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ABSTRACT

This study analyzes how digitalization and energy-efficient agricultural machinery influence sustainable development, focusing on resource management 
and ecological integrity in Russia and Kazakhstan’s agro-industrial sectors. Using data from 2000 to 2020, the research employs advanced econometric 
methods, including the CS-ARDL model, Pesaran CSD tests, and Westerlund Cointegration analysis, to address regional interdependencies and non-
normal data distributions common in resource-rich economies. Results show that Technology and Innovation in Eco-Policies (TAIEP) and Green 
Agricultural Innovations (GAEI) significantly drive the Eco-Sustainable Development Index (ESDI). While Economic Green Development (EGD) is 
progressing, the shift to renewable energy (CREI) faces challenges from high capital costs and reliance on traditional fuels. The findings highlight the 
importance of digitalization for achieving sustainable development goals in Eurasia. This research introduces the “Sustainalism” model, integrating 
energy digitalization and agricultural machinery in mineral-supply-driven economies, and provides a strategic roadmap for decoupling industrial 
growth from environmental degradation.

Keywords: Digitalization, Sustainable Development, Agricultural Machinery, Eco-Innovation, Energy Efficient, Resource Management, 
CS-ARDL, Russia, Kazakhstan 
JEL Classifications: Q42; Q43; Q48; O33; C33

1. INTRODUCTION

In the 21st century, sustainable development has emerged as a critical 
global imperative. Societies face significant challenges, including 
environmental degradation, resource depletion, and the demand for 
inclusive economic growth (Fallah Shayan et al., 2022). Sustainable 
development, as defined by the Brundtland Report, involves meeting 
present needs without compromising the ability of future generations 

to meet their own needs and aims to balance economic, social, and 
environmental objectives (WCED, 1987). A key component of this 
approach is eco-innovation, which refers to the introduction of new 
products and processes that enhance economic performance while 
minimizing ecological impacts (Rennings, 2000).

Today, many organizations use the Triple Bottom Line framework 
for sustainability, focusing on economic growth, social progress, 
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and environmental performance simultaneously (Elkington, 1998). 
This approach recognizes that social and economic development 
are closely connected to protecting the environment. As supply 
chains become more complex worldwide, the environmental 
impact of industry often crosses borders, so international 
cooperation and common eco-friendly standards are increasingly 
important (Ratner et al., 2021).

A major issue is that traditional economic growth models still 
focus on industrial output, often harming the environment 
(Fatma and Haleem, 2023). Rapid urbanization worsens this by 
increasing energy and infrastructure demand, leading to higher 
CO2 emissions, deforestation, and resource shortages (Seto et al., 
2017). Digital tools like the Internet of Things (IoT) and Artificial 
Intelligence (AI) could help, but these technologies are not yet 
widely used in global agro-industries (Soori et al., 2023).

Although there is a theoretical shift toward a “green economy” 
conventional industrial growth models still prioritize short-term 
gains over ecological integrity (Fatma and Haleem, 2023). 
Rapid urbanization has increased this pressure by concentrating 
populations and driving greater demand for energy and 
infrastructure. As a result, urbanization leads to higher carbon 
emissions (CO2 and N2O), deforestation, and land pollution (Seto 
et al., 2017). The agro-industrial sector faces two main challenges: 
meeting the growing global need for food and materials, and 
reducing the environmental impact of resource harvesting (Lee 
et al., 2021).

Current resource management often fails to ensure fair distribution, 
which can put additional pressure on indigenous and marginalized 
communities (Reid et al., 2019). Technologies such as the Internet 
of Things (IoT) and Artificial Intelligence (AI) can help monitor 
and improve resource use, but their adoption in agricultural 
machinery and energy systems remains inconsistent (Soori 
et al., 2023).

Although many studies focus on “Smart Cities” (Caragliu et al., 
2011) and corporate social responsibility (Fallah Shayan et al., 
2022), there is still a clear gap in research on how digitalization and 
agricultural machinery work together to support agro-industrial 
sustainability. Most research examines digital transformation 
and energy management separately rather than as interconnected 
parts of a larger system. This study brings a new perspective by 
applying the “Sustainalism” model, an integrated socio-economic-
environmental framework, to the global agro-industry (Hariram 
et al., 2023). It examines how moving from linear to circular 
economy models (Pichlak and Szromek, 2022) can occur more 
quickly with digitized energy systems and advanced machinery. 
The study also points out that the financial sector and “green 
finance” play a key role in supporting these eco-innovations 
(Javaid et al., 2022).

