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ABSTRACT

This study examines the relationship between Digital Transformation (DT) and Clean Energy Integration (CEI) in the agro-industrial sectors of 
emerging economies, with a focus on Kazakhstan and Russia. As these countries pursue industrial growth while meeting climate commitments, the 
research evaluates how digital maturity and green financial frameworks drive decarbonization. Using secondary data from 2000 to 2024, the study 
applies advanced econometric methods, including Cross-Sectionally Augmented IPS (CIPS) unit root tests and the Cross-Sectionally Augmented 
Autoregressive Distributed Lag (CS-ARDL) model, to address cross-sectional dependence and structural breaks. Results show that both Digital 
Transformation and Environmental Policy (EP) significantly reduce Greenhouse Gas Emissions (GHGE) in the long term, with coefficients of −1.730 
and −2.289, respectively. Green Financial Innovation (GFI) and Circular Capacity (CC) also play key roles in lowering carbon intensity. The Error 
Correction Term (ECT) of −1.120 suggests a rapid adjustment toward the long-run equilibrium. This research introduces a holistic “Digital-Green 
Twin” approach, positioning digitalization as the foundation for renewable energy adoption in large-scale agro-industrial processing. The findings 
offer a scalable roadmap for policymakers to align technological progress with carbon-neutral industrial objectives.

Keywords: Digital Transformation, Clean Energy Integration, Agro-Industrial Sector, CS-ARDL, Kazakhstan, Russia, Carbon Neutrality 
JEL Classifications: Q16, O33, Q54, C23

1. INTRODUCTION

The global agro-industrial sector is undergoing a critical 
transformation, in which the integration of digital technologies 
and clean energy systems is essential to achieving long-term 
sustainability. In emerging economies, particularly in the 
Eurasian region such as Kazakhstan and Russia, the transition 
to “Agriculture 4.0” signifies a fundamental shift in resource 
management driven by environmental imperatives. Digitalization 

is reshaping economic structures and governance models 
worldwide. In leading emerging markets such as China, the 
widespread adoption of these technologies has initiated a “second 
modernization” phase, positioning the country as a technological 
leader and creating new opportunities for industrial growth 
(Qudrat-Ullah and Nevo, 2021). However, the rapid expansion 
of digital infrastructure also introduces significant environmental 
challenges, including increased energy consumption and the 
management of electronic waste, necessitating policies that 
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balance technological progress with ecological sustainability 
(Khalid and Peng, 2021).

This research addresses the complex challenge of balancing 
energy efficiency, economic growth, and environmental protection, 
commonly referred to as the “trilemma” (Xia et al., 2020). Agro-
industrial enterprises in emerging economies make substantial 
contributions to national GDP, yet often face inefficiencies in 
resource utilization. The global shift toward sustainable development 
underscores the importance of robust internal controls and both 
exploratory and exploitative innovation for enterprise longevity 
(Liu et al., 2022). Furthermore, there is increasing emphasis on 
green economic quality, accompanied by ongoing debates about 
the allocation of financing between environmental protection and 
social objectives (Nguyen and Khominich, 2023). Transitioning 
from linear resource consumption to circular economy models 
that emphasize recycling and waste reduction is therefore essential 
for achieving global sustainability targets (Schroeder et al., 2019).

Despite these developments, a significant challenge persists: agro-
industrial firms in emerging markets often lack the digital maturity 
required to effectively integrate renewable energy sources. This 
shortfall leads to higher carbon emissions and increased operational 
costs, particularly in regions where energy consumption is closely 
tied to economic performance (Yang et al., 2021). Additionally, 
inadequate digital leadership hinders the development of a digital 
culture necessary for employees to manage advanced energy 
systems (Shin et al., 2023). Without a comprehensive framework 
that aligns digital capabilities with clean energy adoption, the agro-
industrial sector remains vulnerable to fluctuations in global energy 
prices and environmental instability (Mohsin and Jamaani, 2023).

This study addresses a research gap by providing an empirical 
framework to examine the intersection of Industry 4.0 technologies 
and decentralized energy systems in the agro-industrial sectors 
of Kazakhstan and Russia. While existing literature recognizes 
the broad impact of Industry 4.0 on environmental sustainability 
(Ol’ah et al., 2020), few studies investigate the mediating role 
of a firm’s IT capability between digital strategy and operational 
efficiency in energy-intensive agricultural processing (Wang et al., 
2020). There is a critical need to explore how digital transformation 
can strengthen organizational resilience in these specific contexts 
(Zhang et al., 2021).

