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ABSTRACT

In this study, the parameters of chaos are analyzed for the leading emerging stock markets: Brazil, Russia, India, China, and Turkey (BRIC-T). As 
chaos has properties such as nonlinearity, sensitivity to initial conditions, and fractality, we performed different methods to identify the existence of 
the chaos in stock index returns of the BRIC-T countries, using the Brock-Dechert-Scheinkman test, the Largest Lyapunov exponent and the Box-
Counting method. Although there is widespread interest in chaos in finance theory, previous studies have neglected the long memory issue in their 
filtering model of nonlinear behaviors. Due to the fact that the Rescaled Range (R/S) analysis and Smith’s (2005) modified GPH test indicated long 
memory in the index returns, we filtered the linear structure of the returns using the methods (ARFIMA, FIGARCH, FIEGARCH) which take long 
memory into account. Though the results have some significant evidence of chaos, the findings are too weak to support the presence of chaos in the 
stock markets of BRIC-T countries.

Keywords: Chaos, Fractals, Largest Lyapunov Exponent, Brock-Dechert-Scheinkman Test, Fractal Dimension 
JEL Classifications: C14, C22, G10

1. INTRODUCTION

As stated by Williams (1997), chaos is a continuous and irregular 
long-term evaluation that satisfies specific mathematical criteria 
and arises from deterministic nonlinear systems. In a chaotic 
system, the trajectory of phase space may have fractal features. 
Also, in time series literature, chaos satisfies the criteria that 
autocorrelation function approaches zero in finite time, as 
trajectories are not constant (Brown, 1997).

Deterministic processes can be defined as processes that 
yield exactly the same outputs in every repetition in identical 
conditions. In contrast, stochastic processes yield different 
outputs in every repetition. Deterministic systems demonstrate 
regular behaviors, and cases where the deterministic model is 
known, the future behavior of the system can be predicted. While 
most systems display regular and foreseeable behaviors, some 
deterministic systems exhibit irregular and random-looking 
behaviors, and these are defined as chaotic systems (Ban and 
Shachrnurove, 2002). Although nonlinear relationships are 

inconvenient for most of us, it is clear that nature does not 
generally exhibit linear relationships. In practice researchers 
prefer to transform nonlinear relationships into linear forms 
by converting data (e.g.  taking logarithm). This application 
only provides graphical or analytical simplicity, yet does not 
change the nonlinear reality (Williams, 1997). Owing to the 
high sensitivity to both initial conditions and parameter changes, 
long-term estimations are fruitless in chaotic systems. However, 
sensitivity to the initial conditions and parameters does not 
preclude the possibility of producing predictions with reasonable 
accuracy. This can be attributed to the fact that, though the 
initial conditions are quite different, the time series produced 
from chaotic systems are duplicative in the preliminary stages 
(Cuthbertson, 1999).

Linear models produce only four types of behaviors; oscillatory 
and stable, oscillatory and explosive, non-oscillatory and stable, 
non-oscillatory and explosive. Nonlinear models, however, 
produce many variations. For example, the system may have 
instantaneous volatility explosions and large movements that 
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are rarely seen. Stock market analysts and investors have always 
been interested in these types of events, as Black Monday of 1987 
being a prime example (Hsieh, 1991). Chaotic behaviors are now 
a given in financial markets, so new models and theories that take 
chaos and its features into account must be produced. Studies 
that analyze chaos are essential, as they reveal the true character 
of financial markets. Although there is great interest in chaos in 
literature, these studies generally focus on some specific features 
of chaos at the expense of others.

Seeking to improve on finance literature, in this study we examine 
the chaotic structure of stock markets from emerging countries 
such as Brazil, Russia, India, China and Turkey (BRIC-T). Another 
innovation of this study is that long memory features of the time 
series used in the filtering models are thaken into account prior 
to Brock-Dechert-Scheinkman (BDS) test. The filtration process 
was conducted with ARFIMA, FIGARCH and FIEGARCH 
models. While BDS test and Largest Lyapunov exponent are 
popular methods in chaos analysis, fractality, which is another 
parameter of chaos, is rarely considered in the empirical modelling 
in literature. Therefore, in addition to the BDS test and Largest 
Lyapunov exponent we conducted fractality tests using Box-
Counting method to investigate the determinants of chaos from 
a wider perspective.