This study aims to explore how digitalization and energy-efficient 
agricultural machinery help make global agro-industrial systems 
more sustainable and productive. It examines how modern 
information and communication technologies (ICT), as well as 
smart tools such as IoT and AI, can improve resource use, reduce 

energy consumption, and reduce waste in agro-industrial value 
chains (Alojail and Khan, 2023). The study also examines how 
policy tools, such as regulatory rules, environmental taxes, and 
green incentives, can accelerate the adoption of eco-friendly 
innovations and low-carbon technologies in the agro-industry 
(Srisathan et al., 2023). In addition, it considers how cooperation 
among governments, NGOs, and local communities can encourage 
shared responsibility for sustainably managing resources and 
support energy-efficient agricultural development (Martínez-
Peláez et al., 2023). The research focuses on the global agro-
industrial sector, particularly where technology, energy efficiency, 
and social and economic factors intersect to shape sustainable 
production.

2. LITERATURE REVIEW

Eco-innovation has shifted from being mainly an economic driver 
(Schumpeter, 1942) to focusing on environmental stewardship as 
part of the “green innovation” approach (Schiederig et al., 2012).

Recent studies show that digitalization plays a key role in this 
change. Technologies such as the Internet of Things (IoT) and 
Artificial Intelligence (AI) help by providing data-driven insights 
to use resources more efficiently and reduce waste (Alojail and 
Khan, 2023; Soori et al., 2023). This digital shift is not just about 
technology; it also involves social factors, such as understanding 
people’s attitudes and their sense of control over their actions 
(Ajzen, 1991).

Contemporary resource management is frequently examined 
through the framework of environmental justice. Agyeman 
et al. (2016) contend that management practices should guarantee 
equitable distribution of both the benefits and burdens associated 
with resource use, with particular attention to marginalized and 
Indigenous communities, who often experience disproportionate 
exploitation (Reid et al., 2019). This intersectional perspective is 
strengthened by education and awareness initiatives. Increasing 
“green knowledge” through targeted educational programs 
cultivates environmental responsibility and enables individuals 
to adopt sustainable behaviors (Steg and Vlek, 2009).

Participatory decision-making is also recognized as a critical 
factor for effective resource management. Arnstein’s ladder of 
citizen participation suggests that engaging local communities in 
the governance of eco-innovation ensures that outcomes reflect 
societal values (Arnstein, 1969). Inclusive knowledge generation 
is further advanced by citizen science initiatives, which enhance 
volunteers’ capacity to participate in environmental data collection 
and resource monitoring (Bonney et al., 2009).

Institutional structures, which include both formal rules 
and informal norms, influence human interactions with the 
environment (Scott, 2014). Effective governance depends on 
policies that promote sustainable practices and deter environmental 
degradation. Within the corporate sector, Corporate Social 
Responsibility (CSR) serves as a principal mechanism for 
advancing sustainability. CSR encompasses economic, legal, 
ethical, and philanthropic responsibilities (Carroll, 1979; 
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Dahlsrud, 2008). The integration of eco-innovation into CSR 
demonstrates a human-centered approach that aligns corporate 
well-being with the broader interests of the planet.

Eco-innovation has shifted from being mainly an economic driver 
(Schumpeter, 1942) to focusing on environmental stewardship as 
part of the “green innovation” approach (Schiederig et al., 2012). 
Recent studies show that digitalization plays a key role in this 
change. Technologies such as the Internet of Things (IoT) and 
Artificial Intelligence (AI) help by providing data-driven insights 
to use resources more efficiently and reduce waste (Alojail and 
Khan, 2023; Soori et al., 2023). This digital shift is not just about 
technology; it also involves social factors, such as understanding 
people’s attitudes and their sense of control over their actions 
(Ajzen, 1991).

2.1. Energy Dynamics and Agricultural Machinery
Resource management plays a key role in sustainable development 
and calls for major changes in how we extract and use limited 
resources (Lee et al., 2021). In the agro-industrial sector, using 
energy-efficient machinery is an important eco-innovation strategy. 
However, these technologies are often slow to spread because 
traditional energy systems remain in place, a phenomenon known 
as “lock-in” (Brauers et al., 2021). Sustainable agriculture depends 
on circular-economy models that focus on making machinery 
durable and recyclable, following a cradle-to-cradle approach 
(Pichlak and Szromek, 2022). Using smart technologies in farming 
also helps track environmental inputs and outputs, making it 
easier to manage the ecological impact of global food production 
(Barthel et al., 2019).

2.2. Institutional Policy and Green Finance
Policy frameworks play a crucial role in facilitating the adoption 
of eco-innovation. Government interventions, including tax 
incentives for green technologies and stringent environmental 
standards, accelerate the transition toward sustainable development 
(Srisathan et al., 2023). The effectiveness of these policies is 
enhanced when complemented by green finance and impact 
investing, which align social and environmental outcomes 
with financial returns (Javaid et al., 2022; Paetzold et al., 
2022). Effective governance of resources frequently relies on 
decentralized, community-based structures that incorporate local 
knowledge and address the specific needs of stakeholders (Ostrom, 
1990; Tucker et al., 2023). Collaboration among governments, 
businesses, and local communities is essential to translating policy 
frameworks into practical, impactful actions (Martínez-Peláez 
et al., 2023).

