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ABSTRACT

This study investigates the relationship between carbon prices and major food, energy, and mineral commodities in Indonesia and Europe using a multi
method framework that includes correlation analysis, hierarchical clustering, random matrix theory (RMT), rolling window eigenvalue diagnostics,
and vector autoregression (VAR). The Indonesian dataset (2024-2025) reflects the early stage of the IDX Carbon market, while the European dataset
(2015-2025) represents the mature structure of the EU Emissions Trading System. The combination of RMT filtering and VAR modelling allows
for the identification of systemic comovement and dynamic transmission channels. The results show a clear contrast between the two markets. In
Indonesia, correlation measures, clustering patterns, and RMT indicators suggest that commodity price movements are mostly noise driven, with no
stable link between carbon prices and food, energy, or mineral commodities. In Europe, the eigenvalue spectrum, the systemic risk index, and rolling
RMT patterns reveal strong and time varying comovement across energy and metal commodities, with VAR results identifying natural gas as the main
driver of carbon price dynamics. Overall, the findings highlight how market maturity and energy system structure shape carbon commodity interactions

and offer guidance for carbon market design in emerging economies.

Keyword: Carbon market, Commodity Prices, Random Matrix Theory, Vector Autoregression, Market Integration, EU ETS, IDX Carbon,
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1. INTRODUCTION

Climate change continues to reshape environmental and economic
systems worldwide and remains one of the most pressing global
challenges of the twenty first century, as emphasized by the IPCC
(2021) and Stern (2007). Market based mitigation instruments,
particularly emissions trading schemes, have therefore become
central to climate policy. The World Bank (2022) notes that carbon
pricing mechanisms can accelerate the transition toward cleaner
energy systems by shaping investment decisions, production
costs, and expectations of future emissions. The European Union
Emissions Trading System is the most established carbon market
and plays a major role in influencing industrial behavior and
carbon price formation in Europe, as discussed by Ellerman et al.
(2016). Evidence from other jurisdictions, including New Zealand,

shows that carbon markets can become integrated with energy and
financial systems (Tao et al., 2024), while recent work reports
linkages between carbon prices and energy inflation across EU
member states (Olasehinde-Williams et al., 2025).

Carbon prices also influence energy costs, industrial production,
while climate-related policy shifts and energy costs continue to
pressure global food systems (FAO et al., 2022). Studies in China
find that carbon trading can reduce emissions while supporting
industrial output (Zhang et al., 2020) and can stimulate renewable
energy development (Huang et al., 2023). Other research reports
volatility spillovers between carbon and fossil energy markets
(Wang et al., 2024), as well as strong energy food interactions
driven by causality, volatility transmission, and biofuel related
channels (Kirikkaleli and Darbaz, 2021; Nazlioglu et al., 2013;
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Serra and Zilberman, 2013; Taghizadeh-Hesary et al., 2018).
These findings collectively show that carbon pricing operates
within multi commodity systems characterized by cross market
dependencies.

In Indonesia, the integration of food security, resource governance,
and energy transition has emerged as a cornerstone of the country’s
sustainable development strategy (Asian Development Bank,
2021). Domestic food prices remain a key driver of inflation
(Bank Indonesia, 2024), while supply shocks in major staples
generate price volatility that pressures household purchasing power
(National Food Agency, 2025). The energy system remains highly
dependent on coal and resource-intensive minerals such as nickel,
cobalt, and aluminium (Ministry of Energy and Mineral Resources,
2023). These structural conditions suggest that carbon price changes
may transmit across food, energy, and mineral markets, yet such
linkages remain empirically unexplored. The launch of IDX Carbon
in September 2023 marked Indonesia’s first formal carbon market,
although trading activity remains limited (Financial Services
Authority, 2023; Indonesia Stock Exchange, 2023).

By contrast, the EU ETS has operated for almost two decades and
serves as a global benchmark. Matrix completion estimates suggest
that the system reduced emissions by about 15% between 2005 and
2020 (Biancalani et al., 2024), and policy expansions such as ETS2
are expected to raise future carbon prices (Gunther et al., 2024).
Previous research documents strong linkages between EU carbon
prices and energy commodities (Aatola et al., 2013; Hammoudeh
et al., 2014), as well as spillovers into financial markets through
carbon premia and risk transmission channels (Oestreich and
Tsiakas, 2015; Zhou et al., 2025). Although carbon energy and
carbon financial interactions are well studied (Zhao et al., 2023;
Reboredo, 2018; Lyu et al., 2025), research integrating carbon
prices with both food and mineral commodities remains limited.

To the best of our knowledge, no study compares Indonesia’s
emerging carbon market with the mature EU ETS within a unified
multivariate and high dimensional framework. Commodity
markets typically display strong correlation structures, and random
matrix theory (RMT) provides a robust method for distinguishing
information from noise (Mantegna, 1999; Marchenko—Pastur,
1967). Rolling RMT further enables the detection of time varying
systemic patterns that conventional models may not capture.

