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ABSTRACT

Gross domestic product (GDP) is one indicator for measuring a country’s economic growth. However, the increase in GDP and population growth are 
affecting CO2 emissions. This study analyses the effects of GDP and population density on CO2 emissions in Indonesia. To this end, it used the Cobb-
Douglas model, and parameter estimation using Ant Colony Optimisation algorithm. The analysis of the results reveals that GDP and population density 
influence CO2 emissions in Indonesia significantly, and significantly follows the Cobb-Douglas model with increasing return to scale characteristics. 
Thus, an increase in GDP and population density will lead to increased CO2 emissions in Indonesia.
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1. INTRODUCTION

Gross domestic product (GDP) is the total production value in the 
form of goods and services produced by production units within 
the boundaries of a country (domestic) for 1 year. GDP shows a 
country’s flow of income and expenditure in the economy over 
a period of 1 year (Kasperowicz, 2015). Indonesia is the fourth 
most populous country in the world. Based on data published by 
the Indonesian Central Bureau of Statistics 2017 entitled “Statistik 
Indonesia 2017” (Statistical Yearbook of Indonesia 2017), the 
population in Indonesia was 258,704,900 in 2016. This figure is 
8.5% higher or 20,186,200 more people compared to 2015 which 
amounted to 238,518,800 inhabitants. This is cause for worry in an 
environmental sense, as a country’s economic growth is directly 

proportional to the decline in environmental function and quality, 
including the increased emissions of carbon dioxide (CO2).

CO2 emissions are substances, energy or other components 
resulting from an activity in the form of CO2 gas. Studies often 
sample CO2 emissions to illustrate the level of pollution (Ru et al., 
2012). For example, to increase economic growth means that 
people must perform economic activities and consume energy 
which causes air pollution. The higher a country’s value of GDP 
and population density, the higher a citizen’s purchase power. 
Similarly, the higher the activity and energy consumption, the 
higher the CO2 emissions produced. According to Alam (2014), 
global warming due to climate change is a critical global problem 
wherein CO2 is considered a significant contributor to the problem. 
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Therefore, it is essential to analyse the effect of GDP and the 
population density on CO2 emissions in Indonesia.

Many researchers have conducted studies on the relationship 
between GDP and CO2 emissions. Among others, Alam (2014) 
researched changes in economic structure and CO2 emissions 
trends with GDP per capita of Bangladesh. His study is based on 
the Environmental Kuznets Curve hypothesis, using World Bank 
data throughout 1972-2010. The results show faster structural 
shifts from the agricultural sector to the non-agricultural sector, 
and the emergence of the service sector as a dominant part of 
the economy, resulting in a rapidly increasing trend of CO2 
emissions.

Bozkurt and Akan (2014) researched economic growth, CO2 
emissions, and energy consumption relations in Turkey using a 
cointegration test based on GDP data, CO2 emissions, and energy 
consumption for the 1960-2010 period. The results showed that 
CO2 emissions negatively affect GDP growth, while energy 
consumption has a positive effect on CO2 emissions. Similar 
research has also been conducted by Farhani and Rejeb (2012), 
Sharif et al. (2014), Kemal and Hizarci (2017), Magazino (2016), 
Salahuddin et al. (2018), Al mamun et al. (2014) and Tiwari (2011) 
among others.

To analyse a problem requires a model and a hypothesis that 
something will happen in uncertain conditions called parameters. 
In research on the influence of input variables on an output 
variable, one parameter could be the production function of 
the Cobb-Douglas model. According to Reynes (2017), to 
date, the Cobb-Douglas model production function is the most 
commonly used analysis of growth and productivity. Estimation 
of aggregate production function parameters is critical in growth 
analysis, technological change, productivity, and labour. Samsami 
(2013) conducted a study on the application of Ant Colony 
Optimisation (ACO) to predict CO2 emissions in Iran based 
on socio-economic indicators. Forms of linear and non-linear 
equations were developed to predict CO2 emissions using ACO. 
The results provide useful insights into energy systems and CO2 
emission control modelling. Based on the above reviews, the 
authors are interested in researching the effect of GDP and the 
population density on CO2 emissions in Indonesia. The analysis 
was performed using the Cobb-Douglas model production 
function, and parameter estimation were performed using the ACO 
algorithm. The purpose of this study is to obtain a model that can 
be used to predict CO2 emissions as influenced by the GDP and 
population density in Indonesia.

