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ABSTRACT: This analysis derives the profit-maximizing willingness to supply functions for single-
plant and multi-plant wholesale electricity suppliers that all incur linear marginal costs. The optimal 
strategy must result in linear residual demand functions in the absence of capacity constraints. This 
necessarily leads to a linear pricing rule structure that can be used by firm managers to construct their 
offer curves and to serve as a benchmark to evaluate firm profit-maximizing behavior. The procedure 
derives the cost functions and the residual demand curves for merged or multi-plant generators, and 
uses these to construct the individual generator plant offer curves for a multi-plant firm. 
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1.   Introduction 

The de-regulated wholesale electricity market is characterized by firms that submit piecewise 
continuous willingness to supply electricity offer curves for each hour, or half-hour, for the next day to 
the wholesale market operator. In the U.S., each generator plant can submit up to ten steps for each 
hour of the following day. Wolak (2010) notes that researchers in the wholesale electricity markets 
have an advantage in that the availability of bids and offers submitted by market participants can be 
used to recover the realized residual demand curves faced by each supplier. This alleviates the need to 
make assumptions about the functional form for demand and the competition structure when 
estimating producers’ cost functions and testing the assumption of expected profit-maximizing 
behavior. 

However, this paper presents an alternative approach. This analysis shows that it is beneficial 
for firms to specify a functional form for itself and its competition.  Firms can utilize a benchmark rule 
for submitting profit-maximizing willingness to supply curves when all firms’ asymmetric marginal 
cost curves can be approximated by continuous linear functions. This will occur when the firms’ total 
cost functions are quadratic, and this analysis will prove that this necessarily leads to a linear residual 
demand curves and a linear willingness to supply curves.  Since most wholesale electricity firms own 
multiple generation plants, this paper develops and effective method for employing its known cost 
parameters to construct offers curves that will maximize its expected overall profit. 

Since the willingness to supply curves are increasing step functions, and since the residual 
demand functions are decreasing step functions, these functions can be linearized around the 
neighborhood of the equilibrium. Anderson and Xu (2005) note that most of the work in this area has 
assumed that the market supply and demand curves facing a generator can be approximated by 
continuous functions due to the large number of market participants that offer highly diversified 
prices. Holmberg et al., (2010) show that the step supply functions approaches a continuous step 
function as the number of steps increases.  

It also commonly assumed, as in Genc and Reynolds (2011), that the market demand is 
perfectly inelastic up to a given price. Anderson and Hu (2008) mention that the only case of 
asymmetric willingness to supply curves that allows for an easy solution is when firms encounter 
linear marginal cost curves and face linear demand curves, but that there may also be nonlinear 
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solutions under these same conditions that may be analytically difficult to find.  This analysis proves 
that under the assumptions of quadratic costs and linear marginal costs, there is only a linear solution 
rule for profit-maximization, and there are actually no other nonlinear solutions that exist.  The simple 
linear-pricing rule can then be used to evaluate firms’ profit maximization. 

The multi-plant nature of the wholesale electricity also creates specific industry concerns for 
the cost structure, profit maximization, and government regulation. Green (1998) presents the 
Electricity Pool of England and Wales as one of the most important and controversial of the 1990s 
reforms in terms of pricing, costs, and regulation.  Since the system software began using price bids 
instead of internal cost data, a System Marginal Price (SMP) was put into place to reflect the short-run 
marginal cost of electricity.  Although Green (1998) states that the price must occasionally rise above 
the marginal cost for peaking capacity to cover fixed costs, this paper focuses on the fact that the 
imperfectly competitive structure of the electricity industry, which is based on price bids, will provide 
each generator plant with a profit-maximizing supply offer curve where price is always above 
marginal cost. 