This study fills these gaps by examining the relationships between
carbon prices and major food, energy, and mineral commodities
in Indonesia, and by comparing them with patterns observed
in Europe. We apply correlation based techniques, shrinkage
estimation, hierarchical clustering, random matrix theory (RMT),
rolling RMT, and vector autoregression (VAR) to uncover both
static and dynamic interdependencies. The contributions of this
paper are threefold. First, it provides the first empirical assessment
of Indonesia’s carbon market and its relationship with strategic
commodity groups. Second, it offers a comparative analysis
between an emerging market and a mature market using systemic
risk tools. Third, it extends the application of rolling RMT to
carbon commodity systems, allowing the identification of time
varying structures not captured by standard econometric models.

2. DATA AND VARIABLES

This study uses monthly price data for carbon, food, energy,
fertilizer, and mineral commodities from Indonesia and the
European Union. The Indonesian sample spans January
2024-August 2025, corresponding to the period after the launch
of the domestic carbon market. Although relatively short, the
Indonesian dataset reflects the structural characteristics of an
emerging market with limited trading activity. The European
sample covers January 2015-August 2025, capturing the mature
dynamics of the EU Emissions Trading System across multiple
regulatory phases. All series are transformed into continuously
compounded returns to ensure comparability and to satisfy the
stationarity requirements of correlation based and VAR based
models.

2.1. Data Sources

Indonesian data are obtained from official administrative sources:
Carbon prices from IDX Carbon, food commodities from the
National Food Agency, and energy and mineral prices from the
Ministry of Energy and Mineral Resources. These series represent
benchmark prices used primarily for policy monitoring and market
surveillance (IDX Carbon, 2025; National Food Agency, 2025;
Ministry of Energy and Mineral Resources, 2025). The European
dataset consolidates daily or monthly benchmarks into monthly
frequency. EU ETS prices are proxied by EUA futures from
Investing.com (2025), while other commodity prices are sourced
from the World Bank Pink Sheet (2025). Table 1 summarizes the
variables used.

2.2. Variable Construction
Monthly returns are computed as

r,.=1n(P)=ln(P,_)

Table 1: Summary of variables included in the analysis

Region  Category Variables
Indonesia Carbon Harga Karbon (Carbon Price)

Food GKP Petani (Farmer-level Harvested Dry
Paddy), GKG Penggilingan (Miller-level
Milled Dry Paddy), Beras Medium
(Medium-grade Rice), Beras Premium
(Premium-grade Rice), Jagung Pipilan
Kering (Dry Shelled Corn), Kedelai Lokal
(Local Soybeans), Bawang Merah (Shallots),
Cabai Merah Keriting (Curly Red Chili),
Cabai Rawit Merah (Bird’s Eye Chili),
Daging Sapi (Beef), Ayam Ras Pedaging
(Broiler Chicken), Telur Ayam Ras (Chicken
Eggs).
Minyak (Crude Oil) dan Batubara (Coal)
Nikel (Nickel), Kobalt (Cobalt), Tembaga
(Copper), dan Aluminium (Aluminium)
Carbon Price
Crude Oil, Natural Gas, Coal
Soybeans, Maize, Rice, Wheat, Beef,
Chicken

Fertilizers DAP, Urea

Metals Aluminum, Iron Ore, Copper, Nickel, Zinc
Indonesian variable names follow the original terminology used by the National Food
Agency, the Ministry of Energy and Mineral Resources, and IDX Carbon

Energy
Minerals

Carbon
Energy
Food

Europe

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 2 * 2026




Firdaus and Husnagqilati: Carbon Commodity Linkages in Emerging and Mature Markets: Comparative Evidence from Indonesia and the EU ETS

where P, denotes the closing price of each series. The return
transformation is required for RMT, shrinkage correlation
estimation, and VAR, all of which rely on stationary inputs.
Correlation matrices are estimated using Pearson and Spearman
correlations, as well as the Ledoit and Wolf shrinkage estimator
to reduce sampling noise in high dimensional settings.

2.3. Descriptive Characteristics

Indonesian commodity prices exhibit substantial heterogeneity.
Food commodities show short term volatility driven by seasonal
supply conditions, weather disruptions, and distributional
bottlenecks. Energy and mineral price movements are relatively
muted, reflecting Indonesia’s regulated coal market, domestic
stabilization policies, and the early stage of the carbon market
where trading activity remains thin. These characteristics result
in low cross market variation, which motivates the use of RMT
to distinguish structural dependencies from noise.

In contrast, the European dataset displays stronger and more
persistent price dynamics shaped by energy market shocks,
regulatory reforms, geopolitical developments, and active
futures trading. The EU ETS in particular exhibits market driven
fluctuations, making the European system suitable for analyzing
systemic structure and dynamic linkages using rolling RMT and
VAR.

3. METHODOLOGY

This study integrates correlation-based techniques, hierarchical
clustering, and Random Matrix Theory (RMT) to characterize
carbon-commodity interactions in Indonesia and Europe. To
capture time-varying dynamics and causal channels, rolling-
window RMT and Vector Autoregression (VAR) are applied
exclusively to the EU ETS dataset. These methods provide three
complementary perspectives: (i) Contemporaneous dependence
via correlation matrices, (ii) systemic structure through
eigenvalue filtering and clustering (Mantegna, 1999), and (iii)
dynamic transmission through impulse responses and variance
decomposition (Pesaran and Shin, 1998; Liitkepohl, 2005).

