normal 82 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.060 2.054
Student’s t 61 0.00 0.00 0.00 0.00 0.43 0.01 0.01 0.057 1.846
Cornish-Fisher 22 0.01 0.03 0.00 0.03 0.58 0.00 0.00 0.054 1.719
EWMA 49 0.06 0.08 0.17 0.15 0.93 0.04 0.25 0.045 1.502
GARCH (1,1)-EVT 39 0.73 0.91 0.10 0.68 0.83 0.44 0.63 0.044 1.446
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tails and volatility clustering, and therefore a quick reaction to the 
prevailing risk environment. This latter feature is crucial for the 
tail risk protection strategies since wrong risk timing translates 
into a high exposure to the risky asset when the market’s downside 
risk is high and vice versa.

5.2. Outcome of the ES Targeting Strategy
In the light of the above results, the ES forecasts at 1% made by 
the GARCH(1,1)-EVT model serve as basis for the risk targeting 
strategy implementation over the out-of-sample period. To ensure 
a perfect downside protection, we first set the target ES at a low 
level equal to 1.5% and rebalance the portfolios on a daily basis. 
We also integrate the following restrictions and assumptions to 
create a realistic investment environment. For the index-and-
bill implementation, we impose constraints on leverage and 
short selling and assume transaction costs of 10 basis points 
applied on the portfolio adjustment size. For the futures-based 
implementation, we impose constraint on long futures position 
at the end of every trading day and assume transaction costs of 2 
basis points applied on the position adjustment size. We further 
exclude margin requirements and consider that daily mark-to-
market gains/losses are neither invested nor financed. Finally, the 
transaction costs are charged on the transaction date and settled 
on the first trading day thereafter.

The performances of the two procedures of implementing the 
ES targeting strategy are compared on the basis of descriptive 
statistics, protection effectiveness and risk-adjusted performance. 
The descriptive statistics are the mean, standard deviation, 
skewness and kurtosis. The protection effectiveness measures 
are the maximum drawdown and ES with significance level at 
1%.11 The risk-adjusted performance is evaluated with the help 
of the Sortino, Omega, Calmar and upside potential ratios, that 
have been considered most relevant for the target risk strategies 
(Annaert et al., 2009, Bertrand and Prigent, 2011). Sortino ratio 
measures excess return over a predefined target return per unit of 
downside deviation.12 Omega ratio is computed by dividing the 
higher partial moment of degree one by the lower partial moment 
of the same degree, that is, the expected excess return over a 
predefined threshold divided by the expected loss below the same 
threshold. Calmar ratio is the annualized mean return relative to 
the maximum drawdown. The upside potential ratio is the higher 
partial moment of degree one divided by the downside deviation. 
Sortino and Calmar ratios are refinements to the popular Sharpe 
ratio that better addresses the risk preferences of investors (risk-
seeking above a certain threshold return and risk-averse below 
this threshold). They favour investments with the highest return 
but the least downside deviation for the former and the least 
maximum drawdown for the latter. The upside potential ratio is 
an alternative to the Sortino that has the advantage of using the 
minimum acceptable return for evaluating both profits and losses 
(Plantinga and de Groot, 2001). It favours investments which have 
had relatively better upside performance per unit of downside risk. 

11 The maximum drawdown represents the maximum percentage loss that a 
portfolio incurred from its peak level to its lowest level over a given period 
of time. 

12 The downside deviation measures the standard deviation of the only returns 
below a minimum target return (here, zero).

The main benefit of the Calmar ratio is the consideration of the 
entire return distribution without imposing any parametric shape, 
which allows the capture of information in the higher moments.

This chart illustrates the performance over the out-of-sample 
period of the risk targeting strategy with daily rebalancing under 
two implementation procedures: index-and-bill (black line) and 
index and futures (red line). The target level is a 1.5% ES. For 
comparison, we include the performance of the buy-and hold index 
investment strategy (blue line). The related transaction costs are 
included in the valuation. Panel (a) shows the cumulative returns 
of investing 1 Euro in January 3, 2000 until July 31, 2014. Panel 
(b) shows the kernel densities of the daily returns for the strategies.

For a visual representation of the difference in performance 
between the index-and-bill implementation and the index-and-
futures implementation, Figure 2a plots the cumulative returns 
of investing 1 Euro in each portfolio over the out-of-sample 
period. For comparison, the performance of the buy-and-hold 
index investment strategy over the same period is also shown. 
As can be seen, the evolution is globally similar under the two 
implementation procedures. An apparent discrepancy emerged 
nevertheless from the beginning of 2007 when the cumulative 
value of the futures-based strategy becomes clearly higher. This 
observation must not however lead to the conclusion that the 
futures-based ES targeting strategy dominates its index-and-bill 
rival because the outperformance may depend on the ES target 
level and/or the rebalancing frequency.