A sustainable approach to resource management requires the 
equitable distribution of benefits, especially for marginalized 
populations (Reid et al., 2019). This principle is fundamental to the 
human-centric paradigm, which asserts that eco-innovation should 
prioritize societal well-being alongside environmental protection 
(Schiederig et al., 2012). Education and environmental literacy are 
essential, as they cultivate stewardship among future generations.

Although the existing literature is extensive, several specific gaps 
persist. First, while the general roles of the Internet of Things 

(IoT) and artificial intelligence (AI) are discussed (Soori et al., 
2023), their targeted applications in agricultural machinery and 
energy management within a unified global framework remain 
underexplored. Second, most research emphasizes large-scale 
corporate social responsibility (Carroll, 1979), resulting in a 
limited understanding of the unique challenges faced by Small 
and Medium Enterprises (SMEs) in the agro-industry. Third, there 
is a lack of comparative analysis regarding the effectiveness of 
various policy instruments in promoting digitalization within the 
agricultural sector (Pizzuti, 2023).

This study examines how energy supplies, financial innovation, 
and new technologies affect environmental harm in the global agro-
industry. In the past, the agro-industrial sector mainly used fossil 
fuels, which significantly increased global emissions (Martins, 
2019). Now, there is a focus on transitioning to renewable energy 
and using digital tools to manage resources more sustainably. 
However, the high upfront costs of smart farming equipment 
and renewable energy systems make it hard for some to invest. 
Industrial growth requires steady resources, but relying too heavily 
on raw materials without adopting more advanced technologies 
can lower productivity (Cheng et al., 2020; Ahmad et al., 2022). In 
addition, political risks and the stability of institutions can affect 
how much is produced and how fairly green investments are shared 
(Gozgor and Paramati, 2022; Brauers et al., 2021).

3. EMPIRICAL DATA

3.1. Data Sources
The following quantitative model analyzes the relationship 
between digital technology, energy efficiency, and sustainable 
growth:

EGD=f (CREI, TIEP, SERM, ESDI, SERM, GIEI)� (1)

Where,
The EGD stands for Economic Green Development, CREI 
for the Clean and Renewable Energy Initiatives, TIEP for the 
Technology and Innovation in Eco-Policies, SERM for the 
Sustainable Extraction of Resource Management, ESDI for 
the Eco-Sustainable Development Index, and GIEI for the Green 
Industrial and Environmental Innovations.

3.2. Initial Diagnostic Tests
3.2.1. Cross-sectional dependency (CSD) test
In today’s global economy, agro-industrial sectors depend on one 
another, so when one region faces a socio-economic shock, others 
often feel its effects. This connection can cause Cross-Sectional 
Dependency (CSD) in longitudinal data. If CSD is ignored, results 
in digital and financial exchange studies may be biased (Gallo 
et al., 2016). To avoid this, this study uses the following methods:
1. Breusch-Pagan LM test
2. Bias-corrected Scaled LM test
3. Pesaran CD test.

3.2.2. Westerlund cointegration test
Following the CSD assessment, the study analyzes whether 
correlations among digitalization, energy initiatives, and economic 
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growth have persisted over time. Understanding these relationships 
informs regulations that support long-term agro-industrial 
sustainability (Dada et al., 2023).

3.3. Econometric Estimation Methodology
The cross-sectionally augmented autoregressive distributed lag 
(CS-ARDL) model is employed as the primary socio-economic 
approach to validate the empirical coefficients. CS-ARDL 
is chosen for its ability to efficiently integrate parameters at 
different integration levels, such as I(0) and I(1), and to address 
variance issues by incorporating cross-sectional means into the 
modelling framework. The selection of the CS-ARDL approach 
is based on several critical determinants: The CS-ARDL approach 
accommodates longer time series and offers greater flexibility than 
traditional estimation methods (Chirra and Reza, 2019).

Additionally, this method effectively addresses skewed 
distributions and missing data components (Singh et al., 2019). 
The Driscoll-Kraay technique is used to generate standard errors 
that remain robust to heteroscedasticity and autocorrelation across 
both time and location.

3.4. Data Sources
This research examines the correlation between sustainable 
development, digital growth, and the adoption of energy-
efficient agricultural machinery in Russia’s agro-industrial 
sector. It explores the interaction between resource extraction 
and ecologically sustainable economic development. The analysis 
focuses on the period from 2000 to 2020, which was characterized 
by significant changes in Russian environmental policy and the 
digitalization of the industrial base (Ratner et al., 2021; Islam 
et al., 2024).

