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ABSTRACT

This study analyzes how digitalization and energy-efficient agricultural machinery influence sustainable development, focusing on resource management
and ecological integrity in Russia and Kazakhstan’s agro-industrial sectors. Using data from 2000 to 2020, the research employs advanced econometric
methods, including the CS-ARDL model, Pesaran CSD tests, and Westerlund Cointegration analysis, to address regional interdependencies and non-
normal data distributions common in resource-rich economies. Results show that Technology and Innovation in Eco-Policies (TAIEP) and Green
Agricultural Innovations (GAE]) significantly drive the Eco-Sustainable Development Index (ESDI). While Economic Green Development (EGD) is
progressing, the shift to renewable energy (CREI) faces challenges from high capital costs and reliance on traditional fuels. The findings highlight the
importance of digitalization for achieving sustainable development goals in Eurasia. This research introduces the “Sustainalism” model, integrating
energy digitalization and agricultural machinery in mineral-supply-driven economies, and provides a strategic roadmap for decoupling industrial
growth from environmental degradation.

Keywords: Digitalization, Sustainable Development, Agricultural Machinery, Eco-Innovation, Energy Efficient, Resource Management,
CS-ARDL, Russia, Kazakhstan
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1. INTRODUCTION

In the 21 century, sustainable development has emerged as a critical
global imperative. Societies face significant challenges, including
environmental degradation, resource depletion, and the demand for
inclusive economic growth (Fallah Shayan et al., 2022). Sustainable
development, as defined by the Brundtland Report, involves meeting
present needs without compromising the ability of future generations

to meet their own needs and aims to balance economic, social, and
environmental objectives (WCED, 1987). A key component of this
approach is eco-innovation, which refers to the introduction of new
products and processes that enhance economic performance while
minimizing ecological impacts (Rennings, 2000).

Today, many organizations use the Triple Bottom Line framework
for sustainability, focusing on economic growth, social progress,
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and environmental performance simultaneously (Elkington, 1998).
This approach recognizes that social and economic development
are closely connected to protecting the environment. As supply
chains become more complex worldwide, the environmental
impact of industry often crosses borders, so international
cooperation and common eco-friendly standards are increasingly
important (Ratner et al., 2021).

A major issue is that traditional economic growth models still
focus on industrial output, often harming the environment
(Fatma and Haleem, 2023). Rapid urbanization worsens this by
increasing energy and infrastructure demand, leading to higher
CO2 emissions, deforestation, and resource shortages (Seto et al.,
2017). Digital tools like the Internet of Things (IoT) and Artificial
Intelligence (AI) could help, but these technologies are not yet
widely used in global agro-industries (Soori et al., 2023).

Although there is a theoretical shift toward a “green economy”
conventional industrial growth models still prioritize short-term
gains over ecological integrity (Fatma and Haleem, 2023).
Rapid urbanization has increased this pressure by concentrating
populations and driving greater demand for energy and
infrastructure. As a result, urbanization leads to higher carbon
emissions (CO, and N,0O), deforestation, and land pollution (Seto
etal., 2017). The agro-industrial sector faces two main challenges:
meeting the growing global need for food and materials, and
reducing the environmental impact of resource harvesting (Lee
etal., 2021).

Current resource management often fails to ensure fair distribution,
which can put additional pressure on indigenous and marginalized
communities (Reid et al., 2019). Technologies such as the Internet
of Things (I0T) and Artificial Intelligence (AI) can help monitor
and improve resource use, but their adoption in agricultural
machinery and energy systems remains inconsistent (Soori
etal., 2023).

Although many studies focus on “Smart Cities” (Caragliu et al.,
2011) and corporate social responsibility (Fallah Shayan et al.,
2022), there is still a clear gap in research on how digitalization and
agricultural machinery work together to support agro-industrial
sustainability. Most research examines digital transformation
and energy management separately rather than as interconnected
parts of a larger system. This study brings a new perspective by
applying the “Sustainalism” model, an integrated socio-economic-
environmental framework, to the global agro-industry (Hariram
et al., 2023). It examines how moving from linear to circular
economy models (Pichlak and Szromek, 2022) can occur more
quickly with digitized energy systems and advanced machinery.
The study also points out that the financial sector and “green
finance” play a key role in supporting these eco-innovations
(Javaid et al., 2022).