The objectives of this research are to: analyze the impact of 
digital transformation on organizational resilience and sustainable 
performance in agro-industrial businesses (Zhang et al., 2021); 
assess how green financial innovation and intellectual capital 
facilitate the adoption of renewable energy technologies (Ullah 
et  al., 2022); investigate the role of sustainable management 
policies in improving the performance of sectors pursuing carbon 
neutrality (Liu et al., 2024); and develop a strategic roadmap for 
the agro-industrial sector that aligns corporate social responsibility 
with firm performance and global climate targets (Makhdoom 
et al., 2023; Rosati and Faria, 2019).

This research focuses on large-scale agro-industrial enterprises 
in Russia and Kazakhstan, analyzed from a global perspective to 

ensure data comparability. It introduces an integrated perspective 
on the “Digital-Green Twin Transition.” The study contends that 
big data and social media analytics are fundamental to business 
sustainability within a participatory web environment, rather than 
serving solely as communication tools (Sivarajah et al., 2019). 
By linking environmental corporate social responsibility with 
partnership restructuring and firm performance, the research 
provides a distinctive roadmap for emerging economies to 
modernize their primary sectors while addressing energy poverty 
and resource security (Makhdoom et al., 2023; Mohsin et al., 2022).

The structure of this study is as follows: Section 1 introduces the 
research and outlines its objectives. Section 2 reviews the literature 
on digital maturity and energy transitions. Section 3 describes the 
methodology, focusing on the relationship between organizational 
learning and sustainable performance (Zgrzywa-Ziemak and 
Walecka-Jankowska, 2021). Section 4 presents the empirical 
analysis of agro-industrial energy data. Section 5 discusses the 
findings in relation to global sustainability benchmarks. Section 
6 concludes with policy recommendations and directions for 
future research.

2. LITERATURE REVIEW

The transition to digital agro-industrial systems is essential for 
integrating sustainable energy. Qudrat-Ullah and Nevo (2021) 
argue that technology adoption in emerging economies is closely 
associated with increased renewable energy consumption and 
enhanced long-term environmental sustainability. In the contexts 
of Russia and Kazakhstan, digitalization is characterized as the 
“second modernization” engine (Qudrat-Ullah and Nevo, 2021). 
Nevertheless, existing literature emphasizes the need to manage 
this transformation with careful consideration of ecological 
impacts, particularly regarding the energy intensity of digital 
technologies (Khalid and Peng, 2021).

This study aims to identify how digital tools enable the adoption 
of clean energy. Wang et al. (2020) present a framework in which 
“IT Capability” serves as a multidimensional link between a 
firm’s digital strategy and operational efficiency. In agro-industrial 
businesses, this capability is crucial for managing the variability 
of renewable energy sources. Sivarajah et al. (2019) further 
emphasize that big data and analytics are central to business 
sustainability in complex, participatory environments. Without 
digital monitoring systems, integrating decentralized clean energy 
remains technically inefficient.

Energy integration is closely linked to the global pursuit of carbon 
neutrality. Liu et al. (2024) state that sustainable management 
policies and carbon-neutral processes are key to improving high-
emission sectors such as agro-industrial processing. In emerging 
economies, increased energy use often leads to higher carbon 
emissions (Yang et al., 2021). To address this, Schroeder et al. 
(2019) highlight the importance of circular economy practices.

Using digital platforms to track waste-to-energy flows (biomass) 
enables agro-businesses to achieve the circularity needed to meet the 
Sustainable Development Goals (SDGs) (Rosati and Faria, 2019).
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Clean energy integration relies on the availability of green finance. 
Mohsin and Jamaani (2023) show that green finance is shaped by 
socio-political and economic factors and is essential for stabilizing 
future energy markets. Ullah et al. (2022) find that green financial 
innovation and green intellectual capital are critical for helping 
traditional businesses adopt sustainable models. For Kazakhstan 
and Russia, attracting this investment is necessary to develop 
the solar and biomass infrastructure required for agro-industrial 
decarbonization.

Although there are studies on Industry 4.0 (Ol’ah et al., 2020) and 
environmental policies, few integrate these topics within Eurasian 
agro-industrial businesses. Most existing research focuses on the 
aluminum sector (Liu et al., 2024) or SMEs in China (Wang et al., 
2020). There is a notable gap in empirical models examining 
how internal control systems that support innovation facilitate 
renewable energy adoption in large-scale agriculture (Liu et al., 
2022). This study addresses this gap by analyzing the relationship 
between digital maturity and clean energy adoption in Russia and 
Kazakhstan.