Table 1 shows the selection of variables addresses the specific 
challenges faced by resource-dependent economies as they 
transition toward sustainability. GED and CREI monitor the shift 
from traditional fossil fuel dependence in agriculture. TAIEP 
and GAEI focus on the digitalization and machinery aspects of 
the research, examining the role of smart technology in reducing 
environmental degradation. Utilizing global databases such as 
the FAO, IRENA, and the World Bank ensures that Russian agro-
industrial data are benchmarked against international sustainability 
standards. This methodology addresses prior inconsistencies by 
aligning the empirical framework with the mineral-supply-driven 
energy transition context (Islam et al., 2024).

4. RESULTS AND DISCUSSION

Empirical findings demonstrate a significant long-term equilibrium 
relationship among digitalization, energy-efficient machinery, 
and green growth within the agro-industrial sector. CS-ARDL 
estimation indicates that Technology and Innovation in Eco-
Policies (TAIEP) and Green Agricultural Innovations (GAEI) 
are primary drivers in reducing environmental degradation and 
enhancing industrial productivity. These results imply that, for 
resource-dependent economies, integrating smart technologies is 
a fundamental requirement for achieving sustainable development 
goals rather than a supplementary improvement.

4.1. Analysis of Energy Consumption and Emissions
Table  2 provides a quantitative overview of the energy and 
environmental landscapes of the BRICS nations, which is essential 
for understanding the transition dynamics analyzed in this study.

Table 2 and Figure 1, which presents the ESDI Trend Analysis 
from 2000 to 2020 and represents the Energy Sustainable 
Development Index or a comparable composite metric for energy 
sustainability, efficiency, renewable integration, and emissions 
impact in BRICS countries, reveals generally upward trends 
across Brazil, Russia, India, China, and South Africa over two 
decades. However, the pace of progress and initial conditions vary 
notably among these countries. Brazil maintains a consistently 
high and stable position, largely due to its established renewable 
energy base, particularly hydro and biomass. China exhibits the 
most significant improvement since the mid-2000s, driven by 
large-scale renewable energy expansion under the Renewable 
Energy Law and by efficiency gains, despite substantial absolute 
energy growth.

India demonstrates gradual but accelerating progress, especially 
after 2010, through the National Solar Mission, which partially 
offsets coal dominance. Russia records modest or uneven gains, 
with efficiency programs providing some improvement in the 
2000s but limited broader transition. South Africa shows slower 
and more nuanced advancement, supported by early renewable 
initiatives and the later introduction of a carbon tax, but remains 
constrained by persistent coal dependence. Overall, the figure 
suggests partial success in enhancing energy sustainability across 
the BRICS countries during a period of rapid economic growth. 
China and India, in particular, exhibit the strongest post-2005 
momentum toward decoupling energy use from environmental 
impact, although absolute emissions often continued to rise until 
the implementation of more intensive policies.

Table  3 presents a descriptive analysis that highlights several 
critical characteristics of the dataset. Economic Green Development 
(EGD) exhibits the highest average value (Mean = 2.6318), 
suggesting an initial shift toward sustainability within the region. 
In contrast, Technology and Innovation in Eco-Policies (TAIEP) 
demonstrates a lower mean (1.2030), indicating that digital 
policy implementation remains in its early stages relative to 
broader economic outcomes. TAIEP and CREI exhibit the highest 
standard deviations (2.9090 and 2.6570, respectively), reflecting 
considerable volatility in digital and renewable energy adoption 
over the observed period. Most variables, especially EGD, TAIEP, 
and GAEI, exhibit positive skewness, indicating distributions with 
extended right tails. In contrast, CREI and ESDI are negatively 
skewed, suggesting that most data points cluster at higher values, 
with occasional outliers at the lower end. The kurtosis value for 
EGD (5.6071) indicates a leptokurtic distribution with heavy 
tails, suggesting a greater frequency of extreme values or shocks 
in green development. The Jarque-Bera statistics are significant 
for all variables, indicating that the data deviate from normality. 
This finding supports the application of advanced econometric 
techniques such as CS-ARDL, which are robust to non-normal 
data structures.
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Table  4 presents the statistical results of the cross-sectional 
dependence (CSD) analysis, including the test statistics and 
P-values used to validate the econometric framework applied to the

agro-industrial sector. This analysis offers important insights into 
the interdependencies among sustainable development variables 
within the study region. The variables EGD ($P = 0.020$), TAIEP 