This study aims to explore how digitalization and energy-efficient
agricultural machinery help make global agro-industrial systems
more sustainable and productive. It examines how modern
information and communication technologies (ICT), as well as
smart tools such as IoT and Al, can improve resource use, reduce

energy consumption, and reduce waste in agro-industrial value
chains (Alojail and Khan, 2023). The study also examines how
policy tools, such as regulatory rules, environmental taxes, and
green incentives, can accelerate the adoption of eco-friendly
innovations and low-carbon technologies in the agro-industry
(Srisathan et al., 2023). In addition, it considers how cooperation
among governments, NGOs, and local communities can encourage
shared responsibility for sustainably managing resources and
support energy-efficient agricultural development (Martinez-
Pelaez et al., 2023). The research focuses on the global agro-
industrial sector, particularly where technology, energy efficiency,
and social and economic factors intersect to shape sustainable
production.

2. LITERATURE REVIEW

Eco-innovation has shifted from being mainly an economic driver
(Schumpeter, 1942) to focusing on environmental stewardship as
part of the “green innovation” approach (Schiederig et al., 2012).

Recent studies show that digitalization plays a key role in this
change. Technologies such as the Internet of Things (IoT) and
Artificial Intelligence (AI) help by providing data-driven insights
to use resources more efficiently and reduce waste (Alojail and
Khan, 2023; Soori et al., 2023). This digital shift is not just about
technologys; it also involves social factors, such as understanding
people’s attitudes and their sense of control over their actions
(Ajzen, 1991).

Contemporary resource management is frequently examined
through the framework of environmental justice. Agyeman
etal. (2016) contend that management practices should guarantee
equitable distribution of both the benefits and burdens associated
with resource use, with particular attention to marginalized and
Indigenous communities, who often experience disproportionate
exploitation (Reid et al., 2019). This intersectional perspective is
strengthened by education and awareness initiatives. Increasing
“green knowledge” through targeted educational programs
cultivates environmental responsibility and enables individuals
to adopt sustainable behaviors (Steg and Vlek, 2009).

Participatory decision-making is also recognized as a critical
factor for effective resource management. Arnstein’s ladder of
citizen participation suggests that engaging local communities in
the governance of eco-innovation ensures that outcomes reflect
societal values (Arnstein, 1969). Inclusive knowledge generation
is further advanced by citizen science initiatives, which enhance
volunteers’ capacity to participate in environmental data collection
and resource monitoring (Bonney et al., 2009).

Institutional structures, which include both formal rules
and informal norms, influence human interactions with the
environment (Scott, 2014). Effective governance depends on
policies that promote sustainable practices and deter environmental
degradation. Within the corporate sector, Corporate Social
Responsibility (CSR) serves as a principal mechanism for
advancing sustainability. CSR encompasses economic, legal,
ethical, and philanthropic responsibilities (Carroll, 1979;
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Dahlsrud, 2008). The integration of eco-innovation into CSR
demonstrates a human-centered approach that aligns corporate
well-being with the broader interests of the planet.

Eco-innovation has shifted from being mainly an economic driver
(Schumpeter, 1942) to focusing on environmental stewardship as
part of the “green innovation” approach (Schiederig et al., 2012).
Recent studies show that digitalization plays a key role in this
change. Technologies such as the Internet of Things (IoT) and
Artificial Intelligence (AI) help by providing data-driven insights
to use resources more efficiently and reduce waste (Alojail and
Khan, 2023; Soori et al., 2023). This digital shift is not just about
technologys; it also involves social factors, such as understanding
people’s attitudes and their sense of control over their actions
(Ajzen, 1991).

2.1. Energy Dynamics and Agricultural Machinery
Resource management plays a key role in sustainable development
and calls for major changes in how we extract and use limited
resources (Lee et al., 2021). In the agro-industrial sector, using
energy-efficient machinery is an important eco-innovation strategy.
However, these technologies are often slow to spread because
traditional energy systems remain in place, a phenomenon known
as “lock-in” (Brauers et al., 2021). Sustainable agriculture depends
on circular-economy models that focus on making machinery
durable and recyclable, following a cradle-to-cradle approach
(Pichlak and Szromek, 2022). Using smart technologies in farming
also helps track environmental inputs and outputs, making it
casier to manage the ecological impact of global food production
(Barthel et al., 2019).