The analysis begins by constructing return series and estimating
correlation matrices, including the Ledoit and Wolf (2004)
shrinkage estimator to handle cases where the time dimension
is small relative to the number of variables. Subsequently,
hierarchical clustering identifies latent commodity groupings,
while static RMT distinguishes informative eigenvalues from
noise using the Marchenko—Pastur (1967) distribution. For the
EU ETS dataset, temporal variations in systemic dependence are
examined via rolling-window RMT, leveraging its longer sample
length for reliable windowed estimation.

The Indonesian dataset contains only 20 observations, making
rolling analysis statistically unreliable; therefore, the domestic
results focus on static correlation, clustering, and RMT structure.

Similarly, the VAR framework is estimated only for the EU ETS
data to evaluate dynamic linkages between carbon prices and
commodity groups. Impulse responses and forecast error variance

decomposition are used to assess transmission channels and the
relative importance of shocks. The Indonesian sample is too short
for stable multivariate estimation.

The following subsections describe each methodological
component.

3.1. Return Construction and Correlation Estimation
Let P, denote the monthly closing price of a commodity at time ¢.
Continuously compounded returns are computed as

r.=1n(P)-l n(P_)

A standard transformation in financial econometrics to promote
stationarity.

The Indonesian dataset contains N = 19 commodities and
T = 20 monthly observations (January 2024-August 2025),
yielding a dimension ratio:

T
=—~1.05
© N

Which implies that the sample correlation matrix is highly
sensitive to noise. To provide a more stable characterization of
dependence, three estimators are used: Pearson correlation for linear
relationships, Spearman correlation for monotonic dependence, and
the Ledoit and Wolf shrinkage estimator for improved conditioning
in low sample settings (Ledoit and Wolf, 2004).

These estimators serve as inputs for subsequent clustering, RMT
filtering, and for selecting representative variables in the VAR
model.

3.2. Hierarchical Clustering for Market Structure
Hierarchical clustering is used to examine the latent structure
of commodity markets. Following the approach introduced by
Mantegna (1999), pairwise distances are computed from the
correlation matrix as

d; = 2(1-py)

where p,is the correlation between commodities i and j. This
metric satisfies ultrametric properties and has been widely
applied to identify sectoral organization in multi asset systems.

Agglomerative clustering with the average linkage criterion is used
to construct the dendrogram. This method balances sensitivity to
local structure with robustness to outliers, making it suitable for
commodity systems that include food, energy, and metal markets.
The resulting hierarchical tree provides an intuitive representation
of how closely carbon prices relate to different commodity groups
and complements the eigenvalue based systemic analysis obtained
from RMT.

3.3. Random Matrix Theory (RMT)
RMT provides a formal framework for distinguishing meaningful
structure from noise in empirical correlation matrices. This is
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particularly relevant for the Indonesian dataset, where the number
of variables (N = 19) is nearly equal to the number of observations
(T=20), making the sample correlation matrix highly susceptible
to sampling noise.

The Marchenko—Pastur (1967) distribution characterizes the
eigenvalue density of correlation matrices generated from
uncorrelated random variables. Let O = T/N. The theoretical
bounds of the Marchenko—Pastur distribution are

Dnin = (1=170)? A = (14417 0)

Eigenvalues within this interval are attributed to noise, while those
outside it contain information about genuine market structure.

The empirical correlation matrix is decomposed into eigenvalues
and eigenvectors. Eigenvalues that exceed the upper bound
typically represent collective market behavior, often referred to
as the market mode, while subsequent informative eigenvalues
capture sector specific interactions. A filtered correlation matrix
is reconstructed by retaining only informative eigenvalues, which
reduces noise and improves the reliability of clustering results and
subsequent systemic analysis.

3.4. Rolling Random Matrix Theory (Rolling RMT)
Rolling RMT is used to capture temporal variation in systemic
dependence across commodities. For each window of length 17,
a correlation matrix is computed, decomposed into eigenvalues,
and compared with the theoretical bounds of the Marchenko—
Pastur (1967) distribution. This produces a sequence of eigenvalue
sets

A oA A

L e Ne

t=ww+l,...,T

Rolling analysis is implemented only for the EU ETS dataset,
whose longer sample length (7= 129) allows statistically
meaningful windowed estimation. The Indonesian dataset contains
only 20 observations, which is insufficient for reliable rolling
construction, so the domestic analysis relies solely on static RMT.

Changes in the magnitude and number of eigenvalues that exceed
the Marchenko Pastur upper bound indicate evolving systemic
coupling. Increases in the dominant eigenvalue typically signal
periods of strong market integration or stress, while declines point
to weaker common forces. Rolling RMT thus provides a dynamic
perspective on market coherence and reveals structural shifts in
carbon commodity linkages in the EU ETS.