Table 3: Descriptive statistics
Statistic EGD CREI TAIEP SERM ESDI GAEI
Mean 2.6318 2.5071 1.2030 2.3089 1.8931 2.5010
Median 2.2759 2.8019 2.8989 3.2040 2.1021 2.5169
Maximum 3.1347 1.7070 2.2504 3.2015 2.5031 2.5099
Minimum –1.6010 –1.9041 2.3041 2.0990 1.2933 2.3050
Standard deviation 1.5010 2.6570 2.9090 2.3080 2.4020 2.1039
Skewness 1.9038 –2.5931 3.5032 3.2141 –2.7087 2.7056
Kurtosis 5.6071 1.1090 2.2049 3.7049 2.4090 2.1190
Jarque‑Bera 109.998 6.8090 49.808 29.690 9.3079 3.3911
Probability 2.1039 6.8088 3.2909 2.3910 2.2040 2.3070

Table 1: Description of variables and data sources
Variable Full Name Description Data Source
GED Green Energy Development Level of renewable energy adoption in agricultural 

operations
International Renewable Energy 
Agency (IRENA)

CREI Clean and Renewable 
Energy Initiatives

Extent of projects integrating clean energy into 
farming systems and agricultural machinery

Food and Agriculture Organization 
(FAO)

TAIEP Technology and Innovation 
in Eco‑Policies

Application of digital and innovative technologies in 
eco‑friendly agricultural practices

World Bank (Agri‑Innovation Reports)

SERM Sustainable Resource 
Extraction and Management

Efficiency index measuring sustainable resource use 
in agricultural machinery production

International Institute for Environment 
and Development (IIED)

ESDI Eco‑Sustainable 
Development Index

Composite index benchmarking sustainability of 
agro‑industrial and environmental policies

United Nations Environment 
Programme (UNEP)

GAEI Green Agricultural 
Innovations

Technological advancements and innovations in 
environmentally sustainable farming equipment

Ministry of Agriculture and Rural 
Affairs

Table 2: Energy consumption and emission reduction efforts (2000–2020)
Country Avg. energy consumption 

(Exajoules)
Primary sources Avg. GHG 

emissions 
(MtCO2e)

Key reduction policy Avg. RE investment 
(Billion USD)

Brazil 2.5 Hydro, oil, biomass 1,200 Biofuels incentive 30.5
Russia 7.3 Gas, oil, coal 2,100 Energy efficiency program 18.7
India 5.8 Coal, oil, renewables 2,300 National Solar Mission 40.2
China 12.4 Coal, hydro, wind 10,500 Renewable Energy Law 100.8
South Africa 3.1 Coal, renewables 500 Carbon Tax 15.4

Figure 1: ESDI Trend analysis 2000-2020
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(P = 0.009), and GAEI (P = 0.020) all exhibit P-values below the 
conventional 0.05 threshold. This finding demonstrates that these 
factors, particularly economic green growth and digital technology 
adoption, are highly interdependent across the regions studied. 
Consequently, the application of second-generation econometric 
models such as CS-ARDL is justified. The strong statistical 
significance of TAIEP and GAEI confirms that digitized policies 
and green agricultural machinery function as systemic drivers 
rather than isolated factors in the agro-industrial transition in 
Russia and Kazakhstan. Clean and Renewable Energy Initiatives 
(CREI) (P = 0.080) and Sustainable Extraction of Resource 
Management (SERM) (P = 0.410) do not meet the conventional 
significance threshold. This outcome suggests that renewable 
energy integration and raw material extraction for machinery 
are currently less interdependent across the examined sections, 
potentially due to localized or inconsistent policy implementation 
in these resource-dependent areas. Although ESDI (P = 0.090) does 
not reach conventional significance, the result suggests a latent 
trend toward interdependence that may become more pronounced 
as regional sustainability policies become more integrated.

4.2. Unit Root Analysis
Ensuring the reliability of long-term coefficients requires 
determining the integration order of the variables. Given cross-
sectional dependence, standard unit root tests are inadequate. 
Consequently, the Cross-sectionally Augmented IPS (CIPS) and 
Cross-sectionally Augmented Dickey-Fuller (CADF) tests are 
employed in this study.

Table  5 shows that for Russia and Kazakhstan, all variables, 
including Economic Green Development (EGD) and Technology 
and Innovation in Eco-Policies (TAIEP), are non-stationary at the 
level stage, indicating evolving agro-industrial and environmental 
policies from 2000 to 2020. After first differencing, all variables 
become significant at the 5% level, confirming they are integrated 
of order one (I(1)). This is essential for conducting Westerlund 
Cointegration and CS-ARDL analysis, as it demonstrates that 
while individual data points fluctuate, the variables maintain a 
long-term equilibrium relationship suitable for stable empirical 
analysis.

