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ABSTRACT

Allocating wind farms across different locations may reduce the problematic intermittency of wind. The objective of this research was to analyze the 
optimal allocation of offshore wind farms in the U.S. East Coast through modern portfolio theory. The research was conducted with 25.934 secondary 
observations of offshore wind energy produced by 11 hypothetical offshore wind farms. We calculated six minimum variance portfolios, each referring 
to a distinct time period. Four rebalancing strategies were settled in order to assess the performance of the portfolios we estimated. The results indicate 
that MPT can be used to calculate the diversification of offshore wind farms locations, which may reduce the individual variability of hourly wind 
power changes.
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1. INTRODUCTION

Wind energy has been receiving a considerable load of attention 
in the past few years. Probably, this is due to the fact of being 
mainly dependent on a renewable source, with little environmental 
impact, and having comparatively low costs for implementation 
and operation (Chupp et al., 2012; Hansen, 2005). Most of the 
energy generated from wind turbines worldwide comes from 
onshore facilities. However, some authors have discussed the 
potential advantages of relying on offshore sites (Kaldellis and 
Kapsali, 2013; Levitt et al., 2011; Lu et al., 2013). There is also 
a growing concern with regards to potential environmental and 
social impacts of onshore wind plants, e.g. Moller (2006) and 
Tsoutsos et al. (2009), which also may drive resources to offshore 
alternatives (Bilgili et al., 2011).

The development of offshore wind energy, as other sources, has on 
its path both technological and financial-economic sustainability 
issues. On the economics side, some works have dealt with 
financial viability and economic support policies (e.g. Green and 
Vasilakos (2011); Levitt et al. (2011)). Others have discussed how 

wind turbines should be arranged geographically to take advantage 
on sets of wind incidence (Chupp et al., 2012). It is known that 
offshore wind sites also overcome onshore wind sites due to its 
higher stability. Nevertheless, offshore wind energy programs may 
also benefit from this rationalization. It is essential to control the 
energy output in order to advance steadier (Kaldellis and Kapsali, 
2013) and growing energy consumption.

However, the conventional models used in the design of wind 
energy plans are incapable of weighting an intermittent nature of 
the winds, negatively affecting in the capacity to supply energy 
in the measured needs (Neuhoff et al., 2008). So, some authors 
have demonstrated the possibility of using optimization techniques 
to propose how real assets should be selected to maximize the 
performance/risk relationship. Even though we may find works 
relying on various optimization procedures (Milligan and Factor, 
2000; Kempton et al., 2010; Lu et al., 2013), many others 
employed specifically the modern portfolio theory (herein MPT), 
as developed by Markowitz (1952) to propose portfolios of energy 
assets in general (Humphreys and McClain, 1998; Muoz et al., 
2009; Arnesano et al., 2012) and portfolios of onshore wind energy 
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assets (Hansen, 2005; Drake and Hubacek, 2007; Roques et al., 
2010; Rombauts et al., 2011; Chupp et al., 2012).

Based on that, in this work, we propose the application of MPT 
to calculate steadier sets of offshore wind energy generation. 
This analysis is not usual to offshore wind data, although well 
explored for onshore data. In addition, works published have not 
considered the need to rebalance portfolios periodically. Portfolios 
of financial assets can be rebalanced with low cost (bid-ask spread 
and commissions). This is not the case of real assets, and specially 
wind farms. In our analysis we show time span may generate 
different suggestions for wind farms allocation.

The remainder of the paper proceed as follows. In section 2, we 
outline the portfolio theory main concepts and discuss the related 
literature. In section 3, we describe the sample selection and 
provide descriptive statistics. Section 4 presents our empirical 
results. Section 5 concludes.

2. METHODS

In our approach, we intend to show how to combine wind farms 
power generation from different locations by means of MPT 
analysis to achieve a more stable wind power production. MPT was 
initially proposed by Markowitz (1952) for the efficient selection 
of financial asset portfolio and is based on the investor’s goal of 
maximizing future expected return for a given level of risk that he 
is willing to accept. The approach of investments diversification 
is also highlighted as an advantage. Therefore, the characteristics 
of a portfolio can be very different from the characteristics of the 
individual assets that integrate the portfolio.

According to Markowitz (1952), MPT requires two inputs: 
A vector containing the expected returns for each asset considered 
in the sample and a matrix of its covariances. The expected return 
for a portfolio p of n assets, E (Rp), is given by the weighted average 
return of each asset included, as Equation 1 shows.
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Where σp is the portfolio p standard deviation (SD), σi is the 
estimated SD for each asset i and σij is the covariance between 

each pair of assets i and j. The other terms have been defined. 
So, the risk of the portfolio, σp, is not just the weighted average 
of each asset risk, but, it also includes the correlation coefficient 
between assets’ returns, which means that the benefits of 
diversification may come from low covariance between asset 
returns.