3.5. Vector Autoregression (VAR)

Dynamic interactions between carbon prices and key commodity
groups are examined using a Vector Autoregression model. A
VAR(p) takes the general form

V=AY Tt Ayt
where y, is a k-dimensional vector of returns, 4 are coefficient

matrices, and u is a vector of white noise disturbances (Liitkepohl,
2005).

Lag order pis selected using the Akaike Information Criterion
and the Bayesian Information Criterion. All series are tested for
covariance stationarity, and model stability is evaluated using the
eigenvalues of the companion matrix.

Because the Indonesian dataset contains only 20 observations,
estimating a multivariate VAR would lead to severe
overparameterization and unreliable inference. Therefore, VAR
analysis is applied exclusively to the EU ETS dataset, which
provides a sufficiently long time series to support robust dynamic
modelling.

3.6. Impulse Response Functions (IRF) and Forecast
Error Variance Decomposition (FEVD)

Impulse Response Functions trace the reaction of each commodity
to a one unit shock in carbon prices. Since orthogonalized IRFs
are sensitive to variable ordering, the generalized IRF proposed by
Pesaran and Shin (1998) is used to obtain order invariant responses.

Forecast Error Variance Decomposition complements the IRF
results by quantifying the proportion of each commodity’s
forecast variance attributable to carbon price shocks. FEVD is
derived from the moving average representation of the VAR
model, following the approach outlined by Liitkepohl (2005), and
highlights the relative importance of carbon innovations across
different horizons.

Together, the IRF and FEVD provide a structural interpretation
of carbon commodity interactions within the EU ETS, allowing
an assessment of both short run and medium run transmission
channels. Since no VAR model is estimated for Indonesia, IRF
and FEVD analysis is performed only for the European dataset.

4. RESULTS

This section presents the empirical results for Indonesia and the
European Union. The analysis is organized to reflect the distinct
characteristics of the two markets: A newly established carbon
market with limited trading activity in Indonesia, and a mature
and highly integrated system in the EU ETS. For each market, the
results begin with descriptive properties, followed by correlation
patterns, clustering outcomes, and RMT diagnostics. For the EU
ETS, the analysis is extended to include rolling RMT and VAR
to capture dynamic interactions and transmission channels. The
findings collectively reveal the extent to which carbon prices
are connected to food, energy, and mineral commodities in each
region.

4.1. Domestic Market Results (Indonesia)

The domestic results summarize the behavior of Indonesia’s carbon
market and its relationship with major food, energy, and mineral
commodities. Given the short sample length and the structural
features of the Indonesian economy, the analysis focuses on
descriptive patterns, volatility characteristics, correlation structure,
clustering behavior, and static RMT diagnostics. These tools reveal
whether meaningful co-movement exists between carbon prices
and domestic commodity groups, or whether observed variation is
largely noise driven. The subsections below present the empirical
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findings in a stepwise manner, beginning with descriptive statistics
and followed by correlation- and RMT-based assessments.

4.1.1. Descriptive statistics

The descriptive statistics in Table 2 show that carbon prices
exhibit relatively high volatility, consistent with the early stage
development and low liquidity of the IDX Carbon market. Staple
food commodities (GKP, GKG, and rice categories) display
low standard deviations due to strong price regulation, while
horticultural commodities such as chili and shallots exhibit
substantial volatility driven by seasonal supply shocks. Energy
and mineral commodities show moderate variability in line with
partial exposure to global markets.

Overall, the heterogeneous volatility structure provides no
indication of systematic co movement between carbon and other
commodities, motivating the use of correlation and RMT based
techniques in the subsequent sections.

4.1.2. Correlation analysis

Figure 1 show Pearson correlations between carbon prices and
major commodities are uniformly weak, indicating that short-
term price movements in the domestic carbon market are largely
independent from food, energy, and mineral price dynamics. Staple
food commodities exhibit near-zero correlations due to regulated
pricing and government intervention, while slightly higher but
still modest associations appear in the energy and mineral groups.
Overall, the correlation structure suggests that Indonesia’s carbon
market has not yet developed meaningful linkages with broader
commodity systems.

Figure 2 show that Spearman correlations confirm that even
monotonic relationships with carbon are negligible. This consistency
across correlation measures indicates that the weak co movement is
structural rather than driven by outliers or nonlinear effects.

Figure 1: Pearson correlation matrix of domestic
commodity log-returns

Pearson Correlation (log-return)
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Figure 3 show that Shrinkage estimation compresses noisy
correlations toward zero, revealing that several weak associations
observed in the Pearson and Spearman matrices were primarily
sampling artifacts. This provides strong confirmation that
the domestic carbon market is not yet integrated into broader
commodity price dynamics and that the observed independence
is structural rather than measurement-driven.

4.1.3. Hierarchical clustering

The dendrogram in Figure 4 shows a highly fragmented clustering
structure with large linkage distances, indicating that carbon prices
do not form meaningful clusters with food, energy, or mineral
commodities. This reflects the absence of shared underlying factors
driving co-movement.