Figure 2 examines the correlation between Clean and Renewable 
Energy Initiatives (CREI) and Economic Green Development 
(EGD). In the Russian and Kazakh agro-industry, a positive 
correlation indicates that investments in renewable-powered 
agricultural machinery are supporting broader sustainable 
economic outcomes. This connection demonstrates that energy 

transition initiatives contribute to both environmental and 
economic productivity.

4.3. Westerlund Cointegration Analysis
The next step in the econometric workflow is to assess whether 
a long-run equilibrium relationship exists among digitalization, 
energy initiatives, and sustainable development. We use the 
Westerlund Cointegration Test, which accounts for cross-sectional 
dependency and heterogeneity.

Table 6 summarizes statistical data for the variables Gi, Gα, Up, 
and Pα. The second column lists each variable’s data values. The 
third column presents Z-values, which show how many standard 
deviations each data point is from the mean. Gi has a Z-value of 
1.320, meaning it is 1.320 standard deviations above the mean. 
The fourth column provides robust P-values that are less sensitive 
to outliers or departures from normality than traditional P-values. 
P-values indicate the probability that the observed results occurred
by chance under the null hypothesis. Gα has a low P-value of

Table 4: Cross‑sectional dependence tests
Variable Test statistic P‑value 

(corrected)
Result (at 5% level)

EGD (Economic Green Development) 1.30 0.020*** Significant (Reject H0)
CREI (Clean and Renewable Energy) 2.80 0.080 Non‑Significant
TAIEP (Digitalization Policies) 2.10 0.009*** Significant (Reject H0)
SERM (Resource Management) 1.88 0.410 Non‑Significant
ESDI (Sustainability Index) 1.70 0.090 Non‑Significant
GAEI (Green Machinery Innovation) 2.80 0.020*** Significant (Reject H0)
***, *Significance at the 1%, 5%, and 10% levels, respectively.

Table 5: CIPS and CADF unit root analysis results
Variables CIPS 

(Level)
CIPS (1st Diff.) CADF 

(Level)
CADF 

(1st Diff.)
EGD –2.060 –1.650* –2.180 –3.059*
CREI –1.130 –2.320* –3.540 –1.970*
TAIEP –2.090 –2.610* –2.155 –1.310*
SERM –1.040 –3.370* –2.070 –1.970*
ESDI –1.630 –2.330* –2.070 –1.010*
GAEI –2.010 –3.390* –1.950 –1.749*
***, *Significance at the 1%, 5%, and 10% levels, respectively

Figure 2: CREI-EGD correlation analysis
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2.005, suggesting high confidence in the result, while up and 
Pα have robust P-values of 1.005 and 1.006, also indicating 
significance. Overall, the table offers a comprehensive overview 
of the statistical properties and significance of these variables 
within the dataset.

Table  7 presents the regression analysis results, including 
coefficients, standard errors, t-statistics, and P-values for each 
variable and its lagged versions. The constant term has a coefficient 
of 0.4, standard error of 0.2, t-statistic of 4, and a P < 0.001, 
indicating statistical significance. Economic Green Development 
(EGD) shows a strong positive relationship with the dependent 
variable, with a coefficient of 1.50, a standard error of 0.3, a 
t-statistic of 6.4, and a P-value below 0.001. Clean and Renewable 
Energy Initiatives (CREI) has a coefficient of −0.80, a standard

error of 0.20, a t-statistic of −4, and a P < 0.001, indicating a 
significant negative relationship with the dependent variable. 
Economic Green Development (EGD) has a coefficient of −0.3, 
standard error of 0.05, t-statistic of −6, and a P < 0.001, indicating 
a significant negative relationship with the dependent variable. 
Similar statistically significant relationships are observed for 
TAIEP, Sustainable Extraction of Resource Management (SERM), 
Eco-Sustainable Development Index (ESDI), Green Industrial and 
Environmental Innovations (GAEI), and their lagged versions.

Table 8 presents coefficients, standard errors, and P-values for 
three panel data models: Driscoll-Kraay, FGLS, and PCSE 
(Panel-Corrected Standard Errors). The variables analyzed include 
EGD, CREI, TAIEP, SERM, ESDI, and GAEI. For example, in 
the Driscoll-Kraay model, EGD has a coefficient of −2.155, a 
standard error of 2.060, and a P-value of 2.018. Similarly, CREI 
has a coefficient of 2.500, a standard error of 2.168, and a P-value 
of 2.005. The FGLS and PCSE models provide corresponding 
statistics for these variables, with some variation in coefficients 
and standard errors across models. For instance, CREI in the FGLS 
model has a coefficient of 2.215, a standard error of 10.79, and a 
P-value of 2.017. In the PCSE model, ESDI has a coefficient of
−0.141, a standard error of 1.839, and a P-value of 0.184.