2. LITERATURE REVIEW

The studies of Takens (1981) and Grassberger and Procaccia (1983) 
were the preliminary studies about chaos and the existence of 
nonlinear dynamics. To reveal the presence of chaos, Grassberger 
and Procaccia (1983) used fractal approximation. They stated 
that the correlation exponent v has a close relationship with the 
fractal dimension, and that nonlinear dependencies can generate 
chaos. The initial studies regarding financial and economic time 
series were conducted by Hinich and Patterson (1985), Brockett 
et al. (1988), Brock (1986), Brock et al. (1987), Barnett and Chen 
(1988), Scheinkman and Lebaron (1989) and Hsieh (1989). Brock 
(1986) demonstrated the presence of chaos in the U.S. Gross 
National Product data using the correlation dimension and the 
largest Lyapunov exponent, while Brock et al. (1987) introduced 
the BDS test, based on the correlation dimension, and applied it 
to residuals of financial time series models. The test was modified 
in 1996 by Brock et al. (1996). While there are different methods 
in literature for revealing nonlinearities in the financial time 
series, the BDS test has gained wide acceptance. Scheinkman 
and Lebaron (1989) developed an algorithm for distinguishing 
stochastic and deterministic systems, and also demonstrating 
the presence of nonlinear dependence in the weekly returns of 
the Center for Research in Security Prices data. Similarly, Lui et 
al. (2001) used the Grassberger-Procaccia correlation exponent 
and the BDS test to discriminate stochastic and deterministic 
systems. They also stated that the BDS test properly rejected the 
i.i.d null hypothesis when the data exhibited deterministic chaos 
property. Barnett and Chen (1988) displayed the evidence of 
chaos in certain monetary aggregates and DeCoster and Mitchell 
(1991) obtained findings in Divisia M2, Divisia M3, and simple 
sum M2 data that supported the nonlinearity results of Barnett 
and Chen (1988). Hsieh (1989) analyzed the nonlinearity of five 

major foreign exchange rates, and demonstrated the existence of 
substantial nonlinearity in a multiplicative rather than additive 
form. He also stated that the GARCH models could explain most 
of the nonlinearities. More recently, Abhyankar et al. (1997) 
observed the presence of nonlinear dependence and chaos in 
four stock market returns where there was no evidence in the 
low dimensional chaotic processes. By using raw and filtered 
returns, Barkoulas and Travlos (1998) revealed nonlinearities in 
the returns of the Athens Stock Exchange through the BDS test. 

Papaioannou and Karytinos (1995), on the other hand, used the 

BDS, 
R
S

and Lyapunov exponent to demonstrate nonlinear, fractal 
and deterministic chaos preoperties of the Athens Stock Exchange. 
Likewise, Andreou et al. (2000) used the same methods to analyze 
the chaotic and fractal structure of the Greek drachma (GRD) 
against the four major currencies.

There are studies in literature both supporting and rejecting the 
presence of chaos in financial markets while others exhibit mixed 
results, especially for the currency markets. For instance, Bajo-
Rubio et al. (1992) detected deterministic chaos, which allows short 
term predictions, on daily data for the (spot and forward) Spanish 
Peseta–U.S. Dollar exchange rates. De Grauwe et al. (1993) stated 
that there was no strange attractor in the DM/USD exchange rate, 
while the BP/USD and JPY/USD displayed chaotic behavior. 
Brooks (1996) confirmed the nonlinear structure for exchange 
rate data, yet Serletis and Shahmoradi (2004) detected no chaos 
property in the returns of the CAD/USD exchange rate. Similarly, 
Resende and Zeidan (2008) stated that there was no evidence of 
chaos for different exchange rates in their study.

There is also a great deal of interest in the chaotic structures of 
commodities in literature. For example, Fujihara and Mougoue 
(1997) analyzed the linear and nonlinear behaviors on three 
petrol futures. According to the third order moment test results, 
nonlinearity in the data only arises from the variance of the process. 
DeCoster et al. (1992) found strong evidence for the nonlinear 
properties of four different commodity future prices. Chatrath et al. 
(2001) tested the existence of low-dimensional chaotic properties 
in the gold and silver future markets. Karapanagiotidis (2013) 
examined 25  individual continuous contract commodity futures 
to ascertain the existence of nonlinear and nonreversible features.