Several works (e.g., Roques et al. (2010), Rombauts et al. (2011) 
Chupp et al. (2012), Arnesano et al. (2012) and Cunha and Ferreira 
(2015), to cite a few) have attempted to apply portfolio theory to 
develop energy planning.

Roques et al. (2010) show, by means of MPT analysis, that 
the optimization of wind investment complements preexisting 
conventional investment models. However, the authors neglect 
the variability of wind resources. This problematic might be 
overcome by geographically dispersed portfolio of wind farms 
(Rombauts et al., 2011; Chupp et al., 2012). Cunha and Ferreira 
(2015) show that the diversification helps to reduce the energy 
production variability, although, highest return solution is 
associated with higher risk and is dependent on assumed cost of 
each investment.

The adoption of a model based on portfolio theory may be 
an efficient alternative to assist the decision making related 
to geographic location of offshore wind farms. Based on the 
average energy generated in each potential site for wind turbine 
allocation we may find an optimal portfolio of wind power 
investments.

3. DATA AND DESCRIPTIVE STATISTICS

The data base is composed by 11 meteorological stations, located 
in a radius of 2,500 km of the East coast of the USA, which have 
an estimated propensity to produce offshore wind energy. See 
Figure 1. The wind velocity was recorded by National Data Bouy 
Center, through anemometers installed at each station. According 
to Figure 1, the stations 1, 2, 5, 6, 7, 9 and 10 have fixed platforms 
and their anemometers are located 40 m above the sea level. The 
others stations support buoys, which are located 5 m above of sea 
level (Kempton, et al., 2010).

The minimum amount of wind velocity to start the turbine and 
generate power is 3.5 m/s, and the upper limit is 30 m/s. After 
that, the turbine is automatically turned off for safety purposes. 
Based on this routine, we excluded from the sample the gaps 
that lasted for 4 h or more without energy production. For 
smaller gaps, we filled with linear interpolation. Our final sample 
remained with 25,934 observations for the period between 1998 
and 2002.

Table 1 displays the descriptive statistics about return and risk 
for each station. Over the period, the highest average energy 
production by hour was at station P06 (2.285 MW) and the 
lowest level of SD was at P01 (1.542). Since the return and 
production variability of each meteorological station are 
measured, we estimated optimal portfolios considering different 
windows.
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4. EMPIRICAL ANALYSIS

The analysis begins by calculating the efficient frontier. Figure 2 
displays yearly mean variance efficient frontiers from 1998 to 
2002, yearly and for the full set of the 1998-2002 period. The 
efficient frontier includes a set of optimal portfolios. Any point 
along the way represents a combination of meteorological stations, 
and the minimum variance and maximum return are presented.

Table 2 displays the portfolios for 1998, 1999, 2000, 2001 and 
2002, and a portfolio for the 1998-2002 period. In this initial 
analysis, P08 would not beever consider to receive a wind power 
plant, since it has 0% allocation in every estimated portfolio, 

Table 1: Descriptive statistics
Site Mean±SD

1998 1999 2000 2001 2002 1998-2002
P01 1.13 (1.39) 1.41 (1.57) 1.29 (1.45) 1.63 (1.69) 1.72 (1.60) 1.40 (1.54)
P02 1.36 (1.51) 1.61 (1.65) 1.40 (1.51) 1.69 (1.71) 1.61 (1.53) 1.51 (1.59)
P03 1.27 (1.46) 1.90 (1.72) 1.82 (1.68) 1.73 (1.74) 1.94 (1.67) 1.70 (1.67)
P04 1.50 (1.62) 1.66 (1.70) 1.66 (1.72) 1.45 (1.64) 1.72 (1.76) 1.59 (1.69)
P05 1.54 (1.75) 2.11 (1.92) 2.18 (1.88) 2.01 (1.86) 2.31 (1.92) 2.00 (1.88)
P06 1.84 (1.84) 2.36 (1.92) 2.39 (1.90) 2.28 (1.89) 2.81 (1.89) 2.29 (1.91)
P07 1.41 (1.56) 2.02 (1.80) 2.08 (1.89) 1.87 (1.78) 2.23 (1.86) 1.89 (1.80)
P08 1.61 (1.70) 2.03 (1.89) 2.14 (1.95) 1.87 (1.79) 2.14 (1.89) 1.94 (1.86)
P09 1.94 (1.78) 2.12 (1.87) 2.14 (1.91) 1.92 (1.80) 2.26 (1.86) 2.06 (1.85)
P10 1.93 (1.80) 2.18 (1.88) 2.27 (1.89) 2.06 (1.80) 2.26 (1.82) 2.13 (1.85)
P11 1.82 (1.89) 2.22 (2.01) 2.45 (2.00) 1.82 (1.88) 2.27 (1.89) 2.11 (1.96)
SD: Standard deviation