Since the many electricity markets, including the Pool of England and Wales, the PJM market 
in the U.S., and other electricity markets are generally characterized by a few large firms that each 
own several generator stations, the firms are not price takers.  In order to restrain the price-cost margin 
and market power, regulators rely on both forward contract prices and the potential for market entry.  
Through a large value of forward contract obligations relative to current output, the firm’s ability to 
raise market-clearing prices through its unilateral actions can be translated into a very small incentive 
to raise market-clearing prices (Kwoka and White, 2009).  Additionally, if there are few entry barriers, 
incumbent firms have the incentive to price below the average cost of its rivals in order to avoid losing 
market share to other firms. 

Green (2004) argues that although economists can calculate optimal prices for electricity 
transmission, they are rarely applied in practice. Burns et al. (2004) simulate a large number of N-
plant multiple equilibria games, and then use data on prevailing price-cost margins in England and 
Wales to run econometric regressions in order to identify which games best explain market outcomes.  
They attempt to rigorously calculate electricity marginal costs using a sophisticated system dispatch 
model, in order to avoid the measurement bias that may arise in the marginal cost stack approach.  
Green (2004) uses a multi-nodal model with transmission constraints to solve for optimal uniform and 
nodal prices in England and Wales, and finds that nodal pricing can lead to higher welfare than 
uniform pricing. 

 
2.   Model Derivation 
 This section develops a bottom-up managerial approach to determine the optimal willingness 
to supply electricity that is based on the cost function of each individual electricity generation plant.  
During a given hour, let there be n generating firms in the regional wholesale electricity market, where 
each firm i produces iQ MWh (megawatt hours) of electricity for that hour.  Assume that each firm 
distributes its annual fixed cost across the number of hours in the year, so that for the given hour, each 
firm has fixed costs iF, and faces a cost function that can be approximated by the quadratic cost 
function given by 

2( )i i i i i i iC Q F c Q d Q     , , 0i i iF c d     (1) 
This leads to a the linear marginal cost function  

'( ) ( ) 2i i i i i i iMC Q C Q c d Q         (2) 
Let P denote the price in $/MWh, and assume that each firm’s residual demand is linear, or 

else can be approximated by a linear demand curve given by 
i i i iQ A B P      , 0i iA B       (3) 

The inverse residual demand curve will have the form 

i i i iP a b Q    i
i

i

A
a

B
  1

i
i

b
B

     (4) 

Using equation (4), each firm’s revenue function will be: 
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2
i i i i i i iR P Q a Q b Q          (5) 

The firms’ marginal revenue functions will be given by 
'( ) ( ) 2 ( )i i i i i i i i i i i iMR Q R Q a b Q a b Q b Q         (6) 

Substituting the inverse residual demand function from equation (3) into the parentheses of the 
expression (6), the marginal revenue curve can be rewritten as 

( )i i i i iMR Q P b Q   or i i i iP MR b Q      (7) 
Equation (7) provides the functional form necessary for constructing firms’ willingness to 

supply electricity curves based on their cost function parameters.  If we assume that each firm 
maximizes profit, then for each firm, i iMR MC .Substitute the iMC  expression in the right hand 
side of equation (2) into the right hand side of equation (7) for iMR .  This yields the profit-
maximizing willingness to supply for any firm facing a linear residual demand and a quadratic cost 
function.  This offer curve is expressed as 

 
( 2 )i i i i i i i iP MC b Q c d b Q          (8) 

 
If we define the parameter 2i i ih d b  , then each firm thus necessarily submits a linear 
willingness to supply curve of the general form 
 

i i i iP c h Q  or i i iQ G H P  ;   10 , 0 , 0i
i i i

i i

G
G c h

H H


      (9) 

Let TQ  denote the aggregate industry willingness to supply.  The aggregate market supply 
curve for electricity will be the sum of all of the individual willingness to supply curves for n firms, 
which will only be defined for the range where 0TQ  .  When graphed, this market supply curve will 
be the vertical sum of the individual supply curves, whereas the total market inverse supply curve will 
be the horizontal sum of the individual inverse supply curves.The expression for the aggregate supply 
curve is 