2. MATERIALS AND METHODS

2.1. Materials
This study used secondary data, namely GDP Indonesia, the 
Indonesian population, and CO2 emissions in Indonesia for the 
period from 1967 to 2014. The data are obtained from the official 
website of the World Bank. In this study, we used the Cobb-
Douglas model and ACO algorithm. Data processing was carried 
out using Microsoft Excel 2013 and MATLAB R2015a software.

2.2. Cobb-Douglas Model
The Cobb-Douglas model is used to estimate a production function 
(Douglas, 1928; Reynes 2017; Soukhovolsky and Ivanova 2018). 
These equation involving two or more variables, a dependent 
variable, and independent variables. The production function of 
the Cobb-Douglas model with multiplicative error terms is given 
as the following equation:

 1 2
0= t

tQ K L e   (1)

Where in this study, Qt is output as CO2 emissions; Kt is the input 
as the GDP; Lt is the input as the population density: β0, β1, and β2 
are the Cobb-Douglas model parameters, and εt is the exponential 
of the residual. The elasticity of production E is the percentage 
change in output, divided by the percentage of input changes. 
Production elasticity is the ratio of the relative change of output 
produced to the relative changes in the number of inputs that 
effect. The output elasticity of the GDP EK is measured using the 
following equation:

 1
∆
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The output elasticity of GDP can also be measured using 
coefficient parameters ß1 of the production function of the Cobb-
Douglas model. The output elasticity of the population density EL 
is measured using the equation:
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LL = =

%

%
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The output elasticity of the population can also be measured using 
coefficient parameters β2 of the production function of the Cobb-
Douglas model. The sum of the elasticity of production ii=∑ 1

2

explains the size of a venture scale or called a return to scale. 
There are three characteristics of the return to scale as follows:
• If ii=∑ =

1

2

1 , then the function shows a scale with a constant 
return (constant return to scale), meaning that an increase in 
proportional output will follow the increase in the input.

• If ii=∑ <
1

2

1 , then the function shows the scale with 
decreasing return (decreasing return to scale), meaning the 
percentage increase output is smaller than the percentage of 
input addition.

• If ii=∑ >
1

2

1 , then the function shows the scale with the 
increase (increasing return to scale), meaning the percentage 
of output addition is higher than the percentage of input 
addition.

In equation (1), if the left and right segments are taken as a natural 
logarithm, the following linear equations are obtained:

 logQt=logβ0+β1logK+β2logL+εt (4a)

If Yt=logQt; α0=logβ0 and X1t=logKt; and X2t=logLt, then the last 
equation can be expressed as:

 Yt=α0+β1X1t+β2X1t+εt (4b)
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Thus, the estimator obtained from the regression equation (5) is:

 0 1 1 2 2t̂ t tY X X  = + +  (5)

Equation (5) is linear in the parameters α0, β1 and β2 as well 
as residuals εt. Thus, it is shaped as a linear regression model. 
Constant α0 is an intercept, and β1, β1 are a parameter of elasticity 
of production. For parameter estimation, an optimisation equation 
can be formed from equation (5) as follows:

Minimisation

 
2 2 2

0 1 1 2 2
ˆ( ) ( )t t t t t tY Y Y X X   = − = − − −∑ ∑ ∑  (6)

Equation (7) is used to estimate the value of α0, β1 and β2 which can 
minimise the sum of squares of residuals εt

2∑ . The process of 
minimising the sum of square residual in this study was performed 
using the ACO algorithm.

