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ABSTRACT

This study investigates the relationship between carbon prices and major food, energy, and mineral commodities in Indonesia and Europe using a multi 
method framework that includes correlation analysis, hierarchical clustering, random matrix theory (RMT), rolling window eigenvalue diagnostics, 
and vector autoregression (VAR). The Indonesian dataset (2024-2025) reflects the early stage of the IDX Carbon market, while the European dataset 
(2015-2025) represents the mature structure of the EU Emissions Trading System. The combination of RMT filtering and VAR modelling allows 
for the identification of systemic comovement and dynamic transmission channels. The results show a clear contrast between the two markets. In 
Indonesia, correlation measures, clustering patterns, and RMT indicators suggest that commodity price movements are mostly noise driven, with no 
stable link between carbon prices and food, energy, or mineral commodities. In Europe, the eigenvalue spectrum, the systemic risk index, and rolling 
RMT patterns reveal strong and time varying comovement across energy and metal commodities, with VAR results identifying natural gas as the main 
driver of carbon price dynamics. Overall, the findings highlight how market maturity and energy system structure shape carbon commodity interactions 
and offer guidance for carbon market design in emerging economies.

Keyword: Carbon market, Commodity Prices, Random Matrix Theory, Vector Autoregression, Market Integration, EU ETS, IDX Carbon, 
Indonesia 
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1. INTRODUCTION

Climate change continues to reshape environmental and economic 
systems worldwide and remains one of the most pressing global 
challenges of the twenty first century, as emphasized by the IPCC 
(2021) and Stern (2007). Market based mitigation instruments, 
particularly emissions trading schemes, have therefore become 
central to climate policy. The World Bank (2022) notes that carbon 
pricing mechanisms can accelerate the transition toward cleaner 
energy systems by shaping investment decisions, production 
costs, and expectations of future emissions. The European Union 
Emissions Trading System is the most established carbon market 
and plays a major role in influencing industrial behavior and 
carbon price formation in Europe, as discussed by Ellerman et al. 
(2016). Evidence from other jurisdictions, including New Zealand, 

shows that carbon markets can become integrated with energy and 
financial systems (Tao et al., 2024), while recent work reports 
linkages between carbon prices and energy inflation across EU 
member states (Olasehinde-Williams et al., 2025).

Carbon prices also influence energy costs, industrial production, 
while climate-related policy shifts and energy costs continue to 
pressure global food systems (FAO et al., 2022). Studies in China 
find that carbon trading can reduce emissions while supporting 
industrial output (Zhang et al., 2020) and can stimulate renewable 
energy development (Huang et al., 2023). Other research reports 
volatility spillovers between carbon and fossil energy markets 
(Wang et al., 2024), as well as strong energy food interactions 
driven by causality, volatility transmission, and biofuel related 
channels (Kirikkaleli and Darbaz, 2021; Nazlioglu et al., 2013; 
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Serra and Zilberman, 2013; Taghizadeh-Hesary et al., 2018). 
These findings collectively show that carbon pricing operates 
within multi commodity systems characterized by cross market 
dependencies.

In Indonesia, the integration of food security, resource governance, 
and energy transition has emerged as a cornerstone of the country’s 
sustainable development strategy (Asian Development Bank, 
2021). Domestic food prices remain a key driver of inflation 
(Bank Indonesia, 2024), while supply shocks in major staples 
generate price volatility that pressures household purchasing power 
(National Food Agency, 2025). The energy system remains highly 
dependent on coal and resource-intensive minerals such as nickel, 
cobalt, and aluminium (Ministry of Energy and Mineral Resources, 
2023). These structural conditions suggest that carbon price changes 
may transmit across food, energy, and mineral markets, yet such 
linkages remain empirically unexplored. The launch of IDX Carbon 
in September 2023 marked Indonesia’s first formal carbon market, 
although trading activity remains limited (Financial Services 
Authority, 2023; Indonesia Stock Exchange, 2023).

By contrast, the EU ETS has operated for almost two decades and 
serves as a global benchmark. Matrix completion estimates suggest 
that the system reduced emissions by about 15% between 2005 and 
2020 (Biancalani et al., 2024), and policy expansions such as ETS2 
are expected to raise future carbon prices (Gunther et al., 2024). 
Previous research documents strong linkages between EU carbon 
prices and energy commodities (Aatola et al., 2013; Hammoudeh 
et al., 2014), as well as spillovers into financial markets through 
carbon premia and risk transmission channels (Oestreich and 
Tsiakas, 2015; Zhou et al., 2025). Although carbon energy and 
carbon financial interactions are well studied (Zhao et al., 2023; 
Reboredo, 2018; Lyu et al., 2025), research integrating carbon 
prices with both food and mineral commodities remains limited.

To the best of our knowledge, no study compares Indonesia’s 
emerging carbon market with the mature EU ETS within a unified 
multivariate and high dimensional framework. Commodity 
markets typically display strong correlation structures, and random 
matrix theory (RMT) provides a robust method for distinguishing 
information from noise (Mantegna, 1999; Marchenko–Pastur, 
1967). Rolling RMT further enables the detection of time varying 
systemic patterns that conventional models may not capture.