1 1

n n
T

i i
i i

Q G P H
 

    ; defined only for 0TQ          (10) 

After rearranging equation (10) and solving for P, the inverse aggregate supply curve can thus be 
written as 

1 1

1 1

i i

n

i
i T

n n

i i

G
P Q

H H
 

  


 
       (11) 

The aggregate supply curve will be linear above the maximum value of maxc , which comes 
from the firm that has largest value of that ic  parameter.  This is consistent with the Electricity Pool of 
England and Wales in that the Pool based its System Marginal Price (SMP) on the bid of the most 
expensive station in normal operation (Green, 1998); but, the current approach only utilizes the 
maximum cost function intercept of all of the plants in operation.  Thus, assuming that the given 
wholesale market is not trivially small, the aggregate willingness to supply curve will be linear across 
the entire relevant range of price and output. 
 Let DQ  denote the total quantity of electricity demanded in a given hour. The intercept 
coefficient ja  and the slope coefficient jb  for the residual inverse demand curve for firm j can then be 
expressed as a function of the other firms’ supply function coefficients and the total market quantity 
demanded for that hour. Let max

jc  denote the maximum value of ic , excluding firm j, and let T
jQ  

denote the aggregate quantity of electricity offered for supply by all firms, excluding firm j. The 
intercept for firm j is found by determining the minimum price that would induce the collective of all 
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firms, other than firm j, to supply the entire market demand, thus leaving no quantity of electricity 
demanded from firm j.  This can be determined by using the following equation. 

i j i j

D T
j i iQ Q G P H

 
           (12) 

Solving equation (12) for P, and then letting ja  = P, yields the price-intercept of the residual inverse 
demand curve for firm j. 

i j

i j

D
i

j

i

Q G
a

H











         (13) 

Once the vertical intercept (price-intercept) of the firm j residual inverse demand curve has 
been determined, only one additional point on the linear region of the inverse demand curve needs to 
be found in order to compute the slope parameter.  The slope of the inverse residual demand curve can 
be found by 

max

max( )D T
j j

j
j j

a c
b

Q Q c





        (14) 

In the denominator, max( )T
j jQ c  is the total market supply offered when P = max

jc , by all 
firms other than firm j.  The residual inverse demand curve facing firm jwill have a constant slope for 
all prices between max

jc  and ja .  Thus, this provides the second point that was required in order to 

compute the slope.  All prices below max
jc , which means quantities above max( )D T

j jQ Q c , the 
inverse residual demand curve will be kinked and steeper.  However, there is no practical reason that a 
firm in the market for wholesale electricity would ever operate in this small region, where the market 
price is very close to zero. 
 The profit-maximizing firm will set marginal revenue equal to marginal cost.  For the entire 
smooth linear region of the inverse demand curve for prices above max

jc , this means that the profit- 
maximizing price and quantity for firm j can be found by setting equation (6) equal to equation (2) and 
then rearranging to yield: 

2
j j

j
j j

a c
Q

d b





  
2

j j
j j j

j j

a c
P a b

d b

 
   

  
   (15) 

The firm’s own price elasticity of residual demand, j , and its Lerner Index (or price-cost margin), jL , 
are given by 

1 j
j

j j

P
b Q

     j j
j

j

P c
L

P


      (16) 

These measures are of particular importance when addressing both profit and regulatory 
concerns.  The price elasticity in electricity tends to be smaller than in other markets (Kwoka and 
White, 2009).  The inverse of the elasticity, which measures the ability of the firm to raise the market-
clearing price by reducing its willingness to supply electricity, is thus large compared to other markets.  
As a result, very large market-clearing price increases will result from a supplier’s withholding a small 
percentage of its output (Kwoka and White, 2009).Typically, the greater is the share of total 
generation capacity owned by a supplier, the smaller is the elasticity of the residual demand curve it 
faces, and the greater is its incentive to raise prices through its unilateral actions.Newberry (2005) 
shows that privatization in the wholesale electricity market in Britain initially led to increasing price-
cost margins and excessive firm entry. 
 