Figure 1: Meteorological stations location

Table 2: Wind plants portfolios
Stations 1998 (%) 1999 (%) 2000 (%) 2001 (%) 2002 (%) 1998-2002 (%)
P01 12 3 12 9 14 9
P02 11 17 7 13 15 14
P03 2 10 15 8 4 8
P04 18 13 10 11 7 13
P05 5 6 7 5 4 5
P06 11 14 14 16 18 14
P07 6 7 2 10 8 6
P08 0 0 0 1 0 0
P09 17 10 11 8 11 12
P10 10 11 8 13 9 10
P11 7 9 15 7 10 9

Table 3: Wind plants portfolios descriptive statistics
Site Average (%) SD (%) Minimum Maximum (%)
P01 10 3.87 3 14
P02 13 3.49 7 17
P03 8 4.58 2 15
P04 12 3.69 7 18
P05 5 1.03 4 7
P06 15 2.35 11 18
P07 7 2.66 2 10
P08 0 0.41 0 1
P09 12 3.02 8 17
P10 10 1.72 8 13
P11 10 2.95 7 15
SD: Standard deviation
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except in 2001 (with only 1%). On the other hand P06, P02, P04 
and P09 are serious candidates for receiving wind power plants, 
considering they have the highest overall allocation across years 
(15%, 13%, 12% and 12%, respectively). High SD s, in Table 3, 
might suggest sites where, under our analysis, would require the 
highest rebalancing efforts, as P03 and P01 (SD 4.58% and 3.87%, 
respectively).

Once the weights of the minimum variance portfolios (MVPs) 
have been calculated for each period, the next step is to analyze 
the performance of portfolios considering rebalancing strategies. 
We designed four rebalancing strategies in order to facilitate the 
allocation of wind power generation considering the variability of 
the winds of a certain period. Table 4 simplified the rebalancing 
strategies used in this research.

The first strategy is designed to consider the weights derived from 
the MVP in each period and applied to daily offshore wind for the 
same time. In the second one, we employed the weights from the 
MVP in each year and applied in the following year. For example, 
the weights from 1998 data were used to calculate returns and 
SD for 1999 portfolio. In the third and the fourth strategies, we 
considered fixed weights. In the third, the weights were based on 
1998 data, and in the fourth we employed a naive strategy, where 
the weights are distributed equally, (1/11), among all the assets. 
Table 5 shows its main results.

Given that all portfolio are minimum-variance optimization, 
which present the highest stability of offshore wind energy 
production, we can compared the strategies focusing our attention 
on expected returns. Thus, the first strategy presents the best return 

Figure 2: Mean-variance efficient frontiers, (a) 1998 efficient frontier, (b) 1999 efficient frontier, (c) 2000 efficient frontier, (d) 2001 efficient 
frontier, (e) 2002 efficient frontier, (f) 1998-2002 efficient frontier
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in the distribution of potential wind farm plants, considering data 
for the years 1998, 1999, 2000 and 2001. For the observations 
of 2002, the second strategy appears to be adequate. When we 
consider the full sample, 1998-2001, the fourth strategy is more 
efficient.

5. SUMMARY AND CONCLUSIONS

In this paper, a portfolio theory model for offshore wind power 
allocation was employed. The results show that by allocating 
offshore wind farms across different locations, with gains of 
diversification, may reduce the individual variability of hourly 
wind power changes from its location. This analysis shows that 
some sites may not be adequate to receive wind farm plants. From 
our sample, the site represented by P08 is not suitable to generate 
wind power, when we consider other potential sites. This is due 
because of the correlation of the winds between the meteorological 
stations P08 with the others. Since we are dealing with real assets, 
rebalancing may be of major concern since it does not come with 
low costs.

Rebalancing strategies need to be considered and we evaluated 
some strategies. The first strategy, with annual rebalancing, 
presented the best yearly results. However, for the full period, the 
fourth strategy, with naive rebalancing showed better results. This 
discussion may be valuable to policymakers as they decide how 
to incentive investment in wind power generation.
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