Irrespective of the implementation procedure, the ES targeting 
strategy succeeded in preserving the invested capital, capturing 
the upside potential of the underlying and protecting the downside 
especially during the crises periods. With the exception of the 
year 2007 and the second quarter of the year 2014, during which 
the investment in the market index has reached record levels, the 
values of the protected portfolios exceed that of the buy-and-hold 
portfolio. This performance is mainly driven by the ability of the 
risk targeting strategy to mitigate the repercussions of the various 
crises occurring during the considered period.

Figure 2b plots the kernel densities of the simulated returns of the 
protected portfolios in comparison with the unprotected investment 
strategy in the equity index. Clearly, the ES targeting strategy 
has provided major shift of mass in the distribution from the tails 
towards the center, resulting in significant reduction in tail risk. 
As with all protection strategies, ES targeting incurs an implicit 
cost in that highly positive returns can no longer achievable is 
case of upward movements of the underlying index. While the 
daily returns vary between –9.12% and 14.48% for the underlying 
index, they only lie within the range of –2.59% and 2.24% for 
the index-and-bill implementation and the range of –2.36% and 
2.15% for the futures-based implementation.

This table summarizes the estimation results after and before 
transaction costs over the out-of-sample period for the two 
implementation procedures of the ES targeting strategy: index-
and bill and futures-based. For comparison, we include the 
performance of the underlying index as well as the estimation 
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results for the futures-based implementation based on theoretical 
futures prices. We report the annualized mean return (Mean), 
annualized standard deviation (SD), skewness (Skew), kurtosis 
(Kurt), maximum drawdown (MDD), 1% ES, Sortino ratio (SoR), 
Omega ratio, Calmar ratio and upside potential ratio (UPR). To 
calculate the Sortino and Omega ratios, the MAR is set to zero. 
Apart from skewness, kurtosis and Omega ratio, all statistics are 
expressed as percentages. The statistics are presented in panel A 
when transaction costs are included, and in panel B no transaction 
costs are accounted for.

Table 4 reports the corresponding backtesting results of the ES 
targeting strategy under its two implementation procedures as well 
as the performance of the underlying index. Panel A shows the 
results when transaction costs are included. First of all, we note 
that ES of the protected portfolios are very closely to the pre-
specified ES target level of 1.5%, reflecting the high precision of 
both implementation procedures. Further, it appears that the drag 
on performance induced by the ES targeting strategy not only 
caused a major drop in mean return but also negatively affected 
the asymmetry of the return distribution. Indeed, the skewness has 
changed sign to negative given that the range of forgone positive 
returns is much broader than the discarded negative returns. 
This result contradicts findings by Dreyer and Hubrich (2019) 
that managed volatility strategies deliver an enhanced skewness. 
In exchange of this protection cost, the strategy contributes to 
substantial reductions in the standard deviation and kurtosis of 
the return distribution. Moreover, the significant falls in maximum 
drawdown reflect the strategy effectiveness in mitigating extremely 
negative returns. Accordingly, the ES targeting strategy leads to 
huge improvements in all risk-adjusted return ratios compared to 
the underlying owing to the substantial downside risk reduction.

Comparing across the two implementation procedures, the results 
reported in Panel A of Table 4 clearly indicate that implementing 
ES targeting strategy using futures contracts leads to better 
drawdown protection and risk-adjusted performance. In fact, 
the futures-based implementation delivers a lower maximum 
drawdown that its index-and-bill counterpart (19.90% compared 
to 21.66%), and generates returns that are less negatively skewed 
and less leptokurtic in distribution. It also produces higher 
annualized mean return (3.49% compared to 2.95%) and thus better 
performance based on all risk-adjusted return ratios.