3.   Application Example 

For ease of exposition, consider a wholesale electricity market that consists of only four 
asymmetric electric generator firms, where firm 3 must determine a willingness to supply offer curve 
to submit to the wholesale market operator.  Suppose that the total demand for electricity during the 
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given hour is perfectly inelastic and given by DQ =  2,400MWh.  Also suppose that firms 1, 2, and 4 
have submitted linear willingness supply curves of the form i i iQ G H P  , and inverse 
willingness to supply curves of the form i i i iP c h Q  , as was specified in equation (9).  These 
offer curves are specified in expression (17). 

 
1 5.3453 4.85939257593Q P    or 1 11.1 0.205787P Q    (17) 

2 7.1364 3.568181818Q P    or 2 22 0.280255P Q   

4 59.6552 12.173913044Q P    or 44 4.9 0.082143P Q 
 

 
This gives the following values for the competitors’ parameters and variables: 
 

1c  = 1.1, 2c  = 2, 4c  = 4.9, maxc = 4.9, 1G = - 5.3453, 2G = - 7.1364, 4G = - 59.6552, 1H  = 

4.85939257593, 2H  = 3.568181818, 4H = 12.173913044, 1h  = 0.205787, 2h  = 0.280255, 4h  = 
0.082143. 

In this case, j = 3, and the equations (12), (13), and (14) can be used to find the intercept and 
slope of the residual inverse demand curve.The intercept is 

 

3
2400 ( 5.3453 7 .1364 59 .6552) $120

4.85939257593 3 .568181818 12.173913044
a    

 
 

   (18) 

 
The aggregate willingness supply function, exclusive of firm j, is 

72.1338694 20.6014874376T
jQ P          (19) 

This produces max( )T
j jQ c  = (4.9)T

jQ  = 28.81342182, so that the second point (at the lower boundary 

of the smooth linear section) of the firm 3 residual inverse demand curve is 3 (4.9)Q  = 2,400 – 
28.81342182  =  2,371.18657818.  The slope parameter is 
 

3
120 4.9 0.048540183

2, 400 28.81342182
b 

 


      (20) 

 
Thus, the firm 3 marginal revenue curve is 

3 3 3 3 3 3( ) 2 120 0.097080366MR Q a b Q Q        (21) 
 Assume that firm 3 knows that its total cost function is given by  

2
3 3 3 3( ) 3.55 3 0.046118258C Q Q Q         (22) 

After taking the derivative of the total cost function, its marginal cost function is 

3 3 3( ) 3 0.092236516MC Q Q          (23) 
Substituting equations (20) and (23) into equations (8) and (9) yields the profit-maximizing inverse 
willingness to supply offer curve for firm 3: 

3 3 3 3 33 0.1407767P c h Q Q            (24) 
Rearranging (24) gives the willingness supply offer curve for firm 3. 

3 21.3103 7.103448276Q P          (25) 

Thus, we obtain the parameters 3c  = 3, 3G  = - 21.3103, 3H  = 7.10344827,and 1h  = 
0.1407767.  Combining the offer curve for firm 3 in equation (25) with the all of the other firm’s offer 
curves in equation (17) provides the aggregate willingness to supply curvefor the entire market: 

93.4442 27.704935713TQ P           (26) 
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This can be rearranged to find the market inverse aggregate willingness to supply curve: 
3.3728 0.0360947 TP Q          (27) 

Figure 1 shows the individual willingness to supply electricity curves for each of the firms as 
expressed in equations (17) and (25), along with the aggregate supply function as expressed in 
equation (27). 
 