A major obstacle to clean energy integration in the agro-industrial 
sector is the high cost of decentralized infrastructure. Mohsin 
et al. (2022) find that strong financial systems are essential for 
transitioning to sustainable energy models. In emerging economies 
such as Russia and Kazakhstan, the absence of tailored financial 
mechanisms often limits the adoption of capital-intensive 
renewable technologies. Ullah et al. (2022) note that combining 
green financial innovation with green intellectual capital offers 
a comprehensive solution for sustainable business transitions. 
To decarbonize effectively, the agro-industrial sector must align 
digital strategies with innovative green financing tools to close 
the resource gap.

The integration of digital tools enhances operational efficiency 
and fortifies the sector against external disruptions. Zhang 
et  al. (2021) demonstrate that digital transformation increases 
organizational resilience through systematic adaptation. In agro-
industrial businesses in Kazakhstan and Russia, where climatic and 
geopolitical volatility are frequent, such resilience is essential to 
maintaining stable energy flows. The application of big data and 
analytics enables firms to implement participatory and transparent 
resource management (Sivarajah et al., 2019). Wang et al. (2020) 

identify information technology capability as the critical link 
between a firm’s digital strategy and operational efficiency. In the 
clean energy sector, this capability enables precise management 
of intermittent power from solar and wind sources.

The transition to clean energy in agro-industrial businesses 
should align with international frameworks. Rosati and Faria 
(2019) observe that organizations adopt Sustainable Development 
Goal (SDG) reporting early when their priorities support 
global sustainability. As Russia and Kazakhstan work toward 
their carbon targets, implementing carbon-neutral processes is 
essential to the performance of the industrial sector (Liu et al., 
2024). This requires balancing energy use, economic growth, and 
environmental efficiency to avoid unintended carbon emissions 
during modernization (Xia et al., 2020; Yang et al., 2021).

3. METHODOLOGY

This study uses a quantitative research design to assess how digital 
transformation and environmental policy affect clean energy 
integration in the agro-industrial sectors of Russia and Kazakhstan 
from 2000 to 2024. A systematic econometric approach is applied 
to ensure reliable long-term estimates.

3.1. Model Specification and Variable Selection
This study examines how digital maturity and policy frameworks 
affect the transition to clean energy, as measured by the share of 
renewable energy in agriculture. The baseline empirical model is 
developed using the theoretical frameworks of Wang et al. (2020) 
and Xia et al. (2020) and equation 1 and Table 1 discussed the 
variables and data sources.

GHGEt = α0 + β1 DTt + β2 EPt + β3 EDit + β4 RWRt + β5 PHt + β6 
UDt + et� (1)

Table 1 presents the key variables and data sources used in the 
analysis, ensuring transparency and consistent measurement. 
Using internationally recognized databases such as WDI, 
IRENA, IEA, OECD, and FAOSTAT improves the reliability 
and comparability of the indicators across countries. Including 
energy, digital, policy, and circular-economy variables enables a 
comprehensive assessment of clean energy integration in agro-

Table 1: Definition of variables and data sources for agro‑industrial clean energy analysis
Symbol Variable name Role in model Measurement/operationalization Data source(s) Key reference
CEI Clean Energy 

Integration
Dependent 
Variable

Renewable energy consumption as a percentage of total 
agro‑industrial energy use

WDI; IRENA; 
IEA Statistics

Qudrat‑Ullah 
and Nevo (2021)

DT Digital 
Transformation

Explanatory 
Variable

ICT Development Index or composite IT capability 
measure

WDI; OECD Wang 
et al. (2020)

EP Environmental 
Policy

Explanatory 
Variable

Environmental regulation stringency or carbon‑neutral 
policy indices

OECD; 
FAOSTAT

Liu et al. (2024)

GFI Green Financial 
Innovation

Explanatory 
Variable

Green credit provision or R and D investment in green 
technologies

WDI; OECD Ullah 
et al. (2022)

CC Circular 
Capacity

Explanatory 
Variable

Waste‑to‑energy conversion rate in agricultural 
processing

FAOSTAT; IEA 
Statistics

Schroeder 
et al. (2019)

IVA Industry Value 
Added

Control Variable Economic scale of the agro‑industrial sector WDI —

I Country Index Index Variable Country identifier (Russia, Kazakhstan, global peers) WDI —
T Time Period Index Variable Annual observations (2000–2024) WDI —
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industrial systems. This integrated data structure supports robust 
panel analysis across countries and time periods.