2.3. ACO Algorithm
According to Samsami (2013), Deif and Gadallah (2017), and 
Bouarafa et al. (2018), ACO is derived from ant treatment, known 
as the ant system. Naturally, ant colonies can find the shortest route 
from the nest to the source of food and back again. As the ants 
walk, they leave information called pheromone where it passes and 
marks the route. Pheromones are used to communicate between 
ants while constructing routes. The path of ants from the nest to 
their food is illustrated in Figure 1 using the ACO algorithm.

According to Samsami (2013), Deif and Gadallah (2017), and 
Bouarafa et al. (2018), the ant algorithm functions as follows: (i) 
First, the ants move randomly. (ii) When ants find different paths, 
such as an intersection, they begin to determine the direction of 
the path at random. (iii) Some ants walk up, and others choose 
to walk down.
• When they have found their food, they return to the colony 

while marking it with pheromone traces.
• Since the path taken down the path is shorter, the lower ant 

arrives first, assuming the velocity of all the ants is the same.
• The pheromone left by the ants on the shorter path of the 

aroma is stronger, compared to the pheromone on the longer 
path.

• The other ants are more interested in following the lower path, 
because of the stronger pheromone scent.

Also, according to Samsami (2013), Deif and Gadallah (2017), and 
Bouarafa et al. (2018), the ant algorithm requires several variables 
and steps to determine the shortest distance.
Step 1:
a. The parameters required in the ant algorithm are as follows:
 •  The intensity of ant traces between places τij and changes 

Δτij.
  Intensity τij must be initialised before starting the cycle. 

Change Δτij initialised after one cycle. Change Δτij used to 
specify τij for the next cycle.

 • Ant cycle constant Q.
 Ant cycle constant Q is a constant used in the equation to 

determine Δτij. The value Q determined by the user.
 • An ant trace intensity control constant α.
 The traceability control constant is used in the probability of 

the place visited and served as the ant trace intensity controller. 
Value α is determined by the user.
• Time visibility controller β.

 Time visibility controller β is used in the probability of the 
visited place and serves as a visibility controller. The value β 
is determined by the user.
• Visibility between places ηij.

 Visibility between places ηij used in the probability of places 
visited. Value ηij is the result of 1/dij (the distance of the place).
• Lots of Ants m.

 Lots of Ants m are many ants that cycle in the ant algorithm. 
The value m is determined by the user.
• The ant trap evaporation constant ρ.

 The ant trap evaporation constant ρ is used to determine τij 
for the next cycle. Value ρ is determined by the user.
• Maximum number of cycles NCmax.

 The maximum number of cycles NCmax is the maximum 
number of cycles that will take place. The cycle will stop 
according to the value of NCmax which has been determined 
by the user.
• Charging the coordinates of the place.

b. Initialise first place of each ant.
After initialisation of τij done, then m the ant is placed at a random 
starting point. For parameter values, α should be rated ≤0≤α≤1 to 
avoid unlimited pheromone accumulation. Since the amount of 
pheromone left behind is unlikely to get stronger, it gets weaker. 
For parameter values, β should not be given a value of 0, because 
if given a value of 0 then the results achieved are not optimum. 
Not optimum refers to a condition where the length of the journey 
achieved is not the shortest distance.

Step 2:
  Inputting the data of the starting point into the taboo list. 

The initialisation result of the first place of each ant in step 
1 should be loaded as the first element of the taboo list. The 
result of this step is the data input of the taboo of each ant 
with the index of a certain place.