2.2. Institutional Policy and Green Finance

Policy frameworks play a crucial role in facilitating the adoption
of eco-innovation. Government interventions, including tax
incentives for green technologies and stringent environmental
standards, accelerate the transition toward sustainable development
(Srisathan et al., 2023). The effectiveness of these policies is
enhanced when complemented by green finance and impact
investing, which align social and environmental outcomes
with financial returns (Javaid et al., 2022; Paetzold et al.,
2022). Effective governance of resources frequently relies on
decentralized, community-based structures that incorporate local
knowledge and address the specific needs of stakeholders (Ostrom,
1990; Tucker et al., 2023). Collaboration among governments,
businesses, and local communities is essential to translating policy
frameworks into practical, impactful actions (Martinez-Pelaez
etal., 2023).

A sustainable approach to resource management requires the
equitable distribution of benefits, especially for marginalized
populations (Reid et al., 2019). This principle is fundamental to the
human-centric paradigm, which asserts that eco-innovation should
prioritize societal well-being alongside environmental protection
(Schiederig etal., 2012). Education and environmental literacy are
essential, as they cultivate stewardship among future generations.

Although the existing literature is extensive, several specific gaps
persist. First, while the general roles of the Internet of Things

(IoT) and artificial intelligence (AI) are discussed (Soori et al.,
2023), their targeted applications in agricultural machinery and
energy management within a unified global framework remain
underexplored. Second, most research emphasizes large-scale
corporate social responsibility (Carroll, 1979), resulting in a
limited understanding of the unique challenges faced by Small
and Medium Enterprises (SMEs) in the agro-industry. Third, there
is a lack of comparative analysis regarding the effectiveness of
various policy instruments in promoting digitalization within the
agricultural sector (Pizzuti, 2023).

This study examines how energy supplies, financial innovation,
and new technologies affect environmental harm in the global agro-
industry. In the past, the agro-industrial sector mainly used fossil
fuels, which significantly increased global emissions (Martins,
2019). Now, there is a focus on transitioning to renewable energy
and using digital tools to manage resources more sustainably.
However, the high upfront costs of smart farming equipment
and renewable energy systems make it hard for some to invest.
Industrial growth requires steady resources, but relying too heavily
on raw materials without adopting more advanced technologies
can lower productivity (Cheng et al., 2020; Ahmad et al., 2022). In
addition, political risks and the stability of institutions can affect
how much is produced and how fairly green investments are shared
(Gozgor and Paramati, 2022; Brauers et al., 2021).

3. EMPIRICAL DATA

3.1. Data Sources

The following quantitative model analyzes the relationship
between digital technology, energy efficiency, and sustainable
growth:

EGD=f (CREL TIEP, SERM, ESDI, SERM, GIEI) (1)

Where,

The EGD stands for Economic Green Development, CREI
for the Clean and Renewable Energy Initiatives, TIEP for the
Technology and Innovation in Eco-Policies, SERM for the
Sustainable Extraction of Resource Management, ESDI for
the Eco-Sustainable Development Index, and GIEI for the Green
Industrial and Environmental Innovations.

3.2. Initial Diagnostic Tests

3.2.1. Cross-sectional dependency (CSD) test

In today’s global economy, agro-industrial sectors depend on one
another, so when one region faces a socio-economic shock, others
often feel its effects. This connection can cause Cross-Sectional
Dependency (CSD) in longitudinal data. If CSD is ignored, results
in digital and financial exchange studies may be biased (Gallo
etal.,2016). To avoid this, this study uses the following methods:
1. Breusch-Pagan LM test

2. Bias-corrected Scaled LM test

3. Pesaran CD test.

3.2.2. Westerlund cointegration test
Following the CSD assessment, the study analyzes whether
correlations among digitalization, energy initiatives, and economic
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growth have persisted over time. Understanding these relationships
informs regulations that support long-term agro-industrial
sustainability (Dada et al., 2023).

3.3. Econometric Estimation Methodology

The cross-sectionally augmented autoregressive distributed lag
(CS-ARDL) model is employed as the primary socio-economic
approach to validate the empirical coefficients. CS-ARDL
is chosen for its ability to efficiently integrate parameters at
different integration levels, such as I(0) and I(1), and to address
variance issues by incorporating cross-sectional means into the
modelling framework. The selection of the CS-ARDL approach
is based on several critical determinants: The CS-ARDL approach
accommodates longer time series and offers greater flexibility than
traditional estimation methods (Chirra and Reza, 2019).

Additionally, this method effectively addresses skewed
distributions and missing data components (Singh et al., 2019).
The Driscoll-Kraay technique is used to generate standard errors
that remain robust to heteroscedasticity and autocorrelation across
both time and location.