The remainder of the paper is structured as follows: section 
two provide literature reviews, section three give theoretical 
information about the BDS, the largest Lyapunov exponent and 
the fractal dimension, and section four present the findings of the 
econometrics tests.

3. ECONOMETRIC METHODOLOGY

3.1. BDS Test
In this study, we used the BDS test to test nonlinear dependence 
in the data, as designed by Brock et al. (1987, 1996). The null 
hypothesis of this test states that time series belong to a white noise, 
i.i.d, stochastic process. Rejection of the null hypothesis means 
that a time series has nonlinear dependence and chaotic features. 
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Although it is based on the correlation dimension suggested by 
Grassberger and Procaccia (1983), this model uses the correlation 
function instead. If ut is a stochastic process and m is an embedding 
dimension, for ɛ >0, following the definition of Caporale et al. 
(2005) the correlation function is defined as follows:
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max-norm. The correlation function is the measure of the sequential 
pattern’s frequency that exists in the data, and provides more efficient 
estimations than the correlation dimension for high dimensional 
chaos modeling. The BDS test statistic can be stated as follows:
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where Wmn ε( )  is BDS test statistic and σ εm ( )  denotes the 
standard deviation of the Cmn ε( )  value. In the test process, two 
parameters, m  and ε, are determined by the user. Where m is the 
embedding dimension and ε  is the maximum differences between 
observations’ pairs. As stated by Brock et al. (1987, 1996), there 
are two steps in the test process. First, the linear structure of time 
series is filtered using a fitted model from the linear ARMA or 
GARCH family. Yielding the nonlinear residuals after which the 
BDS test is applied to these residuals.

3.2. Largest Lyapunov Exponent
Lyapunov exponent measures the sensitivity to the initial 
conditions in a dynamic system. In other words, Lyapunov 
exponent quantifies the average rate of convergences and 
divergences of typical trajectories in dynamical systems (Gençay 
and Dechert, 1996). There are a few methods for calculating 
Lyapunov exponent: maximum Lyapunov exponent, largest 
Lyapunov exponent, local Lyapunov exponent and Lyapunov 
spectrum. Lyapunov spectrum is more convenient for continuous 
differential systems, while maximum Lyapunov is suitable for 
discontinuous differential systems. Local Lyapunov exponent 
estimates the local predictability around a X0  point in the phase 
space, while the largest Lyapunov exponent provides a measure 
for the total predictability of a system (Dai and Han, 2012). 
Following the definition of Bailey (1996) the largest Lyapunov 
exponent statistics can be presented as follows: let xt  denotes a 
time series produced by a nonlinear autoregressive process, and 
Xt  is systems trajectory ( X F X Et t t= ( ) +−1 ), in this case the 

largest Lyapunov exponent is

λ = …( )
→∞ − −lim ln
n n nn

J J J u1

1 2 0 �
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where Jt  denotes Jacobian matrice, ...  is a vector norm and
u T
= …( )0 1 0, , , . In a one dimensional system, Lyapunov exponent 

can have three different values (Brown, 1997),

λt < 0 : orbit is stable and periodic

λt = 0 : orbit is stable in a marginal way

λt > 0 : orbit is chaotic.

3.3. Fractal Dimension: Box-Counting Method
Let us consider a process to define the Box-Counting method:
�s  denotes the side length of a box. In this case, N s( ) shows 
the needed box number in order to cover a square shape. As it is 
understood when s  is smaller, N s( ) is larger. The relationship 
between s  and N s( ) can be explained in the following way:
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where k  is a constant and it is not linked to box size, D 
demonstrates the Box-Counting dimension value and describes 
the scaling of self-similarity. The logarithm of both sides of the 
equation yields a more useful form:
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where D presents the slope of the equation. When logN s( )  and 

log 1
s









  are regressed using different s values, the slope of the 

obtained line shows the fractal dimension (Feldman, 2012). When 
D=2, it is Brownian motion,  D=1.5 is the Brownian trace, that is 
the roughest surface, and finally D =1  demonstrates an Euclidean 
surface rather than a fractal. The fractality property appears when 
1 2< <D  (Scholz and Aviles, 1986).