Figure 2: Spearman rank correlation matrix of domestic log-returns
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Figure 3: Ledoit-—Wolf shrinkage correlation matrix

Shrinkage Correlation (Ledoit-Wolf)
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Figure 4: Hierarchical clustering of domestic commodity log-returns
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Figure 6: Eigenvalue distribution with Marchenko—Pastur
bounds

Eigenvalue Spectrum with MP bounds

Count

S N ———

0 1 2 a
Eigenvalue

4.1.4. Random matrix theory (RMT)

Figure 6 shows that nearly all eigenvalues lie within the theoretical
Marchenko—Pastur bounds, indicating that the domestic correlation
matrix is largely dominated by noise. The first eigenvalue exceeds
the upper bound only marginally and therefore does not capture a
meaningful market-wide factor.

The scree plot similarly shows a weak leading eigenmode followed
by a smooth decay, suggesting that commodity price fluctuations
are primarily idiosyncratic rather than driven by common
underlying forces.

Figure 8 show noise filtering reveals only mild and localized
clustering among a few food commodities, while the carbon price
remains independent from all major commodity groups.

Across all analytical methods, including correlation measures,
shrinkage estimation, hierarchical clustering, and RMT, the
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Indonesian carbon price shows no meaningful co movement with
food, energy, or mineral commodities. This pattern reflects the
highly regulated nature of the food sector, the partially insulated
structure of domestic energy markets, and the limited depth and
liquidity of the newly established IDX Carbon system.

4.2. International Market Results

The international analysis focuses on the European Union
Emissions Trading System, a mature and highly liquid carbon
market that interacts closely with global energy and commodity
dynamics. Unlike the fragmented and noise dominated structure
observed in Indonesia, the EU ETS exhibits stronger co movement
patterns and clearer systemic relationships due to deeper
market integration, established price discovery mechanisms,
and more diversified exposure to global shocks. This section
presents the empirical results for Europe, beginning with
descriptive characteristics and followed by correlation patterns,
clustering structures, RMT diagnostics, and dynamic interactions
captured through rolling RMT and VAR. Together, these results
provide a comprehensive view of how carbon prices transmit
through energy, food, and mineral markets in an advanced trading
environment.

Figure 8: RMT-denoised correlation matrix
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4.2.1. Rolling maximum eigenvalue

To examine the time varying structure of global commodity co
movements, Figure 9 plots the rolling maximum eigenvalue 4
() together with the theoretical Marchenko—Pastur upper bound.
The empirical series frequently exceeds this threshold, indicating
the persistent presence of a dominant global market factor.

A pronounced increase in 4 (#) occurs during 2021-2023,
coinciding with the European natural gas crisis and the Russia—
Ukraine conflict. This period is characterized by strong market
wide synchronization across energy, metal, and agricultural
commodities. After mid 2023, the maximum eigenvalue declines
but remains above the theoretical limit, suggesting a continued,
although weaker, degree of systemic co movement. In contrast
with Indonesia, the international market exhibits a robust and
dynamically evolving dominant factor that reflects deeper
integration and greater exposure to global shocks.

4.2.2. Systemic risk index (SRI)

The systemic risk index in Figure 10 measures the number of
eigenvalues in each rolling window that exceed the theoretical
Marchenko—Pastur upper bound. Eigenvalues above this threshold
capture informative components that reflect genuine market
structure rather than random noise.

The SRI indicates three distinct regimes. The period 2018-2019
reflects moderate market integration, followed by a temporary
collapse in co movement during the early stages of the COVID
19 shock. A sharp rise in systemic risk emerges during 2021-2023,
driven by energy shortages and heightened geopolitical tensions.
Although the index declines after 2023, values remain consistently
above one, indicating a persistent multi factor structure. In contrast
with Indonesia, where informative eigenvalues are largely absent,
the global market displays strong and sustained systemic linkages.

4.2.3. Evolution of the eigenvalue spectrum
Figure 11 displays the rolling eigenvalue spectrum normalized by
the theoretical Marchenko—Pastur upper bound. Values >1 indicate
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Figure 10: Systemic risk index for the global commodity system
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Figure 11: Evolution of the normalized eigenvalue spectrum
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(approximately ranks 2-6) rise above the threshold during this
period, indicating the activation of multiple systemic forces across
energy, metal, and agricultural markets. After 2023, the spectrum
gradually weakens as energy market pressures ease, although
several components remain informative. In contrast with the shallow
and noise dominated spectrum observed in Indonesia, the global
market exhibits a multi layered and dynamically evolving structure
characteristic of a mature and highly integrated commodity system.

4.2.4. VAR analysis

A VAR model is estimated to quantify dynamic linkages between
carbon prices and major global commodities. The model is applied
only to the international dataset because the Indonesian series is
too short for reliable multivariate estimation.

4.2.4.1. Variable selection

The system includes carbon prices (EU ETS), crude oil, natural gas,
wheat, and copper. These commodities represent key economic
channels affecting carbon price formation, including energy input
costs, fuel switching behavior, agricultural supply conditions,
and industrial activity (Ellerman et al., 2016; Hintermann, 2010;
Reboredo, 2015; Nazlioglu and Soytas, 2011).

4.2.4.2. Stationarity tests

All variables are converted into log returns. Augmented Dickey—
Fuller (ADF) tests in Table 3 indicate that all series are stationary
at the 0.01 significance level.