3.4. Data Sources

This research examines the correlation between sustainable
development, digital growth, and the adoption of energy-
efficient agricultural machinery in Russia’s agro-industrial
sector. It explores the interaction between resource extraction
and ecologically sustainable economic development. The analysis
focuses on the period from 2000 to 2020, which was characterized
by significant changes in Russian environmental policy and the
digitalization of the industrial base (Ratner et al., 2021; Islam
etal., 2024).

Table 1 shows the selection of variables addresses the specific
challenges faced by resource-dependent economies as they
transition toward sustainability. GED and CREI monitor the shift
from traditional fossil fuel dependence in agriculture. TAIEP
and GAEI focus on the digitalization and machinery aspects of
the research, examining the role of smart technology in reducing
environmental degradation. Utilizing global databases such as
the FAO, IRENA, and the World Bank ensures that Russian agro-
industrial data are benchmarked against international sustainability
standards. This methodology addresses prior inconsistencies by
aligning the empirical framework with the mineral-supply-driven
energy transition context (Islam et al., 2024).

4. RESULTS AND DISCUSSION

Empirical findings demonstrate a significant long-term equilibrium
relationship among digitalization, energy-efficient machinery,
and green growth within the agro-industrial sector. CS-ARDL
estimation indicates that Technology and Innovation in Eco-
Policies (TAIEP) and Green Agricultural Innovations (GAEI)
are primary drivers in reducing environmental degradation and
enhancing industrial productivity. These results imply that, for
resource-dependent economies, integrating smart technologies is
a fundamental requirement for achieving sustainable development
goals rather than a supplementary improvement.

4.1. Analysis of Energy Consumption and Emissions

Table 2 provides a quantitative overview of the energy and
environmental landscapes of the BRICS nations, which is essential
for understanding the transition dynamics analyzed in this study.

Table 2 and Figure 1, which presents the ESDI Trend Analysis
from 2000 to 2020 and represents the Energy Sustainable
Development Index or a comparable composite metric for energy
sustainability, efficiency, renewable integration, and emissions
impact in BRICS countries, reveals generally upward trends
across Brazil, Russia, India, China, and South Africa over two
decades. However, the pace of progress and initial conditions vary
notably among these countries. Brazil maintains a consistently
high and stable position, largely due to its established renewable
energy base, particularly hydro and biomass. China exhibits the
most significant improvement since the mid-2000s, driven by
large-scale renewable energy expansion under the Renewable
Energy Law and by efficiency gains, despite substantial absolute
energy growth.

India demonstrates gradual but accelerating progress, especially
after 2010, through the National Solar Mission, which partially
offsets coal dominance. Russia records modest or uneven gains,
with efficiency programs providing some improvement in the
2000s but limited broader transition. South Africa shows slower
and more nuanced advancement, supported by early renewable
initiatives and the later introduction of a carbon tax, but remains
constrained by persistent coal dependence. Overall, the figure
suggests partial success in enhancing energy sustainability across
the BRICS countries during a period of rapid economic growth.
China and India, in particular, exhibit the strongest post-2005
momentum toward decoupling energy use from environmental
impact, although absolute emissions often continued to rise until
the implementation of more intensive policies.

Table 3 presents a descriptive analysis that highlights several
critical characteristics of the dataset. Economic Green Development
(EGD) exhibits the highest average value (Mean = 2.6318),
suggesting an initial shift toward sustainability within the region.
In contrast, Technology and Innovation in Eco-Policies (TAIEP)
demonstrates a lower mean (1.2030), indicating that digital
policy implementation remains in its early stages relative to
broader economic outcomes. TAIEP and CREI exhibit the highest
standard deviations (2.9090 and 2.6570, respectively), reflecting
considerable volatility in digital and renewable energy adoption
over the observed period. Most variables, especially EGD, TAIEP,
and GAEI, exhibit positive skewness, indicating distributions with
extended right tails. In contrast, CREI and ESDI are negatively
skewed, suggesting that most data points cluster at higher values,
with occasional outliers at the lower end. The kurtosis value for
EGD (5.6071) indicates a leptokurtic distribution with heavy
tails, suggesting a greater frequency of extreme values or shocks
in green development. The Jarque-Bera statistics are significant
for all variables, indicating that the data deviate from normality.
This finding supports the application of advanced econometric
techniques such as CS-ARDL, which are robust to non-normal
data structures.
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Table 1: Description of variables and data sources

GED Green Energy Development Level of renewable energy adoption in agricultural International Renewable Energy
operations Agency (IRENA)

CREI Clean and Renewable Extent of projects integrating clean energy into Food and Agriculture Organization
Energy Initiatives farming systems and agricultural machinery (FAO)