4. EMPIRICAL ANALYSIS

In this section, we analyze the nonlinearity, sensitivity to initial 
conditions and fractality features of stock market returns of 
BRIC-T. As these properties are parameters of chaotic behavior, 
findings will provide information about the chaotic structure of the 
BRIC-T countries’ stock index returns. The data used is the daily 
log returns of stock indexes of these countries between 10/01/1997 
and 01/30/2014. BRIC-T countries and their index codes are as 
follows: Brazil (Bovepsa), Russia (MICEX), India (NSEI) China 
(SSECI) and Turkey (BIST100).

4.1. BDS Test
In order to conduct the BDS test, the linear structure of the series 
must be filtered using a best fit model as suggested by Brock et 
al. (1987, 1996). Despite the fact that long memory is one of the 
important properties of fractality, which is another feature of the 
chaotic time series, aside from the studies of Saadi et al. (2006) 
and Grane and Veiga (2008) most literature fails to consider the 
long memory property in chaos analysis.

Table  1 demonstrates the test results of the Rescaled Range 

(Henceforth, R
S

) and Smith’s (2005) modified Geweke-Porter-

Hudak (GPH) (1983) analysis. Both methods indicate that all of the 
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return series have long memory features. Considering this fact we 
used three long memory models in the filtering process of return 
series: ARFIMA p d q, ,( ), FIGARCH p d q, ,( )  and FIEGARCH
p d q, ,( ). Figure 1 shows the theoretical (blue line) and empirical 

(red line) Hurst exponent results.

The upward deviations of the empirical line from the theoretical 
line are evidence of the long memory property of the returns. 
The strong deviations in the index returns of Turkey and China 
match the empirical Hurst exponent findings seen in Table 1. As 
stated by Mandelbrot (1972), Hurst exponent values between 0.5 
and 1 indicate the existence of long memory property. In Table 1, 
Smith’s modified GPH test results for the fractional differencing 
parameter (d) are also presented. d values between 0 and 0.5 are 
evidence for long memory. Consequently, according to the Hurst 
exponent and Smith’s modified GPH test, there are significant 
signs of long memory in return series. This information was used 
in the fitting procedure to obtain residuals.

The best fitting model results exhibited in Table 2 were determined 
using the Akaike Information Criteria and log-likelihood statistics. 
While the ARFIMA test results indicate no long memory in the 
stock index returns of Turkey and India at 95% confidence level, 
FIGARCH � , ,p d q( )  and FIEGARCH p d q, ,( )  results show that 
the conditional variance has long memory for all the index returns.

After the filtration of the returns by ARFIMA (p,d,q), FIGARCH 
(p,d,q) and FIEGARCH (p,d,q) models, the BDS test was applied 
on the residuals obtained from these models. As can be seen from 
Table 3, three different embedding dimensions and four different 
epsilon values were used in the BDS test procedure. BDS tests 
were conducted for the log return series before the filtered ones, 
and all test values were statistically significant at 95% confidence 
level. These results rejected the null hypothesis, which states that 
the series comes from the i.i.d processes, yet this information is not 
significant enough to accept the existence of chaos as it is obtained 
from log return series. On the other hand, these results are not 
enough to reject the existence of the Efficient Market Hypothesis. 
According to the Efficient Market Hypothesis of Fama (1965), in an 
efficient market, prices fully reflect all available information; that 
is, residuals of the return model cannot be predicted. Technically 
speaking, if lnPt is the logarithm of asset price at time t, the 
following equation can be applied:  lnPt+1=lnPt+et+1 where the 
asset price at  t+1 consists of the price at time t and with the new 
information arriving at time t+1. In this case, the price change can 
be stated as et+1=lnPt+1=lnPt. Here, et+1 has no autocorrelation, 
that is et+1, should be independent from past price changes. If asset 
returns are random, asset price changes follow a random walk.