3.2. Econometric Estimation Steps
3.2.1. Descriptive statistics and correlation
Descriptive statistics are utilized to examine the distributional 
characteristics of the dataset. A correlation matrix is applied to 
identify potential multicollinearity among the predictors.

3.2.2. Cross-sectional dependence (CSD) test
Given the interconnected nature of global energy markets and 
the shared regional policies between Russia and Kazakhstan, the 
study applies Pesaran’s (2004) CSD test to assess cross-sectional 
dependence. The formula for the test is as follows: Equations.

1
2( ˆ1)[ ]
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=I TT
IT TCSD � (2)

Where T indicates the time, I the cross-section units, and ρ̂T  The 
pair’s coefficient correlation.

3.2.3. Unit root testing (CIPS)
The cross-sectionally augmented IPS (CIPS) unit root test is also 
used in this article to verify that the variables are stationary. When 
it comes to panel data, this test is more suitable than others. The 
formula is as follows:
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3.2.4. Cointegration analysis
The study uses the Westerlund and Edgerton (2007) cointegration 
test to examine whether a long-term relationship exists between 
digital transformation and clean energy integration. This method 
addresses structural breaks and cross-sectional dependence
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3.2.5. Long-run estimation (CS-ARDL)
CS-ARDL is employed to evaluate the relationships between the 
variables. This can address CSD assumptions, variations in slope, 
and endogeneity. The conventional ARDL paradigm is inadequate 
in addressing CSD error, which is a key rationale for implementing 
CS-ARDL. The formula for the test is:
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Therefore, by utilizing the article variables, the researchers 
formulate the subsequent CS-ARDL equation:
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The Cross-Sectionally Augmented Autoregressive Distributed 
Lag (CS-ARDL) approach is employed to evaluate the short- and 
long-run relationships. CS-ARDL is selected because it effectively 
addresses common issues in emerging-market data, including CSD, 
slope heterogeneity, and endogeneity (Makhdoom et al., 2023).

4. RESULTS AND DISCUSSION

4.1. Descriptive Statistics
Table  2 presents summary statistics for the 150 observations 
analyzed in this study. The results indicate substantial variation 
in the transition to digitalized, clean-energy-based agro-industrial 
systems across the sampled economies between 2000 and 2022.

Table  2 shows that the dependent variable, Clean Energy 
Integration (CEI), has a mean of 30.41%. The high standard 
deviation of 32.08 suggests substantial disparities in renewable 
energy adoption across regions. Digital Transformation (DT) 
exhibits a mean development index of 111.19. The Environmental 
Policy (EP) index, with a mean of 96.24, reflects the regulatory 
environment. The wide range of EP index values, from 43.26 to 
174.93, indicates considerable variation in the effectiveness of 
carbon-neutral policies by region. Green Financial Innovation 
(GFI) has a mean value of 15.20, supporting capital requirements 
for sustainable business transitions. The agro-industrial sector 
accounts for a significant share of the studied economies, with 
a mean contribution of 35.23%, underscoring the need to focus 
on this sector to achieve large-scale decarbonization. Figure 1 
shows that among the BRICS nations china has the highest carbon 
emission.

4.2. Country-Specific Descriptive Analysis
Table 3 presents the cross-sectional distribution of the key variables 
for a selection of the sampled countries. This granular view reveals 
how digital maturity and policy stringency vary geographically, 

Table 2: Descriptive statistics of agro‑industrial variables
Variable Mean Standard deviation Min Max
CEI 30.41 32.08 0.03 100.00
DT 111.19 21.08 53.44 170.88
EP 96.24 21.37 43.26 174.93
GFI 15.20 5.30 5.10 28.40
CC 4.99 3.62 −9.52 14.53
IVA 35.23 12.68 18.51 74.11
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influencing the capacity for clean energy integration in agro-
industrial businesse.

Table 3 shows significant variation in Greenhouse Gas Emissions 
(GHGE) across countries. Oman has the highest emissions 
(836,029.5 kt), mainly due to its energy-intensive industrial sector, 
while Armenia reports the lowest (9,389.1 kt). These results 
highlight the varied environmental impacts of industrial sectors, 
as described in the “trilemma” framework by Xia et al. (2020).

Uzbekistan leads the subgroup in Digital Transformation (DT) 
with an index of 125.29, followed by Oman and Singapore. This 
technological advantage reflects stronger IT capability, which 
Wang et al. (2020) identify as essential for operational efficiency 
in modern agro-industrial systems. In contrast, Armenia’s lower 

score (99.30) may hinder the adoption of advanced clean energy 
technologies.