4.2.4.3. Lag length determination

The lag order selection results are reported in Table 4. Information
criteria select a one period lag as the optimal specification. Both
the Akaike Information Criterion (AIC) and the Final Prediction
Error favor (FPE) VAR(1).

4.2.4.4. Diagnostic checks

Table 5 reports the diagnostic checks for the VAR(1) model. The
VAR(1) model is stable, with all eigenvalues inside the unit circle.
Residual diagnostics indicate no serial correlation (Durbin—Watson
(DW) statistics near 2). Non normality is expected for commodity
returns and does not reduce the validity of linear propagation
analysis.

4.2.5. Impulse response functions (IRF)

Figure 12 shows that impulse responses provide insight into
how carbon price innovations propagate across major global
commodities. A positive carbon shock generates the strongest
reaction in natural gas prices, reflecting the central role of gas
in the fuel switching mechanism within the EU ETS. Crude oil
and wheat display mild and short lived responses, while copper
exhibits an almost negligible reaction. The weak responses
outside the energy sector indicate that carbon price dynamics are
transmitted primarily through energy costs rather than agricultural
or industrial channels.

4.2.6. Forecast error variance decomposition (FEVD)

Forecast error variance decomposition quantifies the contribution
of each commodity to carbon price uncertainty at different
horizons. In the very short run, carbon price fluctuations are
entirely self driven, indicating that immediate variation in carbon
returns is dominated by market-specific factors. At horizon 2, crude
oil becomes the primary external contributor, reflecting short-term
energy market spillovers. At horizon 3, natural gas dominates
the variance decomposition, consistent with its central role in
the fuel switching mechanism of the EU ETS. Wheat emerges as
the main contributor at horizon 4, which may reflect geopolitical
influences on global agricultural markets. At horizon 5, copper
becomes the leading driver, capturing longer-run industrial and
macroeconomic dynamics.
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Figure 12: IRFs of crude oil, natural gas, wheat, and copper to a carbon price shock
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Table 2: Descriptive statistics of domestic commodity prices

Harga Karbon 62590.0000 14710.3792 46000.000 112050.000
GKP Tingkat Petani 6504.9000 302.3590 5878.000 7104.000
GKG Tingkat Penggilingan 7588.4500 332.3696 6978.000 8208.000
Beras Medium Penggilingan 12488.0000 438.8613 11872.000 13280.000
Beras Premium Penggilingan 13899.6000 333.8984 13426.000 14554.000
Jagung Pipilan Kering 4871.2000 655.5696 4073.000 6762.000
Kedelai Biji Kering (Lokal) 9799.8000 709.2760 8987.000 11243.000
Bawang Merah 23666.1000 5140.1839 15119.000 33485.000
Cabai Merah Keriting 30277.1500 8881.8255 16045.000 46992.000
Cabai Rawit Merah 38335.5000 11106.2176 25397.000 64895.000
Sapi (Hidup) 52306.7000 359.9269 51566.000 52972.000
Ayam Ras Pedaging (Hidup) 21677.1000 1112.0318 19840.000 23594.000
Telur Ayam Ras 24668.8000 786.6624 23415.000 26635.000
Batubara 118.5135 9.1974 99.790 131.170
Nikel 16284.5048 1159.4932 14934.335 18962.110
Kobalt 28055.3390 3643.6130 22158.000 33267.695
Tembaga 9218.8100 537.4743 8313.830 9978.750
Alumunium 2443.2198 163.5367 2154.070 2666.070
Minyak 74.5975 6.5373 62.750 87.610

Indonesian variable names follow the original terminology used by the National Food Agency, the Ministry of Energy and Mineral Resources, and IDX Carbon

Table 3: ADF test on log returns 4.2.7. Summary of global VAR results

Overall, the global VAR analysis demonstrates that carbon price
Carbon —-11.814 (8.72x10-2) dynamics are shaped by a combination of short-run energy shocks
Crude oil —8.683 (4.23x10-") and medium-run industrial forces. Crude oil accounts for most
Natural gas ~8.073 (1.54x10-") of the short-horizon variation in carbon returns, reflecting the
Wheat ~10.110 (1.01x10-") sensitivity of carbon prices to immediate movements in global
Copper -3.674 (4.49x10-3)
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energy costs. At intermediate horizons, natural gas emerges
as the dominant driver, consistent with the central role of gas
in the fuel switching mechanism embedded in the EU ETS.
At longer horizons, copper becomes increasingly influential,
indicating that carbon prices also incorporate broader industrial

Table 4: VAR lag order selection

0 —24.51 —24.40 (2.262x10-") —24.47
1 —24.64 —23.95 (1.992x10-) —24.36
Table 5: Diagnostic checks for VAR (1) model

Carbon 2.03 4.39 0.111
Crude oil 1.83 125.16 0.000
Natural gas 2.16 19.76 0.000
Wheat 2.05 23.44 0.000
Copper 1.93 20.97 0.000

Table 6: FEVD of carbon price forecast error variance

1 1.000 0.000 0.000 0.000 0.000
2 0.055 0.945 0.000 0.000 0.000
3 0.001 0.008 0.992 0.000 0.000
4 0.002 0.001 0.000 0.996 0.000
5 0.011 0.115 0.002 0.023 0.848

and macroeconomic conditions associated with metal-intensive
production and investment cycles. The impulse response functions
reinforce these patterns: carbon shocks transmit strongly to
natural gas, with comparatively modest spillovers to agricultural
commodities and non-ferrous metals.