After the test of log returns, the BDS test was applied on the 
residuals of the ARFIMA (p,d,q) model. Theoretically, the series 
are expected to be linearly independent, however all test statistics 
are significantly larger than the critical values for all of the 
confidence intervals. Therefore, the null hypothesis of the BDS 
test for the residuals of the ARFIMA (p,d,q) model can be rejected, 
and the nonlinear dependence can be attributed to the nonlinear 
structure of the residuals. As stated by Brock et al. (1993), if 
nonlinearity stems from a non-deterministic process (GARCH), 
we can mention the absence of chaos. Hence the BDS test can 
be applied on the residuals of models from the GARCH family. 
Rejection of the null hypothesis of this test means that conditional 
heteroskedasticity is not the source of nonlinearity in the returns, 
therefore nonlinearity may arise from other factors including 
chaos. Hence, in order to find out the source of nonlinearity in the 
ARFIMA (p,d,q) model, we also examined standardized residuals 
of the FIGARCH (p,d,q) and FIEGARCH (p,d,q) models through 
the BDS test.

As seen in Table 4, there are statistically significant findings for 
all index returns in the FIEGARCH models’ residuals, whereas 
only one country exhibits statistical significance in the residuals 
of FIGARCH model. Another important point is that the results 
for each country have different significant embedding dimension 
levels. While significant results are generally in the high 
embedding dimension levels for Russia and China, Brazil and 
India’s results are clustered in the low dimension levels. Russia 
and China’s findings corroborate the results of Abhyankar et al. 
(1997) they obtained chaos features for high dimension values. 
In short, for the standardized residuals of FIEGARCH model, 
the null hypothesis of the BDS test is rejected at 95% confidence 
level for all countries at different dimension levels. This suggests 
that the nonlinear structure of the returns is not explained by the 
FIEGARCH model, so the nonlinearity results arise from other 

Table 1: Rescaled range and Smith’s Modified GPH test 
results
Country Hurst exponent Smith’s modified GPH test
Turkey 0.5751 0.3135** (0.0474)
Brazil 0.5217 0.4398** (0.0474)
Russia 0.5560 0.2949** (0.0474)
India 0.5446 0.2740** (0.0474)
China 0.6119 0.2299* (0.1186)
*,**indicate the significancy at 90% and 99% confidence level, respectively. Standard 
errors are within the parenthesis. k=4 in GPH test. GPH: Geweke-Porter-Hudak

Table 2: Best fitting model estimates
ARFIMA FIGARCH FIEGARCH

Turkey

Model 
values
Coefficient
Std

2.d.2
0.0142

(0.0130)

1.d.1
0.4036**
(0.0532)

1.d.1
0.7060**
(0.0487)

Brazil

Model 
values
Coefficient
Std

1.d.2
−0.0468*
(0.0208)

1.d.0
0.4142**
(0.0707)

1.d.1
0.6722**
(0.0319)

Russia

Model 
values
Coefficient
Std

3.d.3
0.0451**
(0.0139)

0.d.2
0.3610**
(0.0453)

1.d.0
0.6328**
(0.0496)

India

Model 
values
Coefficient
Std

1.d.2
0.0482

(0.0517)

1.d.1
0.4951**
(0.0654)

1.d.0
0.4847**
(0.0390)

China

Model 
values
Coefficient
Std

1.d.1
0.0825*
(0.0364)

1.d.1
0.3721**
(0.0871)

1.d.0
0.5711**
(0.0592)

 *,** indicate the significancy at 95% and %99 confidence level, respectively. Standard 
errors are within the parenthesis
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factors including chaos. These results also support the findings of 
Brooks (1996) regarding emerging market studies.

4.2. Largest Lyapunov Exponent Test
Although the BDS test results provide information about the 
nonlinear structure of the returns, to better understand the sensitivity 
to initial conditions which is another parameter of chaos, we applied 
the largest Lyapunov exponent test on the log return series of all 
the indexes. In spite of the fact that there are different algorithms to 
conduct the Lyapunov exponent test, we preferred the Rosenstein 

et al. (1993) method due to the flexibility provided. This method is 
fast, easy to implement, and robust to different levels of embedding 
dimension, sample size and reconstruction delay. As no prior 
knowledge exists regarding the system dimension, we used three 
different embedding dimension levels (m) and reconstruction delays 
(j). Results are shown in Table 5.