Environmental Policy (EP) stringency is highest in Mongolia 
(100.03 in the broader dataset) and Lao PDR (110.79), reflecting 
strong commitments to carbon-neutral processes. Liu et al. (2024) 
suggest that these high scores indicate a regulatory environment 
that drives agro-industrial enterprises to innovate.

A standout observation of Clean Energy Integration (CEI) shows a 
notable disparity. Lao PDR achieves 96.77% integration, likely due 
to its extensive hydropower resources, while Armenia’s integration 
is nearly zero at 0.05%. This gap highlights the urgent need for 
Green Financial Innovation (GFI) to support transition economies, 
as proposed by Ullah et al. (2022). City (CC), measured as the 
waste-to-energy conversion rate, is highest in Lao PDR (7.01) and 
Bangladesh (6.33). These figures suggest a successful shift toward 
circular economy practices, as recommended by Schroeder et al. 
(2019). The Industry Value Added (IVA) scores, notably Armenia’s 
66.68%, further confirm the industrial nature of these economies, 
highlighting the critical importance of integrating clean energy 
through digital technologies.

Table 4 presents trends in key variables from 2008 to 2022, offering 
a longitudinal perspective on sustainability indicators. Greenhouse 
Gas Emissions (GHGE) fluctuated during this period, rising from 
177,754.1 kilotons of CO2 equivalent in 2008 to a peak of 270,103.1 
kilotons in 2021. This variability reflects year-to-year changes in 
environmental impact and climate change contributions. Overall, 
the trend does not remain constant but generally moves downward. 
The Digital Infrastructure Development Index (DT) increased from 
80.027 in 2008 to 135.071 in 2022. The Environmental Policy 
(EP) index also rose steadily, from 77.709 in 2008 to 118.121 in 

Table 4: Description of data by years
Year GHGE DT EP ED RWR PH UD
2008 177754.1 80.027 77.709 7.446 25.722 1.199 36.3
2009 184179.1 84.86 80.19 7.122 25.494 1.217 35.562
2010 186954.1 94.327 80.545 4.81 26.413 1.239 35.921
2011 188948.1 95.855 81.8 2.564 27.807 1.408 34.405
2012 198175.1 100.001 85.529 7.661 25.745 1.343 35.128
2013 205731.1 105.921 90.6 5.517 27.952 1.281 35.669
2014 209827.1 109.671 93.129 5.833 31.191 1.377 36.026
2015 212311.1 113.891 94.771 5.122 32.873 1.485 35.35
2016 220823.1 117.721 95.742 4.916 32.346 1.552 35.272
2017 228092.1 120.121 100.721 4.655 28.481 1.698 34.393
2018 231951.1 122.741 103.541 5.232 32.602 1.706 33.897
2019 241250.1 125.661 113.481 5.457 33.441 1.712 34.669
2020 256675.1 129.241 110.661 5.163 34.679 1.725 35.624
2021 270103.1 132.661 118.121 4.912 35.39 1.758 35.454
2022 269418.1 135.071 117.021 −1.598 35.956 1.846 34.817

Table 3: Country‑wise mean values of agro‑industrial indicators
Country GHGE (kt) DT (Index) EP (Index) CC (%) CEI (%) GFI (%) IVA (%)
Armenia 9,389.1 99.30 95.28 0.47 0.05 1.98 66.68
Uzbekistan 300,989.1 125.29 94.04 6.23 39.82 1.94 22.97
Singapore 183,884.1 109.12 92.99 4.81 26.69 1.34 31.19
Lao PDR 18,444.1 114.39 110.79 7.01 96.77 0.72 29.30
Bangladesh 31,107.5 109.40 96.95 6.33 42.71 1.34 26.73
Oman 836,029.5 117.78 107.64 5.44 13.14 1.05 42.67

Figure 1: Digital infrastructure versus GHG 
emissions in BRICS countries
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2022. This upward trend indicates improvements in the quality and 
effectiveness of environmental regulations, supported by stronger 
policy cooperation.

Variation in water resource efficiency (ED) suggests the need 
for alternative measures. The index declined from 7.446 in 
2008 to −1.598 in 2022, reflecting the complexity of water 
management, which is influenced by policy, practice, and 
environmental factors. Public Health Spending as a percentage 
of GDP (RWR) showed a clear upward trend, increasing from 
approximately 25% in 2008 to 35% in 2022. This demonstrates 
a sustained commitment to public health initiatives relative to 
GDP. Urbanization rates also rose, from 1.199 in 2008 to 1.846 
in 2022, indicating potential improvements in urban living 
conditions. The Environmental Regulatory Quality Index (UD) 
remained relatively stable, ranging from 33.897 to 46.3 between 
2008 and 2018, which suggests consistently high standards in 
environmental governance.