To check whether this evidence is attributable to the transaction 
cost advantage, we have made the same comparison between 
the two implementation procedures assuming that no transaction 
costs are charged. Panel B of Table 4 shows the corresponding 
results. We see that the standard deviation and higher moments 
of the return distribution as well as the 1% ES are the same as 
when taking into account transaction costs. In addition, significant 
improvement in mean return (from 2.95% to 3.83%) and maximum 
drawdown (from 21.66% to 18.83%) can be observed for the 
index-and-bill implementation compared to slightly improvements 
for the futures-based implementation given the relatively small 
transaction costs. The index-and-bill implementation takes thus the 
lead over its futures-based rival in terms of protection effectiveness 
and risk-adjusted return ratios, except for the upside potential 
ratio. Two important conclusions can be drawn from the results. 
First, the transaction costs tend to shift the return distribution of 
the ES targeting strategy to the left without changing its shape, 
which translates into lower mean return and higher maximum 
drawdown. This particularly affects the performance and the 
protection effectiveness of the index-and-bill implementation 
because of the importance of transaction costs. Second, the fact 

Table 4: Backtest performance of risk targeting strategy
Mean SD Skew Kurt MDD ES SoR Omega Calmar UPR

Underlying 6.42 24.22 0.27 8.49 55.46 -5.19 2.41 1.048 11.57 52.3
Panel A: Including transaction costs

Index-and-bill 2.95 7.50 -0.21 4.01 21.66 -1.50 3.50 1.067 13.63 56.1
Futures based 3.49 7.58 -0.17 3.87 19.90 -1.50 4.12 1.078 17.53 57.2
Futures based using theoretical prices 3.30 7.53 -0.21 4.00 20.94 -1.51 3.91 1.074 15.75 56.5

Panel B: No transaction costs
Index-and-bill 3.83 7.50 -0.21 4.01 18.83 -1.50 4.56 1.087 20.32 57.0
Futures based 3.57 7.57 -0.17 3.87 19.75 -1.50 4.22 1.080 18.06 57.2
Futures based using theoretical prices 3.38 7.53 -0.21 4.00 20.63 -1.51 4.01 1.076 16.39 56.6

Figure 2: (a and b) Performance of the two procedures of implementing the ES targeting strategy

ba
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that the futures-based implementation generates the highest upside 
potential ratio even when no transaction costs are accounted for 
suggests that the transaction cost advantage cannot be the only 
source of its outperformance. Indeed, it seems that the replication 
imperfections due to futures mispricing gives the futures-based 
implementation a better participation in upward movements of 
the underlying index.

To check this, we follow Merrick (1988) and Do and Faff 
(2004) and perform additional simulations for the futures-based 
implementation, with and without transaction costs, using the 
theoretical futures prices as determined by the cost-of-carry model 
instead of the actual futures prices. The last row of both Panels A 
and B in Table 4 provides the corresponding results. We observe 
that the simulation based on theoretical futures prices leads 
practically to the same standard deviation, skewness, kurtosis 
and ES as the index-and-bill implementation, confirming that the 
theoretical futures prices derived from the cost-of-carry model 
allow replicating the statistical proprieties of the ES targeting 
strategy. Unreported chart shows that the corresponding kernel 
densities of the simulated daily returns are coincident. Notably, the 
simulation using theoretical futures prices performs significantly 
worse than the simulation based on actual futures prices both in 
terms of effectiveness of protection and risk-adjusted performance, 
with transaction costs either included or not included. This finding 
can be explained by the fact that the index futures mispricing can 
either enhance or deteriorate the short-term performance of the 
strategy (Merrick, 1988) but has a long-term beneficial effect. So 
that, our empirical results do not contradict the empirical findings 
of Do and Faff (2004) as they examined the portfolio insurance 
strategies for subsamples of 3-month maturity. As a conclusion, 
the superior performance of the futures-based implementation 
relative to its index-and-bill rival is driven both by the transaction 
cost advantage and by the long-term beneficial effect of the futures 
mispricing that allows a higher capacity to capture the upside 
potential of the underlying index.

To put into perspective this difference between the two 
implementation methods of the ES targeting strategy, additional 
simulations are performed to examine their sensitivities to the 
risk target level and rebalancing frequency. In this respect, we 
regenerate the simulations with daily rebalancing at the following 
ES target levels: 1%, 2%, and 2.5%. Subsequently, we target an ES 
level of 1.5% and apply three rebalancing triggers. In particular, we 
impose that rebalancing trades are only triggered when the absolute 
dividend-adjusted return of the underlying index is ≥1%, 1.5% and 
2%, successively.13 The corresponding results are summarized in 
Panel A and Panel B of Table 5, respectively.