This study fills these gaps by examining the relationships between 
carbon prices and major food, energy, and mineral commodities 
in Indonesia, and by comparing them with patterns observed 
in Europe. We apply correlation based techniques, shrinkage 
estimation, hierarchical clustering, random matrix theory (RMT), 
rolling RMT, and vector autoregression (VAR) to uncover both 
static and dynamic interdependencies. The contributions of this 
paper are threefold. First, it provides the first empirical assessment 
of Indonesia’s carbon market and its relationship with strategic 
commodity groups. Second, it offers a comparative analysis 
between an emerging market and a mature market using systemic 
risk tools. Third, it extends the application of rolling RMT to 
carbon commodity systems, allowing the identification of time 
varying structures not captured by standard econometric models.

2. DATA AND VARIABLES

This study uses monthly price data for carbon, food, energy, 
fertilizer, and mineral commodities from Indonesia and the 
European Union. The Indonesian sample spans January 
2024-August 2025, corresponding to the period after the launch 
of the domestic carbon market. Although relatively short, the 
Indonesian dataset reflects the structural characteristics of an 
emerging market with limited trading activity. The European 
sample covers January 2015-August 2025, capturing the mature 
dynamics of the EU Emissions Trading System across multiple 
regulatory phases. All series are transformed into continuously 
compounded returns to ensure comparability and to satisfy the 
stationarity requirements of correlation based and VAR based 
models.

2.1. Data Sources
Indonesian data are obtained from official administrative sources: 
Carbon prices from IDX Carbon, food commodities from the 
National Food Agency, and energy and mineral prices from the 
Ministry of Energy and Mineral Resources. These series represent 
benchmark prices used primarily for policy monitoring and market 
surveillance (IDX Carbon, 2025; National Food Agency, 2025; 
Ministry of Energy and Mineral Resources, 2025). The European 
dataset consolidates daily or monthly benchmarks into monthly 
frequency. EU ETS prices are proxied by EUA futures from 
Investing.com (2025), while other commodity prices are sourced 
from the World Bank Pink Sheet (2025). Table 1 summarizes the 
variables used.

2.2. Variable Construction
Monthly returns are computed as

rt = l n(Pt)−l n(Pt−1)

Table 1: Summary of variables included in the analysis
Region Category Variables
Indonesia Carbon Harga Karbon (Carbon Price)

Food GKP Petani (Farmer‑level Harvested Dry 
Paddy), GKG Penggilingan (Miller‑level 
Milled Dry Paddy), Beras Medium 
(Medium‑grade Rice), Beras Premium 
(Premium‑grade Rice), Jagung Pipilan 
Kering (Dry Shelled Corn), Kedelai Lokal 
(Local Soybeans), Bawang Merah (Shallots), 
Cabai Merah Keriting (Curly Red Chili), 
Cabai Rawit Merah (Bird’s Eye Chili), 
Daging Sapi (Beef), Ayam Ras Pedaging 
(Broiler Chicken), Telur Ayam Ras (Chicken 
Eggs).

Energy Minyak (Crude Oil) dan Batubara (Coal)
Minerals Nikel (Nickel), Kobalt (Cobalt), Tembaga 

(Copper), dan Aluminium (Aluminium)
Europe Carbon Carbon Price

Energy Crude Oil, Natural Gas, Coal
Food Soybeans, Maize, Rice, Wheat, Beef, 

Chicken
Fertilizers DAP, Urea
Metals Aluminum, Iron Ore, Copper, Nickel, Zinc

Indonesian variable names follow the original terminology used by the National Food 
Agency, the Ministry of Energy and Mineral Resources, and IDX Carbon
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where Pt denotes the closing price of each series. The return 
transformation is required for RMT, shrinkage correlation 
estimation, and VAR, all of which rely on stationary inputs. 
Correlation matrices are estimated using Pearson and Spearman 
correlations, as well as the Ledoit and Wolf shrinkage estimator 
to reduce sampling noise in high dimensional settings.

2.3. Descriptive Characteristics
Indonesian commodity prices exhibit substantial heterogeneity. 
Food commodities show short term volatility driven by seasonal 
supply conditions, weather disruptions, and distributional 
bottlenecks. Energy and mineral price movements are relatively 
muted, reflecting Indonesia’s regulated coal market, domestic 
stabilization policies, and the early stage of the carbon market 
where trading activity remains thin. These characteristics result 
in low cross market variation, which motivates the use of RMT 
to distinguish structural dependencies from noise.

In contrast, the European dataset displays stronger and more 
persistent price dynamics shaped by energy market shocks, 
regulatory reforms, geopolitical developments, and active 
futures trading. The EU ETS in particular exhibits market driven 
fluctuations, making the European system suitable for analyzing 
systemic structure and dynamic linkages using rolling RMT and 
VAR.

3. METHODOLOGY

This study integrates correlation-based techniques, hierarchical 
clustering, and Random Matrix Theory (RMT) to characterize 
carbon-commodity interactions in Indonesia and Europe. To 
capture time-varying dynamics and causal channels, rolling-
window RMT and Vector Autoregression (VAR) are applied 
exclusively to the EU ETS dataset. These methods provide three 
complementary perspectives: (i) Contemporaneous dependence 
via correlation matrices, (ii) systemic structure through 
eigenvalue filtering and clustering (Mantegna, 1999), and (iii) 
dynamic transmission through impulse responses and variance 
decomposition (Pesaran and Shin, 1998; Lütkepohl, 2005).