Similar to the study of Rosenstein et al. (1993), the most significant 
results are obtained when the reconstruction delay is 1. As Table 5 
shows, the standard errors for  j=1 have the lowest values in 
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Figure 1: Rescaled range test Hurst exponent estimates

Table 3: BDS test of returns and residuals of ARFIMA model
Country ε/σ BDS Log returns results BDS ARFIMA fitting results

m=2 m=5 m=8 m=2 m=5 m=8
Turkey 0.5 14.0292** 34.2963** 70.3406** 14.0292** 34.2963** 71.6819**

1 15.2847** 31.136** 49.0258** 15.2847** 31.136** 49.9179**
1.5 15.4016** 27.0037** 35.7933** 15.4016** 27.0037** 36.1168**
2 15.8224** 23.6152** 27.9697** 15.8224** 23.6152** 28.0329**

Brazil 0.5 7.311** 14.9607** 23.7955** 7.311** 14.9607** 23.8807**
1 10.8217** 18.1907** 25.5475** 10.8217** 18.1907** 25.6673**

1.5 13.8493** 21.2581** 26.1113** 13.8493** 21.2581** 26.078**
2 15.6381** 23.2788** 26.3842** 15.6381** 23.2788** 26.3603**

Russia 0.5 16.3837** 34.1065** 72.0958** 16.3837** 34.1065** 73.2355**
1 19.543** 32.7956** 47.7675** 19.543** 32.7956** 48.2301**

1.5 20.3163** 29.9057** 36.7613** 20.3163** 29.9057** 36.5113**
2 19.2142** 26.3161** 29.889** 19.2142** 26.3161** 29.4413**

India 0.5 10.5649** 20.2006** 37.3359** 10.5649** 20.2006** 38.1615**
1 13.1284** 22.7221** 34.0631** 13.1284** 22.7221** 34.1938**

1.5 14.5988** 22.9793** 29.35** 14.5988** 22.9793** 29.5748**
2 14.6799** 22.7112** 26.5894** 14.6799** 22.7112** 26.8381**

China 0.5 7.2405** 16.0039** 24.4699** 7.2405** 16.0039** 22.9552**
1 8.8242** 17.3824** 22.1655** 8.8242** 17.3824** 21.561**

1.5 10.2831** 18.1679** 21.9768** 10.2831** 18.1679** 21.4158**
2 9.644** 17.2875** 20.3925** 9.644** 17.2875** 19.9873**

  The 5% and 1% critical values for the BDS statistic are 1.960 and 2.575, respectively. BDS: Brock-Dechert-Scheinkman
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comparison to the other delays. Unlike Rosenstein et al. (1993), 
who obtained the best results under lower embedding dimension 
levels, in our study we observed that when the embedding 
dimension increases, standard errors of the statistics decrease, 
and the most significant statistics are obtained when j=1 and m=7. 
As can be seen, when j=1 and m=7, all of the largest Lyapunov 
exponent statistics are positive. Although the coefficients are 
relatively close to zero due to the positive values, we can still 
infer to the existence of chaos.

4.3. Fractal Dimension Test: Box-Counting Method
As stated by Peters (1991), the most important components of 
chaotic dynamical systems are sensitivity to initial conditions 
and the fractal dimension. In order to adequately define chaos, 
we should clearly identify these elements. A chaotic dynamical 
system displays trajectories that converge to a strange attractor. 
We can obtain the effective number of degrees of freedom for 
this attractor via the fractal dimension and explain the complexity 
of the system. Although details of the trajectory are sensitive to 
initial conditions, the geometric structure of the strange attractor is 
resistant (Theiler, 1990). When the fractal dimension is larger, the 
chaotic structure of the system will increase. In other words, the 
fractal dimension is a measure of chaoticity of a system (Gündüz, 
2004). We presented the fractal dimension values of all of the 
indexes via the Box-Counting method below.

Values in Table 6 show that the fractal dimensions (DF) of each 
index are between 1 and 2, meaning the index values perform a 
fractal structure. Nevertheless, it is clear that all of these values are 
close to 1 rather than 2, suggesting that the chaoticity levels of the 
indexes are relatively low. These findings also support the previous 
results from the BDS and largest Lyapunov exponent tests. 
Figure 2 presents an alternative view to the results of the BDS, 
largest Lyapunov exponent and Box-Counting tests. Accordingly, 
the largest Lyapunov and Box-Counting tests statistics match up 
with each other in terms of high statistical values. Despite that the 

BDS statistics demonstrate a different ordering; the largest value 
belongs to Brazil while the smallest belongs to China.