Figure 1. Functions for Firm 3 

 
 

The market price of wholesale electricity for the given hour will be determined by the 
wholesale market operator by setting market demand equal to the market willingness to supply so that 

TQ =  DQ .  Thus, setting the right hand side of equation (26) equal to 2,400 MWh, which is the total 
market demand, yields a market clearing equilibrium price of P = $90/MWh.  Substituting this price of 
$90/MWh back into each of the firm’s willingness to supply curves gives the quantity supplied (in 
MWh) by each of the four firms as 1Q = 432, 2Q = 314, 3Q = 618, and 4Q = 1,036. 
 The values of all of the variables for firm 3 can be found by setting its marginal revenue 
function in equation (21) equal to its marginal cost function in equation (23), or by using equation 
(15).  Setting 3 3( )MR Q  = 3 3( )MC Q  yields the following values:  3Q = 618 MWh, 3P = $90/MWh, 

3MR  = 3MC  = $60/MWh, 3C  = $19,471.22, and 3R = 55,620. The values for profit (), average cost 

(AC),and average profit (A) will be 3  = $36,148.78, 3AC  = $31.51/MWh, and 3A  = $58.49.  

Using equation (16) yields the own-price elasticity of demand for firm 3 of 3  = 2.9126, and a Lerner 

Index value of 3L  = 0.333.  Figure 2 shows the market faced by firm 3. 
 
4.   Multi-Plant Firms, Mergers and Acquisitions 
 This section explores the situation where one of the firms is a multi-plant firm that owns m 
electricity generation plants. This would also be identical to a situation where there is a merger 
between two or more previously single plant firms.  Denote the multi-plant firm as firm M, and let {M} 
denote the set of the plant numbers of all plants that are included in firm M.  Referring to the previous 
example in the above section, suppose that firm 3 and firm 2 merge, or that firm 3 acquiresfirm 2, 
thereby creating a new multi-plant firm M, so that {M} = {2, 3}.  In this case, each individual generator 
plant will still submit its own individual willingness to supply curve, but the firmM will determine 
these offer curves by using only one total residual demand that faces the new multi-plant firm.  The 
residual demand curve, offer curves, quantities, prices, costs, and profits can be determined using the 
method employed in this section. 
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Figure 2. Inverse Willingness to Supply Curves 

 
 

Assume that plant 2 management knows that its total cost function and marginal cost functions 
are given by  

2
2 2 2 2( ) 4.2 2 0.119412093C Q Q Q   ; 2 2 2( ) 2 0.238824186MC Q Q   (28) 

Other than the fixed cost of 2F = 4.2, this cost function can be derived by first finding the inverse 
residual demand for plant 2 using equations (12), (13), and (14), in the same manner that was used for 
plant 3 above.  This provides intercept and slope values, respectively, of 2a  = 103.01, and 2b  = 

0.041430592.  We know from the willingness supply curve in equation (17) that 2c  = 2.  Equation (8) 

allows for recovery of the value of 2d  = 0.119412093, since 2 2( 2 )d b = 0.280255, which can be 

solved for 2d  by using the value of 2b obtained from the slope of the plant 2 inverse residual demand 
curve. After the merger, the new firm M will have full information about the cost function associated 
with both of the individual generating plants, alleviating the need to recover the marginal cost function 
from the plants’ individual offer curves. 
 Let MQ  denote the total output of the merged multi-plant firm.  In the above example, this 

consists of total combined output of plant 2 and plant 3.  Let T
MQ  denote the aggregate quantity of 

electricity offered for supply by all firms, excluding firm M. The single residual demand curve for the 
multi-plant firm M can be found rewriting equations (12), (13), and (14) as follows, where all of the 
plants owned by firm M are omitted from the summations. 

{ } { }M Mi i

D T
i iMQ Q G P H

 
              (29) 

Solve equation (29) for P, and then let Ma  = P.  This produces the price-intercept of the residual 
inverse demand curve for the multi-plant firm M. 