The analysis begins by constructing return series and estimating 
correlation matrices, including the Ledoit and Wolf (2004) 
shrinkage estimator to handle cases where the time dimension 
is small relative to the number of variables. Subsequently, 
hierarchical clustering identifies latent commodity groupings, 
while static RMT distinguishes informative eigenvalues from 
noise using the Marchenko–Pastur (1967) distribution. For the 
EU ETS dataset, temporal variations in systemic dependence are 
examined via rolling-window RMT, leveraging its longer sample 
length for reliable windowed estimation.

The Indonesian dataset contains only 20 observations, making 
rolling analysis statistically unreliable; therefore, the domestic 
results focus on static correlation, clustering, and RMT structure.

Similarly, the VAR framework is estimated only for the EU ETS 
data to evaluate dynamic linkages between carbon prices and 
commodity groups. Impulse responses and forecast error variance 

decomposition are used to assess transmission channels and the 
relative importance of shocks. The Indonesian sample is too short 
for stable multivariate estimation.

The following subsections describe each methodological 
component.

3.1. Return Construction and Correlation Estimation
Let Pt denote the monthly closing price of a commodity at time t. 
Continuously compounded returns are computed as

rt = l n(Pt)−l n(Pt−1)

A standard transformation in financial econometrics to promote 
stationarity.

The Indonesian dataset contains N = 19 commodities and 
T = 20 monthly observations (January 2024-August 2025), 
yielding a dimension ratio:

Q T
N

� �1 05.

Which implies that the sample correlation matrix is highly 
sensitive to noise. To provide a more stable characterization of 
dependence, three estimators are used: Pearson correlation for linear 
relationships, Spearman correlation for monotonic dependence, and 
the Ledoit and Wolf shrinkage estimator for improved conditioning 
in low sample settings (Ledoit and Wolf, 2004).

These estimators serve as inputs for subsequent clustering, RMT 
filtering, and for selecting representative variables in the VAR 
model.

3.2. Hierarchical Clustering for Market Structure
Hierarchical clustering is used to examine the latent structure 
of commodity markets. Following the approach introduced by 
Mantegna (1999), pairwise distances are computed from the 
correlation matrix as

dij ij� �� �2 1 �

where ρijis the correlation between commodities i and j. This 
metric satisfies ultrametric properties and has been widely 
applied to identify sectoral organization in multi asset systems.

Agglomerative clustering with the average linkage criterion is used 
to construct the dendrogram. This method balances sensitivity to 
local structure with robustness to outliers, making it suitable for 
commodity systems that include food, energy, and metal markets. 
The resulting hierarchical tree provides an intuitive representation 
of how closely carbon prices relate to different commodity groups 
and complements the eigenvalue based systemic analysis obtained 
from RMT.

3.3. Random Matrix Theory (RMT)
RMT provides a formal framework for distinguishing meaningful 
structure from noise in empirical correlation matrices. This is 
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particularly relevant for the Indonesian dataset, where the number 
of variables (N = 19) is nearly equal to the number of observations 
(T = 20), making the sample correlation matrix highly susceptible 
to sampling noise.

The Marchenko–Pastur (1967) distribution characterizes the 
eigenvalue density of correlation matrices generated from 
uncorrelated random variables. Let Q = T/N. The theoretical 
bounds of the Marchenko–Pastur distribution are

� �
min max

� � � �( / ) , ( / )1 1 1 1
2 2Q Q

Eigenvalues within this interval are attributed to noise, while those 
outside it contain information about genuine market structure.

The empirical correlation matrix is decomposed into eigenvalues 
and eigenvectors. Eigenvalues that exceed the upper bound 
typically represent collective market behavior, often referred to 
as the market mode, while subsequent informative eigenvalues 
capture sector specific interactions. A filtered correlation matrix 
is reconstructed by retaining only informative eigenvalues, which 
reduces noise and improves the reliability of clustering results and 
subsequent systemic analysis.

3.4. Rolling Random Matrix Theory (Rolling RMT)
Rolling RMT is used to capture temporal variation in systemic 
dependence across commodities. For each window of length W, 
a correlation matrix is computed, decomposed into eigenvalues, 
and compared with the theoretical bounds of the Marchenko–
Pastur (1967) distribution. This produces a sequence of eigenvalue 
sets

λ1,t, λ2,t,…,λN,t,t = W,W+1,…,T

Rolling analysis is implemented only for the EU ETS dataset, 
whose longer sample length (T= 129) allows statistically 
meaningful windowed estimation. The Indonesian dataset contains 
only 20 observations, which is insufficient for reliable rolling 
construction, so the domestic analysis relies solely on static RMT.

Changes in the magnitude and number of eigenvalues that exceed 
the Marchenko Pastur upper bound indicate evolving systemic 
coupling. Increases in the dominant eigenvalue typically signal 
periods of strong market integration or stress, while declines point 
to weaker common forces. Rolling RMT thus provides a dynamic 
perspective on market coherence and reveals structural shifts in 
carbon commodity linkages in the EU ETS.

3.5. Vector Autoregression (VAR)
Dynamic interactions between carbon prices and key commodity 
groups are examined using a Vector Autoregression model. A 
VAR(p) takes the general form

yt = A1yt−1 + ⋯ + Apyt−p + ut

where yt is a k-dimensional vector of returns, Aiare coefficient 
matrices, and utis a vector of white noise disturbances (Lütkepohl, 
2005).

Lag order pis selected using the Akaike Information Criterion 
and the Bayesian Information Criterion. All series are tested for 
covariance stationarity, and model stability is evaluated using the 
eigenvalues of the companion matrix.