Results in Panel A show that the increase in the risk target level 
makes the strategy vulnerable to leverage constraint for the 

13 The trigger levels are chosen on the basis of observed daily dividend-
adjusted returns of the index. Thus, the 2% trigger level entails adjusting 
the portfolio consisting of index and bill 552 times during the out-of-
sample period (14.96%) and 701 times for the futures position throughout 
the same period (19%). This difference is due to the fact that the position in 
futures contracts must be readjusted at each rollover date irrespective to the 
index return. Given the above percentages, a higher trigger lever would be 
meaningless.     

index-and-bill implementation and short-only constraint for the 
futures-based implementation. This limits exposure to risk and 
brings the absolute ES of the portfolios slightly below the targeted 
level. In particular, the effect of implementation constraints only 
becomes apparent when an ES level of 2.5% is targeted but 
remains marginal due to daily rebalancing. As well, although 
higher moments of the simulated returns exhibit low sensitivity 
towards risk target level, we can see a narrowing of skewness 
and kurtosis spreads between the two implementation methods 
by increasing the target level.

In addition, it appears that the ES targeting strategy generates 
better risk-adjusted performance at lower ES target levels, which 
is in line with Rickenberg (2020) and Happersberger et al. (2020). 
Higher level of target risk significantly increased the turnover of 
the index-and-bill implementation, which translates into greater 
transaction costs and reinforces the transaction cost advantage 
of the futures-based implementation. As a consequence, the 
latter records the highest mean returns and the best performance 
measures at all risk levels.

This table summarizes the estimation results over the out-of-
sample period for the two implementation methods of the ES 
targeting strategy using various ES target levels (Panel A) and 
various trigger-based rebalancing levels(Panel B). We report the 
annualized mean return (Mean), annualized standard deviation 
(SD), skewness (Skew), kurtosis (Kurt), maximum drawdown 
(MDD), 1% ES, Sortino ratio (SoR), Omega ratio, Calmar ratio 
and upside potential ratio (UPR). Sortino and Omega ratios are 
computed using a minimum accept return of zero. Apart from 
skewness, kurtosis and Omega ratio, all statistics are expressed 
as percentages.

The futures-based implementation also outperforms its index-and-
bill counterpart in terms of protection effectiveness by delivering 
lower absolute ES and maximum drawdown at all ES target 
levels. Due to the transaction cost effect, the gap between the 
two implementation procedures is more pronounced at higher ES 
target levels. On the whole, these findings support the ability of 
the futures-based implementation to produce superior risk-adjusted 
performance and a better downside protection at all ES target levels.

Furthermore, results in Panel B reveal that the application of a 
threshold-based rebalancing reduces not only the transaction costs 
but also the exposure to risk. As a result, the absolute ES of the 
portfolios significantly fell below the ES target level of 1.5%. 
The maximum drawdown is likewise reduced, which means that 
ES targeting strategy offers better protection effectiveness when 
less frequent rebalancing intervals are used. This enhancement in 
downside protection was accompanied by a notable improvement 
in risk-adjusted performance of the index-and-bill implementation 
proportionally with the decline in the transaction costs. The 
performance improvement is however of less importance for 
the futures-based implementation and approximately the same 
throughout the different trigger levels.

By comparing the results obtained with the two implementation 
procedures, it turns out that reducing the rebalancing frequency by 
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applying a trigger threshold of 1% is enough to make the index-
and-bill implementation more effective at protecting the downside 
risk than its futures-based counterpart. This effectiveness was 
associated with improved performance. In fact, the index-and-bill 
implementation generates the highest Omega, Sortino and Calmar 
ratios from the trigger level of 1.5%, but still fail to outperform its 
futures-based rival in terms of mean return and upside potential 
ratio. This in turn causes a severe drag on performance during 
upward market trends which is unfavourable from an investor’s 
perspective.

6. CONCLUSION

Recurrent financial crises in recent years have highlighted the 
increasingly need for tail risk hedging strategies to protect 
against a repeat of such shocks in the future. This study provides 
a comprehensive evidence of the benefits of using stock index 
futures to manage downside risk. We concentrated our analysis 
on comparing the relative performance of two methods for 
implementing ES targeting strategy. On one hand, the index-and-
bill implementation aims to keep the ES of the portfolio equal 
to a pre-specified target level by dynamically shifting money 
between the risky and the riskless asset based on updated forecasts 
of the risky asset’s ES. On the other hand, the futures-based 
implementation attempts to achieve the same end by simply short 
futures written on the risky asset and continually adjust the futures 
position according to the ES forecasts.