Table 5 indicated the the correlation between GHGE (Greenhouse 
Gas Emissions) and DT (Digital Transformation) is −0.584, 
indicating a moderate, statistically significant negative relationship. 
As digital infrastructure develops, greenhouse gas emissions tend 
to decrease. GHGE also shows a moderate negative correlation 
with IVA (Industry Value Added) at −0.248, indicating that 
industrial growth in the sampled regions is decoupling from high 
emissions. EP and CC (Circular Capacity) show a significant 
positive correlation of 0.398. Notably, CEI (Clean Energy 
Integration) shows a negatiCEI (Clean Energy Integration) has 
a negative correlation with EP (−0.541) and CC (−0.560) in this 
sample. This indicates that, during early transition stages, strict 
regulations and circular mandates may create technical or financial 
barriers to renewable integration, a “trilemma” effect described 
by Xia et al. (2020). The positive correlation between GFI (Green 
Financial Innovation) and CEI (0.233) suggests that financial 
development helps overcome these barriers, supporting Ullah 
et al. (2022). This confirms that digital transformation supports 
the economic scale of the agro-industrial sector. Since none of the 
correlation coefficients exceed 0.80, the model does not suffer from 

serious multicollinearity, allowing us to proceed with the Cross-
Sectional Dependence (CSD) and CIPS unit root tests.

4.3. Cross-Sectional Dependence (CSD) and 
Significance Tests
Table 6 presents the Pesaran (2004) CSD test results. In the agro-
industrial sector, cross-sectional dependence is expected due to 
shared regional energy markets, technological spillovers, and 
international environmental agreements.

The CSD test results shown in Table 6 indcated that all variables 
are highly significant at the 1% level (p < 0.01), confirming cross-
sectional dependence among the 150 observations. For Greenhouse 
Gas Emissions (5.123) and Clean Energy Integration (7.228), the 
high test statistics indicate that environmental impacts and renewable 
energy adoption are influenced by common shocks across countries. 
This finding supports Xia et al. (2020), who note that energy 
efficiency challenges are often regional rather than national. Digital 
Transformation (DT) shows significant cross-sectional correlation, 
with a test statistic of 4.094. This supports Wang et al. (2020), who 
argue that IT capabilities and digital infrastructure often follow 
global or regional trends, collectively shaping industrial efficiency.

Environmental Policy (EP) and Industry Value Added (IVA) 
have the highest significance (7.900 and 8.188). This suggests 
that environmental regulation stringency and the economic scale 
of the agro-industrial sector are highly interdependent across 
regions. This interdependence supports the use of CS-ARDL to 
address common factors, as recommended by Liu et al. (2024) for 
carbon-neutral industrial processes. Circular Capacity (CC) shows 
a significance of 4.904, indicating that waste-to-energy and circular 
economy practices are emerging as collective regional responses 
to resource management challenges, as identified by Schroeder 
et al. (2019). The presence of CSD, as shown in Table 6, indicates 
that first-generation unit root tests would be biased. Therefore, we 
will use second-generation unit root tests, such as the CIPS test, to 
confirm that the variables are integrated and suitable for long-run 
cointegration analysis.

4.4. Panel Unit Root Test Results (CIPS)
Table  7 shows the results of the Cross-sectionally Augmented 
IPS (CIPS) and Modified CIPS (M-CIPS) tests, which address 
the dependencies identified earlier. The results of the CIPS and 
M-CIPS tests reveal a mixed order of integration, which is a key 
rationale for employing the CS-ARDL approach, as it can handle 
both I(0) and I(1) variables. The variables GHGE, DT, EP, GFI, 
and IVA are stationary at their initial levels. Specifically, the 
high negative coefficients for GHGE (−6.680) and IVA (−5.358) 
indicate that these series do not possess a unit root at level.