Taken together, the FEVD and IRF results depict a carbon
market that is highly intertwined with global energy dynamics
and, to a lesser extent, with industrial activity. These findings
align closely with the RMT-based evidence. The international
commodity system exhibits a multi-layered eigenvalue structure,
persistent systemic risk, and strong cross-market integration,
reflecting its maturity, liquidity, and exposure to global shocks.
In contrast, the Indonesian domestic system remains weakly
connected, dominated by noise, and characterized by minimal
inter-commodity linkages. This divergence highlights the
structural differences between an established carbon trading
scheme such as the EU ETS and an emerging platform like
IDX Carbon, where limited liquidity, regulatory insulation, and
shallow market depth restrict the formation of systemic price
relationships.

4.3. Comparative Analysis: Indonesia versus European
Markets

Table 7 provides a comparative summary of the key differences in
carbon—commodity dynamics between Indonesia and the European

Table 7: Comparative summary of indonesia and european carbon—commodity dynamics

Systemic structure e Nearly all eigenvalues lie within the e Rolling maximum eigenvalue frequently exceeds the
(RMT) Marchenko—Pastur bounds. theoretical bound.
o First eigenvalue only slightly above the upper e Strong and time-varying dominant factor.
limit. e Multiple informative eigencomponents active

e Correlation matrix dominated by noise,

indicating no persistent market-wide factor.

Eigenvalue spectrum o Shallow spectrum with no meaningful
(Dynamic RMT) deviations.

e RMT-denoised matrix shows fragmented

and unstructured relationships.

Clustering/market e No stable clusters around carbon.
connectivity o Food staples tightly regulated, showing
minimal variation.
e Energy and mineral commodities weakly
connected to carbon.
Correlation behavior e Pearson, Spearman, and shrinkage

correlations mostly near zero.
e Weak or absent co-movement across
commodity groups.

Dynamic transmission e VAR not feasible due to short sample.

(VAR/IRF/FEVD) e No identified transmission channels.
Market maturity & e Early-stage IDX Carbon market.
structure e Limited liquidity and market participation.

e Strong regulatory insulation

(especially food prices).
Overall conclusion
minimal inter-commodity linkages.

Weakly integrated, noise-dominated system with

(high SRI values).

e Wide high-value bands in the eigenvalue spectrum,
especially during 2021-2023.

e Spectrum expands during geopolitical stress
(European gas crisis, Russia—Ukraine conflict).

e Energy commodities (natural gas, crude oil, coal)
display synchronized behavior.

e Metals (especially copper) correlate with industrial
activity.

e Carbon moves within a cohesive, multi-commodity
system.

e Stronger and persistent correlations across energy,
metals, and agricultural commodities.

e (Clear evidence of cross-market integration.

e Carbon shocks strongly affect natural gas
(fuel-switching mechanism).

e Mild, short-lived effects on oil, wheat, and copper.

e Reverse effects show oil has limited influence on
carbon.

e FEVD: crude oil (short run), natural gas (medium run),
copper (long run).

e Deep, liquid EU ETS with established trading activity.

o Integrated with energy and industrial systems.

e Exposed to global shocks and geopolitical events.

Highly integrated, dynamically evolving system with
strong cross-market transmission channels.
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Union across systemic structure, market connectivity, and dynamic
transmission mechanisms.

5. DISCUSSION

This section integrates the domestic and international results to
provide broader economic interpretation, theoretical implications,
and policy relevance. By contrasting an emerging carbon market
(Indonesia) with a mature and highly integrated system (EU ETS),
the findings highlight how institutional structures and market
maturity shape carbon—commodity linkages.

5.1. Synthesis of Key Findings

Three central insights emerge from the analysis. First, the
Indonesian commodity system shows almost no co-movement
with domestic carbon prices across all correlation measures,
clustering outputs, and RMT diagnostics. The eigenvalue spectrum
remains within the Marchenko—Pastur bounds, which indicates
that observed correlations are largely driven by noise. No latent
market factors appear to connect carbon with food, energy, or
mineral commodities.

Second, the global system represented by EU ETS carbon prices
and major commodity benchmarks exhibits a clear multi-layered
pattern of co-movement. Rolling RMT identifies strong systemic
factors during periods of global stress such as the European
energy crisis and the Russia and Ukraine conflict. The presence
of multiple outlier eigenvalues confirms the existence of an
integrated international market where shocks propagate across
energy, agriculture, and metal commodities.

Third, the VAR analysis shows that carbon price dynamics in the
EU ETS are driven mainly by energy markets. Natural gas has
the strongest influence, followed by smaller and shorter-lived
effects from crude oil, wheat, and copper. At longer horizons,
copper gains importance through its connection with industrial
and macroeconomic activity.