Using 1% ES forecasts issued from the GARCH(1,1)-EVT model, 
which is the best-performing model among a set of competing 
approaches according to the most common VaR and ES tests 
and loss functions, our empirical analysis confirms that the ES 

targeting strategy successfully capture the upside potential of the 
market and reduce substantially the downside risk, leading to an 
enhanced risk-adjusted performance compared a buy-and-hold 
index investment strategy. With respect to the return distribution, 
the ES targeting strategy tends to incur implicit cost in the form of 
decreases in mean and skewness in exchange for reduced standard 
deviation and kurtosis. Furthermore, it leads to better results when 
a low ES target level is chosen and a high trigger level is applied 
for rebalancing.

When comparing results across the two implementation 
procedures, it turns out that the futures-based implementation in 
general outperforms its index-and-bill rival in terms of both risk-
adjusted performance and effectiveness of downside protection. 
This outperformance is driven not only by the transaction cost 
advantage in the futures markets, but also by the replication 
imperfections due to futures mispricing which offer in the long 
term better participation in upward movements of the underlying 
index.

As a robustness check, additional simulations for the ES targeting 
strategy are performed using various ES target levels and 
rebalancing triggers. While the outperformance of the futures-
based implementation over its index-and-bill counterpart is 
confirmed for all target levels, the application of rebalancing 
triggers offers an enhanced risk-adjusted performance and a 
better downside protection but does not have the same effect 
on the two implementation procedures: the futures-based 
implementation remains insensitive to changes in the trigger 
level whereas the index-and-bill implementation succeeds to 
generate the best results both in terms of protection effectiveness 
and higher Sortino, Omega and Calmar ratios when high trigger 

Table 5: Risk targeting: daily rebalancing and various target levels
Mean SD Skew Kurt MDD ES SoR Omega Calmar UPR

Panel A: Daily rebalancing and various target levels
1% ES Target
Index-and-bill 2.70 5.00 –0.20 4.01 12.63 –1.00 4.84 1.092 21.41 57.2
Futures based 3.04 5.23 –0.16 3.83 11.92 –1.04 5.23 1.099 25.48 58.0
1.5% ES Target
Index-and-bill 2.95 7.50 –0.21 4.01 21.66 –1.50 3.50 1.067 13.63 56.1
Futures based 3.49 7.58 –0.17 3.87 19.90 –1.50 4.12 1.078 17.53 57.2
2% ES Target
Index-and-bill 3.25 9.99 –0.20 3.99 29.97 –2.00 2.89 1.055 10.85 55.7
Futures based 3.89 9.93 –0.18 3.90 28.01 –1.96 3.49 1.066 13.88 56.6
2.5% ES Target
Index-and-bill 3.39 12.29 –0.20 3.97 37.57 –2.44 2.44 1.046 9.02 55.3
Futures based 3.92 12.16 –0.18 3.96 35.53 –2.40 2.86 1.054 11.04 55.8

Panel B: Target ES of 1.5% and various rebalancing triggers
Daily rebalancing
Index-and-bill 2.95 7.50 –0.21 4.01 21.66 –1.50 3.50 1.067 13.63 56.1
Futures based 3.49 7.58 –0.17 3.87 19.90 –1.50 4.12 1.078 17.53 57.2
1% Trigger level
Index-and-bill 3.37 7.06 –0.17 3.96 18.00 –1.39 4.27 1.081 18.70 56.9
Futures based 3.52 7.23 –0.15 3.85 18.19 –1.42 4.37 1.082 19.35 57.4
1.5% Trigger level
Index-and-bill 3.40 6.76 –0.15 4.08 16.81 –1.33 4.52 1.086 20.26 57.0
Futures based 3.49 7.12 –0.15 3.95 17.88 –1.40 4.41 1.083 19.54 57.3
2% Trigger level
Index-and-bill 3.34 6.43 -0.16 4.18 15.92 –1.27 4.66 1.089 20.96 56.9
Futures based 3.54 7.08 –0.15 4.03 18.06 –1.41 4.50 1.085 19.60 57.3
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level is used. However, while the index-and-bill implementation 
benefits substantially from lower transaction costs as a result 
of this threshold based rebalancing, the significant drag on 
performance relative to the futures-based implementation affects 
its attractiveness for investors.
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APPENDIX

Proof of Equation (2)
We consider the following two portfolios:

Portfolio 1: a zero-coupon bond with a face value of Bt.

Portfolio 2: 
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For daily frequency of portfolio rebalancing, we may write as approximations that rf,t+1≈rf,t and qt+1≈qt. In this case, the gain/loss reduces 

to B e
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In conclusion, the components of portfolio 2 is worth B et
rf t,
365  at time t+1, which is identical to portfolio 1.