Because the Indonesian dataset contains only 20 observations, 
estimating a multivariate VAR would lead to severe 
overparameterization and unreliable inference. Therefore, VAR 
analysis is applied exclusively to the EU ETS dataset, which 
provides a sufficiently long time series to support robust dynamic 
modelling.

3.6. Impulse Response Functions (IRF) and Forecast 
Error Variance Decomposition (FEVD)
Impulse Response Functions trace the reaction of each commodity 
to a one unit shock in carbon prices. Since orthogonalized IRFs 
are sensitive to variable ordering, the generalized IRF proposed by 
Pesaran and Shin (1998) is used to obtain order invariant responses.

Forecast Error Variance Decomposition complements the IRF 
results by quantifying the proportion of each commodity’s 
forecast variance attributable to carbon price shocks. FEVD is 
derived from the moving average representation of the VAR 
model, following the approach outlined by Lütkepohl (2005), and 
highlights the relative importance of carbon innovations across 
different horizons.

Together, the IRF and FEVD provide a structural interpretation 
of carbon commodity interactions within the EU ETS, allowing 
an assessment of both short run and medium run transmission 
channels. Since no VAR model is estimated for Indonesia, IRF 
and FEVD analysis is performed only for the European dataset.

4. RESULTS

This section presents the empirical results for Indonesia and the 
European Union. The analysis is organized to reflect the distinct 
characteristics of the two markets: A newly established carbon 
market with limited trading activity in Indonesia, and a mature 
and highly integrated system in the EU ETS. For each market, the 
results begin with descriptive properties, followed by correlation 
patterns, clustering outcomes, and RMT diagnostics. For the EU 
ETS, the analysis is extended to include rolling RMT and VAR 
to capture dynamic interactions and transmission channels. The 
findings collectively reveal the extent to which carbon prices 
are connected to food, energy, and mineral commodities in each 
region.

4.1. Domestic Market Results (Indonesia)
The domestic results summarize the behavior of Indonesia’s carbon 
market and its relationship with major food, energy, and mineral 
commodities. Given the short sample length and the structural 
features of the Indonesian economy, the analysis focuses on 
descriptive patterns, volatility characteristics, correlation structure, 
clustering behavior, and static RMT diagnostics. These tools reveal 
whether meaningful co-movement exists between carbon prices 
and domestic commodity groups, or whether observed variation is 
largely noise driven. The subsections below present the empirical 
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findings in a stepwise manner, beginning with descriptive statistics 
and followed by correlation- and RMT-based assessments.

4.1.1. Descriptive statistics
The descriptive statistics in Table 2 show that carbon prices 
exhibit relatively high volatility, consistent with the early stage 
development and low liquidity of the IDX Carbon market. Staple 
food commodities (GKP, GKG, and rice categories) display 
low standard deviations due to strong price regulation, while 
horticultural commodities such as chili and shallots exhibit 
substantial volatility driven by seasonal supply shocks. Energy 
and mineral commodities show moderate variability in line with 
partial exposure to global markets.

Overall, the heterogeneous volatility structure provides no 
indication of systematic co movement between carbon and other 
commodities, motivating the use of correlation and RMT based 
techniques in the subsequent sections.

4.1.2. Correlation analysis
Figure 1 show Pearson correlations between carbon prices and 
major commodities are uniformly weak, indicating that short-
term price movements in the domestic carbon market are largely 
independent from food, energy, and mineral price dynamics. Staple 
food commodities exhibit near-zero correlations due to regulated 
pricing and government intervention, while slightly higher but 
still modest associations appear in the energy and mineral groups. 
Overall, the correlation structure suggests that Indonesia’s carbon 
market has not yet developed meaningful linkages with broader 
commodity systems.

Figure  2 show that Spearman correlations confirm that even 
monotonic relationships with carbon are negligible. This consistency 
across correlation measures indicates that the weak co movement is 
structural rather than driven by outliers or nonlinear effects.

Figure  3 show that Shrinkage estimation compresses noisy 
correlations toward zero, revealing that several weak associations 
observed in the Pearson and Spearman matrices were primarily 
sampling artifacts. This provides strong confirmation that 
the domestic carbon market is not yet integrated into broader 
commodity price dynamics and that the observed independence 
is structural rather than measurement-driven.

4.1.3. Hierarchical clustering
The dendrogram in Figure 4 shows a highly fragmented clustering 
structure with large linkage distances, indicating that carbon prices 
do not form meaningful clusters with food, energy, or mineral 
commodities. This reflects the absence of shared underlying factors 
driving co-movement.

Figure 3: Ledoit–Wolf shrinkage correlation matrix

Figure 2: Spearman rank correlation matrix of domestic log-returns

Figure 1: Pearson correlation matrix of domestic 
commodity log-returns
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The clustered heatmap in Figure 5 further confirms that no block 
structure emerges around the carbon price after reordering, 
reinforcing the conclusion that the domestic market lacks systemic 
integration across commodity groups.

4.1.4. Random matrix theory (RMT)
Figure 6 shows that nearly all eigenvalues lie within the theoretical 
Marchenko–Pastur bounds, indicating that the domestic correlation 
matrix is largely dominated by noise. The first eigenvalue exceeds 
the upper bound only marginally and therefore does not capture a 
meaningful market-wide factor.