Step 3:
  Arranging the route of each ant visit to every destination. Ant 

colonies that have been distributed to a number or destinations 

Figure 1: (a-d) Ants’ path from the nest to their food
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begin to travel from their place of origin to a destination. From 
the second place, each ant colony continues its journey, choosing 
one of the places not on the taboo list as the next destination. 
Ant colony trips continue continuously until all the places are 
visited one by one. If s specifies the index of the order of visits, 
the place of origin is expressed as tabuk(s), and other places 
are declared as {N−tabuk(s)}. To determine the destination, the 
probability equations of places to visit are as follows:

P s

s
s

ij
k

ij ij

ij ij
k N taboo sk

( )

[ ( )] [ ]

[ ( )] [ ]
;

' { ( )}

=
∈ −
∑
τ η

τ η

α β

α β if  

                      for other 

j N taboo s

j

k∈ −



 { ( )}.

; .0



Where i is the index of the place of origin, and j as the destination 
index’s.

Step 4:
a. Calculation of the route length of each ant or Lk of each ant 

is done after all ants complete one cycle. The calculation is 
based on tabuk(s) each with the following equation:

L d dk taboo n taboo taboo s taboo s
s

n

k k k k
= + +

=

−

∑( ), ( ) ( ), ( )1 1

1

1

Where dij is the distance between place i to place j and calculated 
based on the equation:

d x x y yij i j i j= − −( ) ( )
2 2

b. Shortest distance search
After the LK is calculated for each ant, it will get the minimum 
price of the closed route length of each cycle, or LminNC and the 
minimum price of the overall closed line length is Lmin.

c. Calculation of price changes in the intensity of ant footprints 
between places Δtij

An ant colony leaves footprints on the path between the places it 
passes. The existence of evaporation and differences in the number 
of ants that passes causes the possibility of changes in the price of ant 
footprints intensity between places. The equation of the change is:

∆ ∆ ij ij
k

k

m

=
=
∑

1

Where m is the number of ants; and tij is the path length of 
each ant. Where ∅ ij

k  is the price change of the ant footprint 
intensity between places which is calculated for each ant using 
equation (12):

k; for ( )  place of origin and destination in taboo

0; for other ( )

k
kij

Q i, j
L

i, j


 ∈∆ = 


Where Q is the ant cycle constant; and LK is close length tour (lct).
Step 5:
a. Calculation of the price of the ant footprint intensity between 

places for the next cycle. The intensity of the ant footprints 
between places on all tracks is likely to change as there is 
evaporation, as well as the difference in the number of ants 
that pass through. For the next cycle, the ants passing through 
the trajectory of the intensity price have changed. The equation 

calculates the price of the ant footprint intensity between 
places for the next cycle:

τij=(1−ρ)×τij+Δτij

b. Reset the price of the ant footprint intensity changes between 
places. For subsequent cycles, the change in the intensity value 
of ant traces between places needs to be reset to have a value 
equal to zero.

Step 6:
 Dismiss the taboo list and repeat Step 2 if needed. The taboo 

list needs to be emptied to be filled again with a new place 
order in the next cycle. If the maximum number of cycles 
has not been reached, the algorithm is repeated from the 
taboo input step, with the price of the ant footprint intensity 
parameter between the updated places.

2.4. Model Significance Test
In this section, we discuss the significance test of the model, with the 
aim of finding the viability of the model resulting from the estimation 
process. The model significance test includes the partial parameter 
significance test, the test of the significance of the parameters, and 
the assumption of residual normality test. Also, this study measured 
the strength of the relationships between independent and dependent 
variables, along with the accuracy of forecasting (prediction).
1. Partial significance test: This partial significance test examines the 

significance of each coefficient parameter θi (i=1,2,3), where θiϵ{α0, 
β1 and β2} of equation (2), in affecting the dependent variable. For 
the parameter test θi, the hypothesis used is H0:θi=0 and H1:θi≠0 H1: 
Testing is done using statistic t, where the equation is:

t
SEStatistic

i

i

=

( )

Where SE(θi) is the standard error of the parameter θi?
Reject the hypothesis H0 when 1

2( 2, )| , or Pr[ ]Statistic Statisticn ct t t c−> <  

where t n c( , )−2
1

2

 the critical value of the distribution t at a level of 
significance 100(1−c)%, and n the number of data (Sukono 
et al., 2016).