TAIEP Technology and Innovation Application of digital and innovative technologies in World Bank (Agri-Innovation Reports)
in Eco-Policies eco-friendly agricultural practices

SERM Sustainable Resource Efficiency index measuring sustainable resource use International Institute for Environment
Extraction and Management in agricultural machinery production and Development (IIED)

ESDI Eco-Sustainable Composite index benchmarking sustainability of United Nations Environment
Development Index agro-industrial and environmental policies Programme (UNEP)

GAEI Green Agricultural Technological advancements and innovations in Ministry of Agriculture and Rural
Innovations environmentally sustainable farming equipment Affairs

Table 2: Energy consumption and emission reduction efforts (2000-2020)

Brazil 2.5 Hydro, oil, biomass 1,200 Biofuels incentive 30.5
Russia 7.3 Gas, oil, coal 2,100 Energy efficiency program 18.7
India 5.8 Coal, oil, renewables 2,300 National Solar Mission 40.2
China 12.4 Coal, hydro, wind 10,500 Renewable Energy Law 100.8
South Africa 3.1 Coal, renewables 500 Carbon Tax 154

Table 3: Descriptive statistics

Mean 2.6318 2.5071 1.2030 2.3089 1.8931 2.5010
Median 2.2759 2.8019 2.8989 3.2040 2.1021 2.5169
Maximum 3.1347 1.7070 2.2504 3.2015 2.5031 2.5099
Minimum —-1.6010 —1.9041 2.3041 2.0990 1.2933 2.3050
Standard deviation 1.5010 2.6570 2.9090 2.3080 2.4020 2.1039
Skewness 1.9038 —2.5931 3.5032 3.2141 —2.7087 2.7056
Kurtosis 5.6071 1.1090 2.2049 3.7049 2.4090 2.1190
Jarque-Bera 109.998 6.8090 49.808 29.690 9.3079 3.3911
Probability 2.1039 6.8088 3.2909 2.3910 2.2040 2.3070

Figure 1: ESDI Trend analysis 2000-2020

Eco-Sustainable Development Index (ESDI) Across 2000-2020
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Table 4 presents the statistical results of the cross-sectional  agro-industrial sector. This analysis offers important insights into
dependence (CSD) analysis, including the test statistics and  the interdependencies among sustainable development variables
P-values used to validate the econometric framework appliedtothe ~ within the study region. The variables EGD ($P = 0.020$), TAIEP

International Journal of En




Rustenova, et al.: Digitalization and Sustainable Development: The Impact of Energy-Efficient Agricultural Machinery on Agro-Industries in Russia and Kazakhstan

Table 4: Cross-sectional dependence tests

EGD (Economic Green Development) 1.30
CREI (Clean and Renewable Energy) 2.80
TAIEP (Digitalization Policies) 2.10
SERM (Resource Management) 1.88
ESDI (Sustainability Index) 1.70
GAEI (Green Machinery Innovation) 2.80

0.020%** Significant (Reject H )
0.080 Non-Significant

0.009%** Significant (Reject H))
0.410 Non-Significant
0.090 Non-Significant

0.020%** Significant (Reject H )

**% *Significance at the 1%, 5%, and 10% levels, respectively.

(P=0.009), and GAEI (P = 0.020) all exhibit P-values below the
conventional 0.05 threshold. This finding demonstrates that these
factors, particularly economic green growth and digital technology
adoption, are highly interdependent across the regions studied.
Consequently, the application of second-generation econometric
models such as CS-ARDL is justified. The strong statistical
significance of TAIEP and GAEI confirms that digitized policies
and green agricultural machinery function as systemic drivers
rather than isolated factors in the agro-industrial transition in
Russia and Kazakhstan. Clean and Renewable Energy Initiatives
(CREI) (P = 0.080) and Sustainable Extraction of Resource
Management (SERM) (P = 0.410) do not meet the conventional
significance threshold. This outcome suggests that renewable
energy integration and raw material extraction for machinery
are currently less interdependent across the examined sections,
potentially due to localized or inconsistent policy implementation
in these resource-dependent areas. Although ESDI (P = 0.090) does
not reach conventional significance, the result suggests a latent
trend toward interdependence that may become more pronounced
as regional sustainability policies become more integrated.

4.2. Unit Root Analysis

Ensuring the reliability of long-term coefficients requires
determining the integration order of the variables. Given cross-
sectional dependence, standard unit root tests are inadequate.
Consequently, the Cross-sectionally Augmented IPS (CIPS) and
Cross-sectionally Augmented Dickey-Fuller (CADF) tests are
employed in this study.