5.2. Economic Interpretation

The contrast between Indonesia and Europe reflects fundamental
differences in price formation. In Indonesia, food prices are tightly
regulated, energy prices are partially insulated from international
movements, and the IDX Carbon market remains thin and strongly
policy-driven. These characteristics suppress co-movement and
limit the role of carbon prices as a market signal.

In the EU ETS, natural gas frequently sets the marginal cost of
electricity. As a result, gas prices affect generation decisions
and the demand for carbon allowances. Industrial metals
influence carbon dynamics through the energy-intensive nature
of manufacturing and the sensitivity of carbon prices to global
business cycles. Agricultural commodities show only occasional
links to carbon prices, with wheat influenced mainly by conflict-
related supply disruptions rather than long-term climate or
agricultural mechanisms.

5.3. Theoretical and Methodological Contributions
The findings reinforce three theoretical points. First, the strength

of carbon and commodity linkages depends greatly on market
maturity and institutional settings. Second, fuel switching is a
central mechanism that shapes carbon price dynamics in the EU
ETS. Third, RMT and rolling eigenvalue methods are effective
tools for distinguishing meaningful structure from noise, especially
in short or heavily regulated markets.

Methodologically, the combined use of RMT, rolling eigenvalue
tracking, hierarchical clustering, and VAR provides complementary
insights. RMT identifies the underlying systemic structure, rolling
analysis captures its evolution, and VAR quantifies the direction
and magnitude of transmission channels. Together, these methods
offer a more complete characterization of carbon commodity
relationships than any single technique.

5.4. Policy Implications

For Indonesia, the limited integration across commodities suggests
that short-term carbon price volatility poses little risk to food or
energy stability. Policymakers therefore have space to continue
developing the carbon market without immediate concern about
spillovers. At the same time, the absence of meaningful linkages
indicates that the carbon price has not yet become an effective
driver of emissions reduction. Increasing liquidity, expanding
sectoral coverage, and aligning carbon pricing with broader energy
planning will be necessary for stronger market-based incentives.

For the European Union, the strong dependence on natural
gas highlights the vulnerability of the EU ETS to geopolitical
disruptions and energy supply shocks. Ensuring carbon price
stability requires closer coordination between climate policy and
energy security. The rising influence of industrial metals at longer
horizons implies that decarbonization strategies must also account
for wider industrial and macroeconomic conditions.

5.5. Limitations and Future Research

Limitations include the short sample available for Indonesia,
differences in market structures across regions, and the reduced
ability to apply advanced multivariate models in the domestic
context. Future work may extend the analysis as the IDX Carbon
market matures, incorporate structural VAR or network-based
spillover models, and compare Indonesia with other emerging
carbon markets in Asia. The use of higher-frequency data could
also improve the assessment of systemic risk and transmission
dynamics.

6. CONCLUSION

This study examined the relationship between carbon prices and
major commodity groups in Indonesia and Europe by combining
correlation-based methods, hierarchical clustering, RMT, rolling-
window eigenvalue analysis, and VAR. Using monthly data from
2024 to 2025 for Indonesia and from 2015 to 2025 for global
markets, the analysis provides a comprehensive assessment of
systemic structure, co-movement, and dynamic transmission
mechanisms in both emerging and mature carbon markets.

The empirical evidence reveals a clear divergence between the
two systems. In Indonesia, carbon prices show no meaningful
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integration with food, energy, or mineral commodities. All
correlation measures remain weak, hierarchical clustering yields
no stable grouping around carbon, and the eigenvalue spectrum
lies almost entirely within the Marchenko—Pastur bounds. These
patterns indicate that the Indonesian commodity system is
characterized by idiosyncratic and noise-driven dynamics. This
behavior is consistent with strong regulation in food markets,
partial insulation of energy prices, and the early-stage development
of the IDX Carbon market.

In contrast, the European system displays a well-organized and
time-varying structure of co-movement. Rolling RMT identifies
persistent systemic factors that intensify during global shocks
such as the European energy crisis and the Russia and Ukraine
conflict. The VAR results confirm natural gas as the dominant
transmission channel influencing carbon price dynamics, with
crude oil contributing to short-horizon uncertainty and copper
affecting longer-run movements through industrial conditions.
These findings align with the fuel-switching mechanism in the
European electricity sector and reflect the deeper integration of
energy and industrial markets within the EU ETS.

Taken together, the results show that carbon price transmission
is highly dependent on institutional context and market maturity.
In emerging markets such as Indonesia, carbon prices currently
operate in relative isolation from broader commodity systems,
which suggests that short-term fluctuations in carbon prices pose
limited risks to food or energy price stability. In mature systems
such as the EU ETS, strong interactions with natural gas and
industrial metals indicate that carbon pricing is closely linked
to energy security, market volatility, and macroeconomic forces.

Future research may extend the Indonesian analysis as the
carbon market develops further and more data become available.
Additional work could incorporate structural VAR, network-based
spillover models, or comparisons with other emerging carbon
markets in Asia. The use of higher-frequency or sector-specific
data may also improve the understanding of systemic risk and
transmission channels as Indonesia’s market evolves.
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