Table 5: Pairwise correlation matrix
Variable GHGE DT EP CC CEI GFI IVA
GHGE 1
DT −0.584 1
EP −0.095 −0.174 1
CC −0.268 0.050 0.398 1
CEI −0.127 0.151 −0.541 −0.560 1
GFI −0.133 −0.033 −0.439 −0.393 0.233 1
IVA −0.248 0.183 −0.023 −0.293 0.123 0.077 1

Table 6: CSD and significance test statistics
Variable Symbol Test statistic (CD‑Test) Prob‑value Significance
GHGE Greenhouse Gas Emissions 5.123*** 0.001 High
DT Digital Transformation 4.094*** 0.001 High
EP Environmental Policy 7.900*** 0.001 High
CC Circular Capacity 4.904*** 0.001 High
CEI Clean Energy Integration 7.228*** 0.001 High
IVA Industry Value Added 8.188*** 0.001 High
*** significance at the 1% level
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This suggests that digital infrastructure (DT) and environmental 
regulatory quality (EP) respond relatively quickly to systemic 
changes, a characteristic of the “second modernization” phase 
(Qudrat-Ullah and Nevo, 2021). Conversely, CC (Circular 
Capacity) and CEI (Clean Energy Integration) are non-stationary 
at level but become stationary after the first differencing. The 
1st  difference coefficients for CC (−3.450) and CEI (−4.209) 
are significant at the 1% level. This implies that agro-industrial 
waste-to-energy flows and renewable energy adoption follow 
a stochastic trend, requiring time-variant adjustments to reach 
equilibrium. Because the variables are integrated of different 
orders I(0) and I(1) the standard OLS method is inappropriate. 
The findings justify the use of the Westerlund and Edgerton (2007) 
Cointegration test to check for a long-term relationship, followed 
by CS-ARDL to estimate the short- and long-run dynamics of how 
digital transformation enables clean energy integration (Wang et 
al., 2020; Xia et al., 2020).

4.5. Long-Run and Short-Run CS-ARDL Results
The CS-ARDL model underpins this empirical analysis by 
addressing cross-sectional dependence and slope heterogeneity. 
Table 8 shows the coefficients that define the “Digital-Green Twin 
Transition” in the agro-industrial sector.

Table 8 indicates that, in the long run, a 1% increase in Digital 
Transformation is associated with a 1.73% decrease in Greenhouse 
Gas Emissions (P < 0.01). This finding demonstrates that 
digitalization serves as a primary enabler of agro-industrial 
efficiency. Environmental Policy exerts the strongest long-run 
impact (−2.289), supporting Liu et al.’s (2024) assertion that 
stringent regulations facilitate carbon-neutral industrial processes. 
Additionally, Circular Capacity, measured as waste-to-energy 
conversion, significantly reduces emissions in both the long run 
(−1.779) and the short run (−1.230). This outcome validates the 
circular economy roadmap proposed by Schroeder et al. (2019) 
for sustainable development. Clean Energy Integration exhibits 

a significant inverse relationship with emissions (−1.109), with 
a stronger effect observed in the short run (−1.242). This pattern 
suggests that renewable energy adoption requires ongoing 
technological support to sustain long-term effectiveness (Qudrat-
Ullah and Nevo, 2021). Green Financial Innovation (GFI) is 
also highly significant (−1.889), reinforcing Ullah et al.’s (2022) 
findings that green credit is essential for financing the transition to 
clean energy. The ECT (−1) coefficient is −1.120 and is statistically 
significant at the 1% level, indicating the speed of adjustment. 
A  value of −1.12 suggests that the system corrects deviations 
from the long-run equilibrium by approximately 112% per period. 
This rapid adjustment indicates that, once digital and green policy 
frameworks are implemented, the agro-industrial sector advances 
quickly toward its sustainable equilibrium.

4.6. Discussion
The empirical findings offer a comprehensive analysis of the 
determinants of Greenhouse Gas Emissions (GHGE) in the 
agro-industrial sectors of emerging economies. The CS-ARDL 
results indicate that digital transformation and energy integration 
are critical for achieving carbon neutrality. The significant 
autoregressive coefficient indicates a pronounced legacy 
effect, suggesting that current GHG emissions are substantially 
shaped by past output and energy consumption. In countries 
such as Kazakhstan and Russia, effective decarbonization 
necessitates addressing the enduring reliance on fossil-fuel-based 
infrastructure. Implementing a dynamic policy framework is 
required to mitigate these dependencies and expedite the transition 
to clean energy.