{ }

{ }

M

M

D
i

i
M

i
i

Q G
a

H











         (30) 

The slope of the inverse residual demand curve can be found by 
max

max( )D T
M M

M
M M

a c
b

Q Q c





         (31) 

For this scenario where {M} = {2, 3}, the resulting intercept for firm M is 
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2400 ( 5 .3453 59.6552) $144 .72
4.85939257593 12.173913044Ma   

 


      (32) 

The aggregate willingness supply function, exclusive of the plants 2 and 3 owned by firm M, is 
64.99750575 17.03330562T

MQ P          (33) 

Note that plant 4 still has the maximum value of ic .  Thus, max( )T
M MQ c  = (4.9)T

MQ  = 
18.46569365, so that the second point on the smooth linear section of the firm M residual inverse 
demand curve is (4.9)MQ  = 2,400 – 18.46569365  =  2,381.53430635.  The slope parameter can be 
computed as 

144 .72 4 .9 0.058708509
2, 400 18 .46569365Mb 

 


      (34) 

Thus, firm M has a marginal revenue curve given by 
( ) 2 144.72 0.117417018M M M M M MMR Q a b Q Q         (35) 

 The next step is to find the marginal cost function and the total cost function for the multi-
plant firm M.  This can be achieved by adding the individual component plants’ marginal cost 
functions as follows. First, rearrange equation (2) so that quantity of electricity produced by each plant 
owned by firm M is expressed as a function of its marginal cost, so that  

1i
i i

i i

c
Q MC

d d


    { }i M                    (36) 

Then, set i MMC MC { }i M  , and then sum up each of the m equations in expression (36).  
This leads to the equation 

{ } { } { }

1
M M Mi i i

i
i M

i i

c
Q MC

d d  
             (37) 

Solving (37) for MMC  yields 

{ } { }

{ } { }
{ } { }

2 M M

M M
M M

i i

i i
i i

i ii
iM M M M

i i i

d dc
MC c d Q Q

d d d
 

 
 

          
                     

  
 

(38) 

For the example above where {M} = {2, 3}, equation (38) becomes 

2 3 2 3 2 3
2 3

2 3 2 3 2 3
( )M

c c d d d d
MC Q Q

d d d d d d

     
        
           

     (39) 

 
Using the numerical values from the example, the marginal cost function for the combined firm 
becomes 

2 2.721390925 0.066538586M M M M MMC c d Q Q         (40) 
The marginal cost function for the multi-plant firm will always have a smaller value for its 

slope when compared to the slope of any of the individual component plants, so that Md < id  for all 

i{M}.  The marginal cost function intercept value of Mc  is a weighted average of the component 

plant intercept parameters, and it will lie between the values of ic  from each of the individual plants 
operated by firm M. In the current numerical example, 2c < Mc < 3c . 
 The total cost function for the multi-plant firm M can be recovered by deriving the integral of 
the marginal cost function, and then assuming that its fixed cost is the sum the individual fixed costs 
associated with the individual component plants.  Although the fixed costs may be reduced for a multi-
plant firm after a merger due to synergies, this procedure will provide and upper-bound for the 
maximum level of fixed costs.  In the example, MF  = 2F  + 3F  = 3.55 + 4.2 = 7.75.  Thus, the total cost 
function for firm M can be written as 

2 27.75 2.721390925 0.033269293M M M M M M M MC F c Q d Q Q Q     
 

  (41) 
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 The profit maximizing level of output for the multi-plant firm occurs where the marginal 
revenue for the merged firm equals the marginal cost of production at each of the individual plants, so 
that ( )M MMR Q  = iMC { }i M  .This procedure requires substituting MQ  =

{ }Mi
iQ


 into the 

marginal revenue function.  Then, setting this same marginal revenue function equal to the marginal 
cost function for each individual plant yields a set of m equations of the form 

{ }
( ) 2 2 ( )

Mi
i i i i i iM M M MMR Q a b Q c d Q MC Q


     { }i M   (42) 

This can be written as an m-equation matrix system A Q B , and then solved to find the 
profit-maximizing value of output for each plant. For the 2-plant example given above, the matrix 
system will be 