2. Simultaneously parameter test: This simultaneous significance 
test examines the significance of the coefficient parameters 
simultaneously θi (i=1,2,3), where θiϵ {α0,β1β1} of equation (2), 
in affecting the dependent variable. The hypothesis used is 
H0: θ1=θ2=θ3=0 and H1: ϶θ1≠θ2=θ3≠0. Testing has done using 
statistic F, where the equation is:

F
sStatistic =

MS
Reg

2

Where MSReg is the mean square due to regression, and s2 mean 
square due to residual variation.

Reject the hypothesis H0 when FStatistic>F(1,n−2,1−c), or 
Pr[FStatistic]<c, where t df c( , )

1

2

 the critical value of the distribution F 
at the level of significance 100 (1−c) %, and n the number of data 
(Sukono et al., 2016).

3. Residual normality test: According to Jäntschi and 
Bolboaca (2018), the cumulative distribution function (CDF) 
F0 follows the empirical distribution function Fn. Given the 
ordered sample data X1≤X2≤…≤Xn, it is assumed that H0: CDF 
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following distribution F0(x), and H1: CDF not following 
distribution F0(x).

 The Aderson-Darling (AD) test is a normality test performed 
using the equation:

AD t
n

F z F z nStatistic t n t
t

n

=
−

+ − −+ −
=
∑1 2

10 0 1

1

{log( [ ]) log( [ ]}( ) ( )  (16)

Where F0 is the normal distribution assumed by the parameter 
estimator (µ, σ2); z(t) is the sample sequence value to t; n is the 
sample size; log is the natural logarithm (base e); and t=1, 2,…,n. 
The null hypothesis H0 is rejected if the value of ADStatistic>ADCritical, 
with ADCritical=0.752/(1+0.75/n+2.25/n2.

4. The coefficient of Determination: Coefficient of determination 
r2 is used to determine the strength of the relationship between 
independent variables with the dependent variable in a 
regression model. The value of the coefficient of determination 
r2 can be determined using the equation:

2
2 1

2
1

ˆ( )

( )

n
tt

n
tt

Y Y
r

Y Y
=

=

−
=

−
∑
∑

Where the value r2 ranged 0≤r2≤1. If r2 is close to zero, then it 
explains that the relationship between the independent variable 
and the dependent variable is weak. If r2 is close to one, then it 
indicates that the relationship between independent variables and 
dependent variables is strong (Sukono et al., 2016).

5. Precision Forecast Size: According to Karmaker (2017) 
and Khair et al. (2017), accuracy is vital in forecasting and 
measures the suitability between existing data and forecasting 
data. Certain calculations are commonly used to determine 
total forecast errors, one of which is Mean Absolute Deviation 
(MAD). MAD statistics measure the accuracy of the prediction 
by averaging the alleged error (the absolute value of each 
error). MAD statistics are the size of the overall forecasting 
error for a model. The formula for calculating MAD is as 
follows:

1

ˆ| |
n

t t
t

Y Y
MAD

n
=

−
=
∑

Where Yt is the actual data in the period t, t̂Y  the value of 
forecasting in the period t, and n is the number of data points.

3. RESULTS AND DISCUSSION

This section discusses the result and provides detailed statistical 
data, estimates the model parameters, tests the significance of the 
model estimator, determines the Cobb-Douglas model estimator, 
and forecasts CO2 emissions for the 2015-2017 period.

3.1. Descriptive Statistics Data
Descriptive statistics are structured to provide an overview of 
the quantitative data used in this study. Let us say Qt is the CO2 
emissions; Kt is the GDP, and Lt is the population density. The 
descriptive statistical data of this research is presented in Table 1.

The graph of GDP data is illustrated in Figure 2, the population 
density in Figure 3, and the graph of CO2 emission data in Figure 4.