Table 9 presents six key attributes of Changbai Mountain tourism, 
identified through interviews with tourists and local residents. 
First, the trend of ‘Surprising and Flipping’ highlights the 
integration of hotels and recreational activities alongside natural 
attractions. These facilities are constructed with environmental 
considerations, minimizing disruption to the landscape. Second, 
Changbai Mountain is increasingly associated with artisan crafts, 
which have become popular souvenirs, supported by its central 
location in the Changbaishan Tourist and Cultural Corridor. 
Third, nature reserves and tourist facilities incorporate Carbon 
workshops for performance, consultation, display, storage, and 
maintenance, providing essential support during harsh winter 
months. The Training Base for Green Energy and Environment 
is notably situated at an altitude of 6,000 meters. Fourth, the 

Table 7: Modeling using CS‑ARDL
Variable Coefficient Standard error t‑Statistic P‑value
Constant 0.4 0.2 4 <0.001
EGD 1.50 0.3 6.40 <0.001
CREI –0.80 0.20 –4 <0.001
TAIEP 0.5 0.2 5 <0.001
SERM –0.2 0.06 –8 <0.001
ESDI 0.50 0.05 5.59 <0.001
GAEI 0.40 0.07 6.22 <0.001
Lagged EGD –0.3 0.05 –6 <0.001
Lagged CREI 0.30 0.04 8.29 <0.001
Lagged TAIEP –0.20 0.03 –7.4 <0.001
Lagged SERM 0.2 0.02 11 <0.001
Lagged ESDI –0.04 0.75 –7 <0.001
Lagged GAEI 0.2 0.04 5 <0.001

Table 6: Westerlund Cointegration test
Statistics Value Z‑value Robust P value (Corrected)
Gi 2.070*** 1.320 0.004
Ga 1.080 2.690 0.005
Up 1.210*** 1.080 0.005
Pα 2.050*** 2.630 0.006
***, *Significance at the 1%, 5%, and 10% levels, respectively

Table 9: Dumitrescu‑Hurlin panel analysis of causation
EGD CREI TIEP SERM ESDI GIEI

EGD – 2.38769 2.41239 7.07137** 2.19223 3.30150*
CREI 3.11120 – 3.28630 2.74670 1.58598 3.90140
TAIEP 4.14570 2.35897 – 1.98356 2.07377 2.60520
SERM 2.28060 253218 3.09869 – 3.20199 1.69950
ESDI 5.45697 3.22862* 13.3589*** 3.99609 – 2.43460
GAEI 3.91032 2.95989 3.99120 1.55589 2.29420 –
***, *Significance at the 1%, 5%, and 10% levels, respectively

Table 8: Several measures of durability (Drescoll‑kray, FGLS, and PCSE) are assessed
Variables Driscoll‑Kraay FGLS PCSE

Coefficient. Standard. 
Error

P‑value Coefficient Standard. 
Error

P‑value Coefficient Standard. 
Error

P‑value

EGD –2.155 2.060 2.018 –2.225 2.040 2.004 –2.220 2.079 2.020
CREI 2.500 2.168 2.005 2.215 10.79 2.017 2.070 2.055 5.090
TAIEP 1.980 1.449 1.006 1.477 1.320 1.005 1.579 1.220 1.009
SERM 1.810 1.750 1.030 1.318 1.370 1.040 1.355 1.549 1.060
ESDI –1.870 2.613 1.007 –1.850 1.610 1.009 –1.698 1.680 1.009
GAEI 1.806 1.750 1.030 1.319 1.659 1.040 1.350 1.560 1.060
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‘Ski-China’ initiative is being actively promoted throughout the 
region. Fifth, the ‘Efflorescence of Snow and Ice’ is showcased by 
six surrounding townships, which are often submerged in spring 
due to melting ice and rainfall. Finally, the Sweet Gingko Free 
Trade Zone serves as a notable entry point, generating positive 
reactions from visitors and fostering a lively atmosphere. The 
correlation coefficient between ESDI and SERM is 3.99609, 
which falls outside the typical range and should be investigated 
for potential data issues. Similarly, the coefficients for ESDI and 
GAEI (2.43460) and EGD and GAEI (3.91032) are also anomalous 
and require further review. Asterisks in the table indicate statistical 
significance: one asterisk denotes a 0.05 significance level, and 
three asterisks indicate a 0.001 level. In this table, the correlation 
coefficient of 7.07137 between EGD and SERM is marked with 
two asterisks, signifying significance at the 0.01 level.