 
2 2 2

3 3 3

2 2 2

2 2 2
M M M

M M M

b d b Q a c

b b d Q a c

      
     

           
         (43) 

Solving the system requires 1Q A B , which yields 

2 3 2 3

3 2 3 22 3 2 3

( ) ( ) ( )1
( ) ( ) ( )2 ( )

M M M M

M M M MM

Q b d a c b a c

Q b d a c b a cb d d d d

      
   

            
 (44) 

 Using the parameters from the above example results in the profit-maximizing values 2Q = 

218.08, 3Q = 553.82, and MQ  = 771.90.  Substituting the total quantity into the firm M inverse residual 

demand curve M M M MP a b Q  yields an equilibrium market price of $99.40/MWh, which is 
an increase of $9.40 above the pre-merger, or single-plant market price.  Substituting these values into 
the firm M marginal revenue, marginal cost, total cost, total revenue, and profit functions, yields the 
following values: MMR  = MMC  = $54.08/MWh, MC  = $21,931.11, and MR  = 76,726.15. The profit 

(), average cost (AC), and average profit (A) will be M  = $54,795.05, MAC  = $28.41/MWh, and 

MA  = $70.99.  Using equation (16) yields the own-price elasticity of demand for firm M of M  = 

2.5755, and a Lerner Index (price-cost margin) value of ML  = 0.456.   
 Using the following procedure, the price and plant quantity levels derived above can be used 
to construct the new willingness to supply offer curves for each of the individual plants.  For each 
plant, the intercept of the inverse willingness to supply curve must be set equal to value of the 
intercept of the marginal cost function for the merged firm, so that equation (9) becomes 

i i iMP c h Q  or i i iQ G H P   ; 10 , 0 , 0i
i iM

i i

G
G c h

H H


         (45) 

Next, substitute the profit-maximizing quantity and price into the equation (45) for each plant 
owned by firm M.  Solving for the parameters yields  

** i iMP c h Q  ; *

( *)M
i

i

c P
h

Q

 
  M

i
i

c
G

h


  1
i

i
H

h
   (46) 

For the example above, the plant 2 and plant 3 parameters in equation (46) are *P  =$99.40, *
2Q = 

218.08, *
3Q = 553.82, Mc  = 2.72139, 2h  = 0.44332, 3h  = 0.17457, 2G =  6.1387, 3G =  15.5895, 2H  = 

2.25571924, and 3H  = 5.72849796. 
The willingness to supply and inverse willingness to supply offer curve equations, 

respectively, for firm 2 and firm 3 become 
2 2 2 22.72139 0.44332MP c h Q Q    ;   2 6.1387 2.25571924Q P    (47) 

3 3 3 32.72139 0.17457MP c h Q Q    ;    3 15.5895 5.72849796Q P    (48) 
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Thus, we have shown that, given the aggregate willingness to supply function, the individual plant 
marginal cost functions can be used to derive the optimal willingness to supply offer curves for each 
plant in the multi-plant firm. 

Since the Mc term in each of the individual plant offer curve equations is a weighted average, 
it is only at the current value of P* that the individual willingness to supply offer curves will provide 
the profit-maximizing quantities that exactly equate MMR  = MMC  = iMC  for all i{M}.  However, 
the above procedure provides the closest linear approximation to the profit-maximizing quantities, and 
it will be close throughout the entire range of viable market prices. 

This can be demonstrated with a simulated sensitivity analysis. Consider the example above, 
where equations (23), (28), (40), (47), and (48) can be used to compute the profit-maximizing 
quantities and the marginal costs for plant 2, plant 3, and for the overall merged firm.  When the 
market price is P = $99.40/MWh as it was previously, then 2MC  = 3MC =  MMC  = $54.08.  If the 

market price is as low as P = $10/MWh, then 2Q = 16.42, 3Q = 41.69, MQ  = 58.11, 2MC  = $5.92, 

3MC  = $6.85, and MMC  = $6.59.  If the market price is as high as P = $216/MWh, then 2Q = 481.10, 

3Q = 1,221.76, MQ  = 1,702.86, 2MC  = $116.90, 3MC  = $115.69, and MMC  = $116.03.  Thus, these 
values for the marginal cost for each of the individual plants will be close approximations to the 
overall marginal costs of the combined merged firm. This allows each plant to submit these offer 
curves derived above to the wholesale market operator so that the multi-plant firm M will maximize its 
profit. 