3.2. Estimating the Model Parameters
In this section, the parameters of the linear regression model (5) 
are calculated using the ACO algorithm. In this estimate, the 
objective function is the minimisation of the sum of residual 
squares in equation (6). The model parameter estimation steps 
using the ACO algorithm is done with the help of Matlab R2015. 
The result of parameter estimation using the ACO algorithm gives 
the parameter estimator values of 0̂ = −30.967, 1̂  = 0.19552 
and 2̂ = 1.558. Substitute values are α0, β1, and β2 in equation (5) 
to obtain the multiple linear regression equation:

Yt=−30.967+0.19552X1t+1.558X2t+εt

3.3. Testing the Model Estimator Significance

First, examine the partial effect of the parameters α0, β1, and β2. 
For parameter estimator of α0, assume H0: 0̂ = 0 and H1: 0̂ ≠0. 
The result of the calculation using equation (11) gives 
tStatistic = −10.80, while at a significant level c = 0.05 with degrees 
of freedom df = 51-2=49 the critical value is t(49;0.05) = −2.0105. 
So, it shows that t tStatistic >

( ; . )49 0 05
thus the hypothesis, H0 is 

rejected which means parameter 0̂ = −30.967 is significant. Using 
the same method, testing is done for parameter estimators 

ˆ  = 0.19552 and 2̂  = 1.558. The test results conclude that 
parameter estimators 1̂ = 0.19552 and ˆ  = 1.558 are significant.
Second, we tested the simultaneous effect and significance value 
of parameter estimators α0, β1 and β2. The hypothesis used is 

0 0 1 2
ˆ ˆˆ: 0,H   = = =  and 1 0 1 2

ˆˆ: 0H   ∃ ≠ ≠ ≠  . The result of 
calculation using equation (12) gives the value FStatistic = 1114.50, 
while at the level of significance c = 0.05 the critical value is 
F

( ; ; . )1 49 0 95
= 4.02 which shows that FStatistic>F(1;49;0.95). Thus 

hypothesis H0 is rejected which means parameters 0̂ = −30.967, 

1̂  = 0.19552, and 2̂  = 1.558 significantly affects the dependent 
variable.

Third, test the assumption of residual normality εt. H0: εt normally 
distributed with zero mean and certain variance, and H1:εt not 
normally distributed with mean zero and variance one. The 
calculation using equation (16) yields a value of ADStatistic = 0.2222, 
while the critical value ADCritical = 0.74047. It shows that 
ADStatistic<ADCritical thus the hypothesis H0 accepted, which means 
εt is normally distributed. The estimation result also generated that 
mean ̂  = 0.005426 ” 0 and variance 2̂  = 0.014568. Therefore, 
we conclude that εt~ N (0, 0.014568).

Table 1: Descriptive statistics data
Statistic Qt Kt Lt

Unit Unit Person
Mean 1.02753743 974.481835 181,239,285
Median 0.89894000 584.263600 183,000,000
Maximum 2.55975023 3,687.9540 255,000,000
Minimum 0.23191548 53.5161517 105,907,403
SD 0.57736700 1011.15700 446,693,252
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This section also measured the strength of the relationship 
between independent and dependent variables. The strength of this 
relationship is measured by determining the deterministic coefficient 
value using equation (17). The calculation yields the value of the 
deterministic coefficient r2 = 98.0%, showing that the relationship 
between the independent and dependent variable is very strong.

3.4. Establishing a Cobb-Douglas Model Estimator
After testing the significance, it shows that the regression model given 
in equation (19) is well suited to model the effect of GDP and the 
population density on CO2 emissions in Indonesia. In equation (6), 
the model estimator is used for forecasting and obtained the equation:

1 2

30.967

30.967 0.19552 1.558

ˆ 30.967 0.19552 1.558 ,or

ˆlog log 0.19552log 1.558log ,or

ˆ

t t t

t t t

t t t

Y X X

Q e K L

Q e K L

−

−

= − + +

= + +

=

Equation (20) is a production function of the Cobb-Douglas model 
estimator, which describes the effect of GDP Kt and population 
density Lt on CO2 emissions in Indonesia Qt.