4.4. Discussion
The correlation matrix offers initial insights into relationships 
among the study variables. Most indicators meet academic 
expectations. Notably, the strong associations between Economic 
Green Development (EGD), Clean and Renewable Energy 
Initiatives (CREI), and Green Agricultural Innovations (GAEI) 
highlight significant interdependence in the Eurasian agro-
industrial sector. To ensure robust findings, we verified data 
integrity using second-generation tests that address cross-sectional 
dependency, which is essential in resource-rich economies. The 
regression analysis demonstrates that digitalization and energy 
efficiency are key drivers of the Eco-Sustainable Development 
Index (ESDI). A positive, statistically significant coefficient for 
Technology and Innovation in Eco-Policies (TAIEP) confirms that 
digital transformation is a primary factor in sustainable growth for 
Russia and Kazakhstan. In contrast, negative or lagging coefficients 
for CREI in some models indicate that high initial capital costs 
and continued reliance on traditional fuels hinder the transition to 
renewable energy in the agro-industry. The negative association 
with lagged EGD suggests that previous economic growth models, 
which prioritized industrial output over ecological integrity, still 
negatively affect current sustainability indices. To address model 
sensitivity, this study used robust estimators such as Driscoll-Kraay 
(D-K), Feasible Generalized Least Squares (FGLS), and Panel 
Corrected Standard Errors (PCSE). These methods confirm the 
stability of the main CS-ARDL results and ensure they are not 
biased by heteroscedasticity or serial correlation. The CIPS and 
CADF tests reveal significant structural breaks in sustainability 
indicators, highlighting the impact of major policy changes in the 
region from 2000 to 2020.

5. CONCLUSION

This study investigates the intricate dynamics of sustainable 
development in Russia and Kazakhstan, specifically focusing 
on the nexus of digitalization, energy efficiency, and resource 
management. Through rigorous econometric analyses, including 
CS-ARDL, PCSE, and Driscoll-Kraay models, the research 
demonstrates that Technology and Innovation in Eco-Policies 
(TAIEP) and Green Agricultural Innovations (GAEI) are the 
primary drivers of ecological sustainability. While traditional 
economic growth has historically prioritized industrial output, 

these findings confirm that integrating digitalized machinery and 
clean energy initiatives is essential for decoupling productivity 
from environmental degradation. Furthermore, the significance of 
lagged variables underscores the persistence of historical economic 
trends in shaping current sustainability outcomes, necessitating a 
departure from legacy industrial patterns.

The identification of structural breaks using CIPS and CADF tests 
underscores the need for flexible, adaptive policy frameworks 
that can accommodate shifting economic and natural conditions. 
Despite limitations such as data sensitivity and the complexity of 
regional resource dependencies, this study provides a navigational 
roadmap for policymakers to move beyond generic environmental 
spending toward targeted, technology-driven interventions. 
By prioritizing digital infrastructure and sustainable resource 
extraction (SERM), resource-rich economies can bridge the gap 
between industrial advancement and ecological preservation, 
ensuring a resilient and inclusive future for the global agro-
industry.

5.1. Practical Implication of the Study
This research demonstrates that sustainable development in Russia 
and Kazakhstan depends on moving from isolated environmental 
projects to integrated digital and energy policies. Decision-
makers should prioritize targeted interventions that advance 
both Economic Green Development (EGD) and digitalized eco-
policies (TAIEP), as these approaches most effectively separate 
industrial growth from ecological harm. With structural breaks in 
sustainability trends, governments must adopt adaptive strategies 
that enable flexible policy adjustments as economic conditions 
change. Significant investment in technology and innovation 
(TAIEP and GAEI) will foster a research-driven environment, 
encouraging businesses to replace outdated equipment with 
energy-efficient, digital alternatives, resulting in both economic 
and environmental benefits.

Sustainable Resource Management (SERM) and time-lagged 
outcomes require a holistic approach that accounts for historical 
economic trends and supports responsible resource extraction. 
For long-term success, practitioners should implement continuous 
monitoring and evaluation systems to assess the real-time impact 
of digital transitions, rather than relying on generic spending. 
By prioritizing high-impact factors such as green agricultural 
innovations (GAEI) and reliable data validation, policymakers 
can better connect resource extraction with sustainability, ensuring 
the agro-industrial sector remains resilient and competitive for 
future generations.

5.2. Limitation and Future Study
This study is limited by the selected variables and the possible 
impact of unobserved contextual factors that may further explain 
agro-industrial evolution. Data sensitivity, shown by anomalies 
in correlation coefficients and differences across econometric 
models, underscores the need for more rigorous validation and 
quality control in future research. Future studies should broaden 
the geographical scope and include additional socio-economic 
indicators, such as gender and education, to examine their 
intersection with eco-innovation adoption. Comparative research 
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is also needed to assess the effectiveness of various policy 
instruments in different socio-cultural and environmental contexts.
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