 
5.   Conclusion 
 This analysis has developed a pragmatic approach for determining the optimal willingness to 
supply curves for single-plant and multi-plant firms when firms have quadratic total cost functions and 
linear marginal cost functions. The method above can be utilized by multiple-plant firms with any 
finite number of plants. The firm only needs to know its own cost structure and then recover the 
aggregate willingness to supply function for the market in order to formulate its offer curves. It can 
use information from competitors’ previous offer curves in order estimate the cost structure of other 
firms. All that is needed is to approximate maximum value of the intercept of the aggregate supply 
curve, which is determined by the plant with the maximum intercept in its marginal cost function, and 
the slope of the aggregate supply curve. This information allows for the computation of the residual 
demand curves and the willingness to supply curves. Every firm in the market can follow this 
Cournot-type strategy, without the need to impose the restrictions of an arbitrarily assigned economic 
market structure, or a strategy game that is cooperative or non-cooperative. This is extremely useful 
since the plants do not need to coordinate with each other, nor with competitors, in order to formulate 
the optimal strategy. 

The above approach does have some limitations. Since the actual firm and aggregate 
willingness to supply curves have discrete steps, such as in the PJM market in the northeastern U.S., 
this approach does not provide the exact piecewise continuous offer curve functions that would be 
submitted by each individual plant.  However, a linear comparison line can be fitted for each stepped-
function offer curve. Since each plant submits a different, multi-step curve for each hour (or half-hour 
in some European markets), firms have more than enough data to recover an approximate set of linear 
comparison curves. As long as the cost functions and number of competitors are relatively stable, each 
plant can formulate a stepped offer curve strategy that is consistent with the approximated linearized 
profit-maximization procedure explored here. 

This procedure also applies when there are fixed-price forward contracts and when there are 
transmission constraints. If forward contracts are in place, where then net residual demand would be 
computed for each firm before computing the offer curves; once computed, the analysis would 
proceed for each plant as formulated above. If transmission constraints exist, then the residual demand 
curves would be kinked and steeper above the price where the constraint becomes binding, but the 
same procedure described above still applies with the new demand curves. 

Another limitation of this approach is that it does not consider nonlinear cost functions. A 
further extension would involve finding the underlying offer curves when the plants’ marginal cost 
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curves are nonlinear. This is especially relevant for cases when marginal costs eventually begin to 
increase at an increasing rate as the output of electricity gets closer to the maximum plant capacity.  
The above analysis still yields insight in this case since the nonlinear marginal cost functions can be 
linearized around a neighborhood of the relevant quantities, and then the method here can be applied.  
An even more precise approach to the nonlinear problem would be to consider specific cases, such as 
the cubic cost function, which results in a quadratic marginal cost function. This case is left for 
exploration in future papers. 

Finally, it should be noted that this general approach can be used in other markets, and is not 
restricted to wholesale electricity. Even though the wholesale electricity market has some unique 
features and is uniquely characterized by an explicit wholesale market operator that determines the 
prices and quantities, this type of willingness to supply strategy may also characterize other 
oligopolistic markets where such offer curves are implicitly utilized by the industry firms. If the firm 
can analyze the various market equilibrium quantity and price bundles over time for itself and its 
competitors, then it can potentially approximate the industry aggregate willingness to supply curve, 
thus allowing it to derive its own optimal offer curves based on its own cost function. Utilizing this 
type of approach within other markets thus presents another potential avenue for future research. 
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