3.5. CO2 Emissions Forecast for 2015-2017
Using equation (20), CO2 emissions in Indonesia generated 
in 2015-2017 are predicted by including the increased in each 
variable from 2015 to 2017. The results of these predictions are 
shown in Figure 5.

The forecast accuracy is measured using equation (15). The 
calculation obtained the value of MAD = 6.67%. Thus, the error 
of the CO2 emission model influenced by GDP and population 
density using MAD is relatively small, indicating that the model 
estimator is very good.

3.6. Discussion
Taking into account the graph of the GDP data in Figure 2, it 
appears that the value of the GDP in Indonesia has increased 
year on year. Although there is a decrease in 2000, there is a very 
sharp rise after the year 2000. The year 2010 recorded a slight 
decrease, but the trend rose immediately afterwards. It shows 
that the GDP in Indonesia is increasing steadily. Similarly, the 
population density data in Figure 3 is a straight line with a rising 
trend. It illustrates that the population density in Indonesia also 
increased year on year.

Figure 2: Graph of gross domestic product

Figure 3: Graph of population density

Figure 4: CO2 Emissions in Indonesia

Figure 5: Graph of forecast and actual CO2 emission data in Indonesia
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As a consequence of the increase in the value of GDP and population 
density, there is a sharp rise in CO2 emissions in Indonesia. Even 
the year 2010 experienced an increase in CO2 emissions, although 
there is a slight decline in the rate of increase. In general, CO2 
emissions in Indonesia from year to year have increased. Many 
studies CO2 emissions from exhaust gases to illustrate the degree 
of pollution. High CO2 emissions can be caused by high energy 
consumption and deforestation. The higher the income of a country, 
the higher the community’s ability to pay for energy consumption. 
Similarly, the higher the increase in population, the higher the rate 
of deforestation exploited for economic purposes. Figures 2-4 
indicate increased CO2 emissions in Indonesia accompanied by 
increases in GDP and population density.

The estimation of the effect of GDP and population density on CO2 
emissions is expressed as a production function of the Cobb-Douglas 
model of equation (20). Taking into account the Cobb-Douglas model 
estimator in equation (20), the elasticity of output as the GDP can 
be measured using the estimator coefficient parameter 1̂ = 0.19552 
while the output elasticity as the population density can be measured 
using the estimator coefficient parameter 2̂  = 1.558. It indicates 
that population density is more elastic compared to GDP. That is, 
the increase in CO2 emissions in Indonesia is influenced more by the 
population density compared to the GDP growth rates. Similarly, the 
sum of parameters is 1 2

ˆ ˆ +  = 1.75352 or 1 2
ˆ ˆ +  > 1, so that the 

production function of the Cobb-Douglas model of equation (20) has 
the characteristics of increasing return to scale. That is, an increase in 
GDP and population density will lead to an increase in CO2 emissions 
with an elasticity of 1.75352. It should be a concern for the Indonesian 
people and recognise the roles played by economic growth and 
population density on CO2 emissions and air pollution in Indonesia.

4. CONCLUSION

In this paper, we have analysed the effect of GDP and population 
density on CO2 emissions in Indonesia. Based on the results, we 
conclude that GDP and population density significantly affect CO2 
emissions in Indonesia. The effect of GDP and population density 
on CO2 emissions can be modelled as a production function of the 
Cobb-Douglas model. The estimator of the production function 
of the Cobb-Douglas model has the characteristics of increasing 
return to scale. It means that any increase in input in the form of 
GDP and population density will lead to a rise in output in the 
form of CO2 emissions in Indonesia.

Forecasting (prediction) of CO2 emissions using the Cobb-Douglas 
model estimators gives a MAD error rate of 6.67%. The error rate 
is small meaning that the estimated Cobb-Douglas model estimator 
is considered a suitable tool to measure the relationship between 
GDP and population density and CO2 emissions.
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