The scree plot similarly shows a weak leading eigenmode followed 
by a smooth decay, suggesting that commodity price fluctuations 
are primarily idiosyncratic rather than driven by common 
underlying forces.

Figure  8 show noise filtering reveals only mild and localized 
clustering among a few food commodities, while the carbon price 
remains independent from all major commodity groups.

Across all analytical methods, including correlation measures, 
shrinkage estimation, hierarchical clustering, and RMT, the 

Figure 4: Hierarchical clustering of domestic commodity log-returns

Figure 7: Scree plot of domestic eigenvaluesFigure 5: Clustered shrinkage heatmap

Figure 6: Eigenvalue distribution with Marchenko–Pastur 
bounds
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Indonesian carbon price shows no meaningful co movement with 
food, energy, or mineral commodities. This pattern reflects the 
highly regulated nature of the food sector, the partially insulated 
structure of domestic energy markets, and the limited depth and 
liquidity of the newly established IDX Carbon system.

4.2. International Market Results
The international analysis focuses on the European Union 
Emissions Trading System, a mature and highly liquid carbon 
market that interacts closely with global energy and commodity 
dynamics. Unlike the fragmented and noise dominated structure 
observed in Indonesia, the EU ETS exhibits stronger co movement 
patterns and clearer systemic relationships due to deeper 
market integration, established price discovery mechanisms, 
and more diversified exposure to global shocks. This section 
presents the empirical results for Europe, beginning with 
descriptive characteristics and followed by correlation patterns, 
clustering structures, RMT diagnostics, and dynamic interactions 
captured through rolling RMT and VAR. Together, these results 
provide a comprehensive view of how carbon prices transmit 
through energy, food, and mineral markets in an advanced trading 
environment.

4.2.1. Rolling maximum eigenvalue
To examine the time varying structure of global commodity co 
movements, Figure 9 plots the rolling maximum eigenvalue λmax 
(t) together with the theoretical Marchenko–Pastur upper bound. 
The empirical series frequently exceeds this threshold, indicating 
the persistent presence of a dominant global market factor.

A pronounced increase in λmax (t) occurs during 2021-2023, 
coinciding with the European natural gas crisis and the Russia–
Ukraine conflict. This period is characterized by strong market 
wide synchronization across energy, metal, and agricultural 
commodities. After mid 2023, the maximum eigenvalue declines 
but remains above the theoretical limit, suggesting a continued, 
although weaker, degree of systemic co movement. In contrast 
with Indonesia, the international market exhibits a robust and 
dynamically evolving dominant factor that reflects deeper 
integration and greater exposure to global shocks.

4.2.2. Systemic risk index (SRI)
The systemic risk index in Figure 10 measures the number of 
eigenvalues in each rolling window that exceed the theoretical 
Marchenko–Pastur upper bound. Eigenvalues above this threshold 
capture informative components that reflect genuine market 
structure rather than random noise.

The SRI indicates three distinct regimes. The period 2018-2019 
reflects moderate market integration, followed by a temporary 
collapse in co movement during the early stages of the COVID 
19 shock. A sharp rise in systemic risk emerges during 2021-2023, 
driven by energy shortages and heightened geopolitical tensions. 
Although the index declines after 2023, values remain consistently 
above one, indicating a persistent multi factor structure. In contrast 
with Indonesia, where informative eigenvalues are largely absent, 
the global market displays strong and sustained systemic linkages.

4.2.3. Evolution of the eigenvalue spectrum
Figure 11 displays the rolling eigenvalue spectrum normalized by 
the theoretical Marchenko–Pastur upper bound. Values >1 indicate 
the presence of informative eigencomponents that reflect genuine 
market structure.

The heatmap reveals a consistently informative dominant 
eigenvalue, accompanied by a noticeable strengthening of secondary 
eigenvalues during 2021-2023. Several mid ranking eigenvalues 

Figure 9: Rolling maximum eigenvalue compared with the MP upper bound

Figure 8: RMT-denoised correlation matrix
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(approximately ranks 2-6) rise above the threshold during this 
period, indicating the activation of multiple systemic forces across 
energy, metal, and agricultural markets. After 2023, the spectrum 
gradually weakens as energy market pressures ease, although 
several components remain informative. In contrast with the shallow 
and noise dominated spectrum observed in Indonesia, the global 
market exhibits a multi layered and dynamically evolving structure 
characteristic of a mature and highly integrated commodity system.

4.2.4. VAR analysis
A VAR model is estimated to quantify dynamic linkages between 
carbon prices and major global commodities. The model is applied 
only to the international dataset because the Indonesian series is 
too short for reliable multivariate estimation.

4.2.4.1. Variable selection
The system includes carbon prices (EU ETS), crude oil, natural gas, 
wheat, and copper. These commodities represent key economic 
channels affecting carbon price formation, including energy input 
costs, fuel switching behavior, agricultural supply conditions, 
and industrial activity (Ellerman et al., 2016; Hintermann, 2010; 
Reboredo, 2015; Nazlioglu and Soytas, 2011).

4.2.4.2. Stationarity tests
All variables are converted into log returns. Augmented Dickey–
Fuller (ADF) tests in Table 3 indicate that all series are stationary 
at the 0.01 significance level.

4.2.4.3. Lag length determination
The lag order selection results are reported in Table 4. Information 
criteria select a one period lag as the optimal specification. Both 
the Akaike Information Criterion (AIC) and the Final Prediction 
Error favor (FPE) VAR(1).