5. CONCLUSION AND POLICY 
IMPLICATIONS

Determining the existence of chaos in financial markets requires 
the re-examination of conventional finance theory. In fact, there 
is ample literature which presents the gaps of conventional theory 
and its dependence on i.i.d processes. By means of these studies 
several stylized facts were revealed by different researchers, 
such as dependence in financial asset returns, fat tails in return 
distributions and volatility clustering. Along these lines, the 
present study investigated the chaotic features of five leading 
emerging stock markets: BRIC-T in order to contribute the 
current literature. Chaotic structure of the BRIC-T countries’ stock 
markets were examined in the context of nonlinearity, sensitivity 
to initial conditions and fractality using the BDS, largest Lyapunov 
exponent and Box-Counting methods. As financial time series may 
contain long memory, the ARFIMA, FIGARCH and FIEGARCH 
methods were used in the filtering process to incorporate long 
memory property into conditional mean and conditional variance. 
After filtering the linear structure of log return series the BDS test 
was conducted on residuals to identify nonlinear dependence of 
the series. ARFIMA and FIEGARCH models demonstrated that 
nonlinear structure of the returns cannot be explained through 
these models. When long memory and the asymmetric structure of 
volatility are taken into account, the BRIC-T stock index returns 
have nonlinear dependence which attributed to other factors 
including chaos. Largest Lyapunov exponent test, which was 
conducted to assess sensitivity to initial conditions, showed that 
the most significant results occurred where under j=1 and m=7. 
Although all test statistics were close to zero, as results were 
positive, they were seen as an indicator of chaos.

Table 4: BDS test of residuals of FIGARCH and FIEGARCH model
Country ε/σ BDS FIGARCH fitting results BDS  FIEGARCH fitting results

m=2 m=5 m=8 m=2 m=5 m=8
Turkey 0.5 −1.3485 −0.4293 −0.8017 −3.0544 −0.4695 5.7674**

1 −1.2027 −0.8883 −0.9701 −2.674** −1.0844 −0.2649
1.5 −0.3347 −0.325 −0.6122 −1.8670 −0.7329 −0.5023
2 0.9333 0.8801 0.4529 −0.5915 0.3702 0.2289

Brazil 0.5 −1.0000 −1.2935 −1.7215 −5.323** −1.6620 13.579**
1 −1.0838 −1.8173 −1.2902 −5.866** −3.142** −0.7403

1.5 −0.9297 −1.7910 −1.3051 −5.572** −3.020** −1.0357
2 −0.4407 −1.3949 −1.1064 −4.445** −2.5257* −1.0543

Russia 0.5 0.0810 −0.3842 1.3395 0.5540 1.7553 3.8709**
1 −0.2766 −0.5688 0.3176 0.5209 2.2441* 3.6511**

1.5 −0.3637 −0.4856 0.2484 0.7070 2.7021* 3.9562**
2 −0.5028 −0.1672 0.4280 0.6777 2.938** 3.9958**

India 0.5 −1.5100 −1.4019 −0.1544 −3.087** −2.997** −1.6142
1 −1.2274 −1.1099 −0.1894 −2.812** −2.744** −1.2891

1.5 −1.1403 −0.8805 −0.1349 −2.5235* −2.4774* −0.8850
2 −0.4973 −0.1992 0.2417 −1.6815 −1.4829 −0.0068

China 0.5 −0.4572 3.1745** 4.384** −1.2330 1.9758* 3.1096**
1 −0.9763 1.1380 0.9824 −0.8251 1.2063 1.5023

1.5 −0.4084 0.4274 0.0703 −0.0308 1.0853 1.3484
2 −0.0779 0.2372 −0.2809 0.5979 1.3243 1.4811

The 5% and 1% critical values for the BDS statistic are 1.960 and 2.575, respectively. BDS: Brock-Dechert-Scheinkman
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Consistent with the previous results, findings of the fractal 
dimension test also supported the existence of chaos at a low degree. 
Consequently, we have concluded that BRIC-T stock markets have 
chaotic features at low to moderate intensity levels. Determining the 
presence of chaos, even at low levels, demand considering nonlinear 
relations and fractality in financial markets and financial modeling.
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