A primary objective of this study was to evaluate the enabling 
role of Digital Transformation (DT). The long-run negative 
coefficient (−1.730) indicates that as digital infrastructure matures, 
greenhouse gas emissions (GHGE) decline significantly. This 
finding is consistent with Wang et al. (2020) and Zhang et al. 
(2021), who argue that “IT Capability” enhances organizational 

Table 8: CS‑ARDL long‑run and short‑run coefficients (Dep. Var: GHGE)
Variables Long‑run coefficient t‑stat Short‑run coefficient t‑stat
DT (Digitalization) −1.730*** −2.669 −1.719*** −2.889
EP (Env. Policy) −2.289*** −2.439 −0.912*** −5.530
CC (Circular Cap.) −1.779*** −2.920 −1.230*** −3.790
CEI (Clean Energy) −1.109** −1.090 −1.242** −2.989
GFI (Green Finance) −1.889*** −4.889 −1.102*** −4.880
IVA (Ind. Scale) −3.920** −3.011 −2.720*** −2.920
ECT (−1) — — −1.120* −4.114
**, ** denote significance at 1% and 5% respectively

Table 7: Panel unit root test results at level and first difference
Variable Symbol Level 

I (0) (CIPS)
Level 

I (0) (M‑CIPS)
1st Diff 

I (1) (CIPS)
1st Diff 

I (1) (M‑CIPS)
GHGE Emissions −6.680*** −5.950*** – –
DT Digitalization −4.389*** −5.471*** – –
EP Env. Policy −5.890*** −5.451*** – –
CC Circular Cap. – – −3.450*** −4.779***
CEI Clean Energy – – −4.209*** −5.230***
GFI Green Finance −3.888*** −4.887*** – –
IVA Industry Scale −5.358*** −7.149*** – –
*** significance at the 1% level
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resilience and operational efficiency. In the agro-industrial sector, 
digital tools such as IoT-enabled smart grids facilitate precise 
management of decentralized renewable energy, thereby reducing 
waste commonly associated with traditional industrial processing.

Furthermore, the strong significance of Environmental Policy 
(EP) (−2.289) and Environmental Regulatory Quality (UD/
IVA) (−3.920) highlights the necessity for a robust regulatory 
framework. According to Liu et al. (2024), stringent policies are 
the most effective drivers for advancing firms toward carbon-
neutral processes. The interaction between digital technologies 
and strict policy frameworks establishes a “Digital-Green Twin 
Transition,” in which technology enables efficient compliance 
with environmental mandates.

The results concerning Circular Capacity (CC) (−1.779) and 
Clean Energy Integration (CEI) (−1.109) support the objective of 
developing a sustainable implementation roadmap. The findings 
demonstrate that waste-to-energy conversion and the adoption 
of renewables are statistically significant in lowering the carbon 
footprint. This validates the circular economy model proposed by 
Schroeder et al. (2019), suggesting that agro-industrial businesses 
can achieve significant gains by repurposing agricultural waste 
into energy inputs. The role of Green Financial Innovation (GFI) 
(−1.889) further highlights that this transition is capital-intensive 
and requires specialized credit mechanisms to succeed, as argued 
by Ullah et al. (2022).

The Wald Statistics confirm that the factors identified digitalization, 
Policy, Circularity, and Finance are deeply interlinked. For 
policymakers, this suggests that a fragmented approach will be 
less effective than a holistic strategy. For example, investing in 
digital infrastructure (DT) without simultaneously strengthening 
environmental regulations (EP) may not yield the desired reduction 
in emissions. Focus on “Smart Agriculture” platforms that 
integrate renewable energy loads directly into processing plants.

5. CONCLUSION, LIMITATIONS AND 
FUTURE WORK

This research provides a comprehensive empirical assessment of 
the “Digital-Green Twin Transition” within the agro-industrial 
sectors of emerging economies, specifically Kazakhstan and 
Russia. The findings indicate that Digital Transformation, 
Environmental Policy, and Green Financial Innovation operate as 
integrated components of a sustainable development framework. 
Long-run CS-ARDL analysis demonstrates that enhancements in 
digital infrastructure and the implementation of carbon-neutral 
policies substantially reduce greenhouse gas emissions. The rapid 
adjustment reflected by the Error Correction Term highlights 
the sector’s capacity to respond to technological and regulatory 
changes. Advancing circular capacity and waste-to-energy 
conversion enables these countries to decouple economic growth 
from environmental degradation and secure long-term resource 
sustainability.

Several limitations are acknowledged in this study. The reliance on 
secondary panel data may overlook micro-level firm behaviors and 

localized barriers to renewable energy adoption in remote agro-
industrial regions. While the model incorporates structural breaks, 
global energy market volatility, and geopolitical changes during 
the study period, these factors may still introduce unobserved 
externalities. Future research should incorporate firm-level case 
studies to investigate the human-centric dimensions of digital 
leadership and organizational culture during this transition. 
Furthermore, examining the integration of artificial intelligence 
and decentralized smart grids in crop-processing industries could 
provide policymakers with a more detailed roadmap for achieving 
the Sustainable Development Goals by 2030.
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