4.2.4.4. Diagnostic checks
Table 5 reports the diagnostic checks for the VAR(1) model. The 
VAR(1) model is stable, with all eigenvalues inside the unit circle. 
Residual diagnostics indicate no serial correlation (Durbin–Watson 
(DW) statistics near 2). Non normality is expected for commodity 
returns and does not reduce the validity of linear propagation 
analysis.

4.2.5. Impulse response functions (IRF)
Figure  12 shows that impulse responses provide insight into 
how carbon price innovations propagate across major global 
commodities. A  positive carbon shock generates the strongest 
reaction in natural gas prices, reflecting the central role of gas 
in the fuel switching mechanism within the EU ETS. Crude oil 
and wheat display mild and short lived responses, while copper 
exhibits an almost negligible reaction. The weak responses 
outside the energy sector indicate that carbon price dynamics are 
transmitted primarily through energy costs rather than agricultural 
or industrial channels.

4.2.6. Forecast error variance decomposition (FEVD)
Forecast error variance decomposition quantifies the contribution 
of each commodity to carbon price uncertainty at different 
horizons. In the very short run, carbon price fluctuations are 
entirely self driven, indicating that immediate variation in carbon 
returns is dominated by market-specific factors. At horizon 2, crude 
oil becomes the primary external contributor, reflecting short-term 
energy market spillovers. At horizon 3, natural gas dominates 
the variance decomposition, consistent with its central role in 
the fuel switching mechanism of the EU ETS. Wheat emerges as 
the main contributor at horizon 4, which may reflect geopolitical 
influences on global agricultural markets. At horizon 5, copper 
becomes the leading driver, capturing longer-run industrial and 
macroeconomic dynamics.

Figure 10: Systemic risk index for the global commodity system

Figure 11: Evolution of the normalized eigenvalue spectrum
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4.2.7. Summary of global VAR results
Overall, the global VAR analysis demonstrates that carbon price 
dynamics are shaped by a combination of short-run energy shocks 
and medium-run industrial forces. Crude oil accounts for most 
of the short-horizon variation in carbon returns, reflecting the 
sensitivity of carbon prices to immediate movements in global 

Table 2: Descriptive statistics of domestic commodity prices
Variable Mean Std Dev Min Max
Harga Karbon 62590.0000 14710.3792 46000.000 112050.000
GKP Tingkat Petani 6504.9000 302.3590 5878.000 7104.000
GKG Tingkat Penggilingan 7588.4500 332.3696 6978.000 8208.000
Beras Medium Penggilingan 12488.0000 438.8613 11872.000 13280.000
Beras Premium Penggilingan 13899.6000 333.8984 13426.000 14554.000
Jagung Pipilan Kering 4871.2000 655.5696 4073.000 6762.000
Kedelai Biji Kering (Lokal) 9799.8000 709.2760 8987.000 11243.000
Bawang Merah 23666.1000 5140.1839 15119.000 33485.000
Cabai Merah Keriting 30277.1500 8881.8255 16045.000 46992.000
Cabai Rawit Merah 38335.5000 11106.2176 25397.000 64895.000
Sapi (Hidup) 52306.7000 359.9269 51566.000 52972.000
Ayam Ras Pedaging (Hidup) 21677.1000 1112.0318 19840.000 23594.000
Telur Ayam Ras 24668.8000 786.6624 23415.000 26635.000
Batubara 118.5135 9.1974 99.790 131.170
Nikel 16284.5048 1159.4932 14934.335 18962.110
Kobalt 28055.3390 3643.6130 22158.000 33267.695
Tembaga 9218.8100 537.4743 8313.830 9978.750
Alumunium 2443.2198 163.5367 2154.070 2666.070
Minyak 74.5975 6.5373 62.750 87.610
Indonesian variable names follow the original terminology used by the National Food Agency, the Ministry of Energy and Mineral Resources, and IDX Carbon

Table 3: ADF test on log returns
Variable ADF statistic P‑value
Carbon −11.814 (8.72×10−22)
Crude oil −8.683 (4.23×10−14)
Natural gas −8.073 (1.54×10−12)
Wheat −10.110 (1.01×10−17)
Copper −3.674 (4.49×10−3)

Figure 12: IRFs of crude oil, natural gas, wheat, and copper to a carbon price shock
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energy costs. At intermediate horizons, natural gas emerges 
as the dominant driver, consistent with the central role of gas 
in the fuel switching mechanism embedded in the EU ETS. 
At longer horizons, copper becomes increasingly influential, 
indicating that carbon prices also incorporate broader industrial 

and macroeconomic conditions associated with metal-intensive 
production and investment cycles. The impulse response functions 
reinforce these patterns: carbon shocks transmit strongly to 
natural gas, with comparatively modest spillovers to agricultural 
commodities and non-ferrous metals.

Taken together, the FEVD and IRF results depict a carbon 
market that is highly intertwined with global energy dynamics 
and, to a lesser extent, with industrial activity. These findings 
align closely with the RMT-based evidence. The international 
commodity system exhibits a multi-layered eigenvalue structure, 
persistent systemic risk, and strong cross-market integration, 
reflecting its maturity, liquidity, and exposure to global shocks. 
In contrast, the Indonesian domestic system remains weakly 
connected, dominated by noise, and characterized by minimal 
inter-commodity linkages. This divergence highlights the 
structural differences between an established carbon trading 
scheme such as the EU ETS and an emerging platform like 
IDX Carbon, where limited liquidity, regulatory insulation, and 
shallow market depth restrict the formation of systemic price 
relationships.

4.3. Comparative Analysis: Indonesia versus European 
Markets
Table 7 provides a comparative summary of the key differences in 
carbon–commodity dynamics between Indonesia and the European 

Table 7: Comparative summary of indonesia and european carbon–commodity dynamics
Dimension Indonesia (emerging market) European union (mature market)
Systemic structure 
(RMT)

•  �Nearly all eigenvalues lie within the 
Marchenko–Pastur bounds.

•  �First eigenvalue only slightly above the upper 
limit.

•  �Correlation matrix dominated by noise, 
indicating no persistent market‑wide factor.

•  �Rolling maximum eigenvalue frequently exceeds the 
theoretical bound.

•  �Strong and time‑varying dominant factor.
•  �Multiple informative eigencomponents active 

(high SRI values).

Eigenvalue spectrum 
(Dynamic RMT)

•  �Shallow spectrum with no meaningful 
deviations.

•  �RMT‑denoised matrix shows fragmented 
and unstructured relationships.

•  �Wide high‑value bands in the eigenvalue spectrum, 
especially during 2021‑2023.

•  �Spectrum expands during geopolitical stress 
(European gas crisis, Russia–Ukraine conflict).

Clustering/market 
connectivity

•  �No stable clusters around carbon.
•  �Food staples tightly regulated, showing 

minimal variation.
•  �Energy and mineral commodities weakly 

connected to carbon.

•  �Energy commodities (natural gas, crude oil, coal) 
display synchronized behavior.

•  �Metals (especially copper) correlate with industrial 
activity.

•  �Carbon moves within a cohesive, multi‑commodity 
system.

Correlation behavior •  �Pearson, Spearman, and shrinkage 
correlations mostly near zero.

•  �Weak or absent co‑movement across 
commodity groups.

•  �Stronger and persistent correlations across energy, 
metals, and agricultural commodities.

•  �Clear evidence of cross‑market integration.

Dynamic transmission 
(VAR/IRF/FEVD)

•  �VAR not feasible due to short sample.
•  �No identified transmission channels.

•  �Carbon shocks strongly affect natural gas 
(fuel‑switching mechanism).

•  �Mild, short‑lived effects on oil, wheat, and copper.
•  �Reverse effects show oil has limited influence on 

carbon.
•  �FEVD: crude oil (short run), natural gas (medium run), 

copper (long run).
Market maturity & 
structure

•  �Early‑stage IDX Carbon market.
•  �Limited liquidity and market participation.
•  �Strong regulatory insulation 

(especially food prices).

•  �Deep, liquid EU ETS with established trading activity.
•  �Integrated with energy and industrial systems.
•  �Exposed to global shocks and geopolitical events.

Overall conclusion Weakly integrated, noise‑dominated system with 
minimal inter‑commodity linkages.

Highly integrated, dynamically evolving system with 
strong cross‑market transmission channels.

Table 4: VAR lag order selection
Lag AIC BIC FPE HQIC
0 −24.51 −24.40 (2.262×10−11) −24.47
1 −24.64 −23.95 (1.992×10−11) −24.36

Table 5: Diagnostic checks for VAR (1) model
Variable DW JB P‑value
Carbon 2.03 4.39 0.111
Crude oil 1.83 125.16 0.000
Natural gas 2.16 19.76 0.000
Wheat 2.05 23.44 0.000
Copper 1.93 20.97 0.000

Table 6: FEVD of carbon price forecast error variance
Horizon Carbon Crude oil Natural gas Wheat Copper
1 1.000 0.000 0.000 0.000 0.000
2 0.055 0.945 0.000 0.000 0.000
3 0.001 0.008 0.992 0.000 0.000
4 0.002 0.001 0.000 0.996 0.000
5 0.011 0.115 0.002 0.023 0.848
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Union across systemic structure, market connectivity, and dynamic 
transmission mechanisms.

5. DISCUSSION

This section integrates the domestic and international results to 
provide broader economic interpretation, theoretical implications, 
and policy relevance. By contrasting an emerging carbon market 
(Indonesia) with a mature and highly integrated system (EU ETS), 
the findings highlight how institutional structures and market 
maturity shape carbon–commodity linkages.

5.1. Synthesis of Key Findings
Three central insights emerge from the analysis. First, the 
Indonesian commodity system shows almost no co-movement 
with domestic carbon prices across all correlation measures, 
clustering outputs, and RMT diagnostics. The eigenvalue spectrum 
remains within the Marchenko–Pastur bounds, which indicates 
that observed correlations are largely driven by noise. No latent 
market factors appear to connect carbon with food, energy, or 
mineral commodities.

Second, the global system represented by EU ETS carbon prices 
and major commodity benchmarks exhibits a clear multi-layered 
pattern of co-movement. Rolling RMT identifies strong systemic 
factors during periods of global stress such as the European 
energy crisis and the Russia and Ukraine conflict. The presence 
of multiple outlier eigenvalues confirms the existence of an 
integrated international market where shocks propagate across 
energy, agriculture, and metal commodities.

Third, the VAR analysis shows that carbon price dynamics in the 
EU ETS are driven mainly by energy markets. Natural gas has 
the strongest influence, followed by smaller and shorter-lived 
effects from crude oil, wheat, and copper. At longer horizons, 
copper gains importance through its connection with industrial 
and macroeconomic activity.

5.2. Economic Interpretation
The contrast between Indonesia and Europe reflects fundamental 
differences in price formation. In Indonesia, food prices are tightly 
regulated, energy prices are partially insulated from international 
movements, and the IDX Carbon market remains thin and strongly 
policy-driven. These characteristics suppress co-movement and 
limit the role of carbon prices as a market signal.

In the EU ETS, natural gas frequently sets the marginal cost of 
electricity. As a result, gas prices affect generation decisions 
and the demand for carbon allowances. Industrial metals 
influence carbon dynamics through the energy-intensive nature 
of manufacturing and the sensitivity of carbon prices to global 
business cycles. Agricultural commodities show only occasional 
links to carbon prices, with wheat influenced mainly by conflict-
related supply disruptions rather than long-term climate or 
agricultural mechanisms.

5.3. Theoretical and Methodological Contributions
The findings reinforce three theoretical points. First, the strength 

of carbon and commodity linkages depends greatly on market 
maturity and institutional settings. Second, fuel switching is a 
central mechanism that shapes carbon price dynamics in the EU 
ETS. Third, RMT and rolling eigenvalue methods are effective 
tools for distinguishing meaningful structure from noise, especially 
in short or heavily regulated markets.

Methodologically, the combined use of RMT, rolling eigenvalue 
tracking, hierarchical clustering, and VAR provides complementary 
insights. RMT identifies the underlying systemic structure, rolling 
analysis captures its evolution, and VAR quantifies the direction 
and magnitude of transmission channels. Together, these methods 
offer a more complete characterization of carbon commodity 
relationships than any single technique.

5.4. Policy Implications
For Indonesia, the limited integration across commodities suggests 
that short-term carbon price volatility poses little risk to food or 
energy stability. Policymakers therefore have space to continue 
developing the carbon market without immediate concern about 
spillovers. At the same time, the absence of meaningful linkages 
indicates that the carbon price has not yet become an effective 
driver of emissions reduction. Increasing liquidity, expanding 
sectoral coverage, and aligning carbon pricing with broader energy 
planning will be necessary for stronger market-based incentives.

For the European Union, the strong dependence on natural 
gas highlights the vulnerability of the EU ETS to geopolitical 
disruptions and energy supply shocks. Ensuring carbon price 
stability requires closer coordination between climate policy and 
energy security. The rising influence of industrial metals at longer 
horizons implies that decarbonization strategies must also account 
for wider industrial and macroeconomic conditions.

5.5. Limitations and Future Research
Limitations include the short sample available for Indonesia, 
differences in market structures across regions, and the reduced 
ability to apply advanced multivariate models in the domestic 
context. Future work may extend the analysis as the IDX Carbon 
market matures, incorporate structural VAR or network-based 
spillover models, and compare Indonesia with other emerging 
carbon markets in Asia. The use of higher-frequency data could 
also improve the assessment of systemic risk and transmission 
dynamics.

6. CONCLUSION

This study examined the relationship between carbon prices and 
major commodity groups in Indonesia and Europe by combining 
correlation-based methods, hierarchical clustering, RMT, rolling-
window eigenvalue analysis, and VAR. Using monthly data from 
2024 to 2025 for Indonesia and from 2015 to 2025 for global 
markets, the analysis provides a comprehensive assessment of 
systemic structure, co-movement, and dynamic transmission 
mechanisms in both emerging and mature carbon markets.

The empirical evidence reveals a clear divergence between the 
two systems. In Indonesia, carbon prices show no meaningful 
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integration with food, energy, or mineral commodities. All 
correlation measures remain weak, hierarchical clustering yields 
no stable grouping around carbon, and the eigenvalue spectrum 
lies almost entirely within the Marchenko–Pastur bounds. These 
patterns indicate that the Indonesian commodity system is 
characterized by idiosyncratic and noise-driven dynamics. This 
behavior is consistent with strong regulation in food markets, 
partial insulation of energy prices, and the early-stage development 
of the IDX Carbon market.

In contrast, the European system displays a well-organized and 
time-varying structure of co-movement. Rolling RMT identifies 
persistent systemic factors that intensify during global shocks 
such as the European energy crisis and the Russia and Ukraine 
conflict. The VAR results confirm natural gas as the dominant 
transmission channel influencing carbon price dynamics, with 
crude oil contributing to short-horizon uncertainty and copper 
affecting longer-run movements through industrial conditions. 
These findings align with the fuel-switching mechanism in the 
European electricity sector and reflect the deeper integration of 
energy and industrial markets within the EU ETS.

Taken together, the results show that carbon price transmission 
is highly dependent on institutional context and market maturity. 
In emerging markets such as Indonesia, carbon prices currently 
operate in relative isolation from broader commodity systems, 
which suggests that short-term fluctuations in carbon prices pose 
limited risks to food or energy price stability. In mature systems 
such as the EU ETS, strong interactions with natural gas and 
industrial metals indicate that carbon pricing is closely linked 
to energy security, market volatility, and macroeconomic forces.

Future research may extend the Indonesian analysis as the 
carbon market develops further and more data become available. 
Additional work could incorporate structural VAR, network-based 
spillover models, or comparisons with other emerging carbon 
markets in Asia. The use of higher-frequency or sector-specific 
data may also improve the understanding of systemic risk and 
transmission channels as Indonesia’s market evolves.
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