Table 5 shows that for Russia and Kazakhstan, all variables,
including Economic Green Development (EGD) and Technology
and Innovation in Eco-Policies (TAIEP), are non-stationary at the
level stage, indicating evolving agro-industrial and environmental
policies from 2000 to 2020. After first differencing, all variables
become significant at the 5% level, confirming they are integrated
of order one (I(1)). This is essential for conducting Westerlund
Cointegration and CS-ARDL analysis, as it demonstrates that
while individual data points fluctuate, the variables maintain a
long-term equilibrium relationship suitable for stable empirical
analysis.

Figure 2 examines the correlation between Clean and Renewable
Energy Initiatives (CREI) and Economic Green Development
(EGD). In the Russian and Kazakh agro-industry, a positive
correlation indicates that investments in renewable-powered
agricultural machinery are supporting broader sustainable
economic outcomes. This connection demonstrates that energy

Table 5: CIPS and CADF unit root analysis results

EGD —2.060 —1.650* —2.180 —-3.059*
CREI —-1.130 —2.320% -3.540 —-1.970%*
TAIEP —2.090 -2.610* —2.155 -1.310*
SERM —-1.040 —3.370%* -2.070 —-1.970%*
ESDI -1.630 —2.330% -2.070 —-1.010%*
GAEI -2.010 —3.390% -1.950 —1.749%

*** *Significance at the 1%, 5%, and 10% levels, respectively

Figure 2: CREI-EGD correlation analysis

Relationship Between CREI and EGD
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transition initiatives contribute to both environmental and
economic productivity.

4.3. Westerlund Cointegration Analysis

The next step in the econometric workflow is to assess whether
a long-run equilibrium relationship exists among digitalization,
energy initiatives, and sustainable development. We use the
Westerlund Cointegration Test, which accounts for cross-sectional
dependency and heterogeneity.

Table 6 summarizes statistical data for the variables Gi, Got, Up,
and Po.. The second column lists each variable’s data values. The
third column presents Z-values, which show how many standard
deviations each data point is from the mean. Gi has a Z-value of
1.320, meaning it is 1.320 standard deviations above the mean.
The fourth column provides robust P-values that are less sensitive
to outliers or departures from normality than traditional P-values.
P-values indicate the probability that the observed results occurred
by chance under the null hypothesis. Go has a low P-value of

International Journal of Energy Economics and Policy | Vol 16 « Issue 2




Rustenova, et al.: Digitalization and Sustainable Development: The Impact of Energy-Efficient Agricultural Machinery on Agro-Industries in Russia and Kazakhstan

2.005, suggesting high confidence in the result, while up and
Pa have robust P-values of 1.005 and 1.006, also indicating
significance. Overall, the table offers a comprehensive overview
of the statistical properties and significance of these variables
within the dataset.

Table 7 presents the regression analysis results, including
coefficients, standard errors, t-statistics, and P-values for each
variable and its lagged versions. The constant term has a coefficient
of 0.4, standard error of 0.2, t-statistic of 4, and a P < 0.001,
indicating statistical significance. Economic Green Development
(EGD) shows a strong positive relationship with the dependent
variable, with a coefficient of 1.50, a standard error of 0.3, a
t-statistic of 6.4, and a P-value below 0.001. Clean and Renewable
Energy Initiatives (CREI) has a coefficient of —0.80, a standard

Table 6: Westerlund Cointegration test

error of 0.20, a t-statistic of —4, and a P < 0.001, indicating a
significant negative relationship with the dependent variable.
Economic Green Development (EGD) has a coefficient of —0.3,
standard error of 0.05, t-statistic of —6, and a P<0.001, indicating
a significant negative relationship with the dependent variable.
Similar statistically significant relationships are observed for
TAIEP, Sustainable Extraction of Resource Management (SERM),
Eco-Sustainable Development Index (ESDI), Green Industrial and
Environmental Innovations (GAEI), and their lagged versions.

Table 8 presents coefficients, standard errors, and P-values for
three panel data models: Driscoll-Kraay, FGLS, and PCSE
(Panel-Corrected Standard Errors). The variables analyzed include
EGD, CREI, TAIEP, SERM, ESDI, and GAEI. For example, in
the Driscoll-Kraay model, EGD has a coefficient of —2.155, a
standard error of 2.060, and a P-value of 2.018. Similarly, CREI
has a coefficient 0f 2.500, a standard error of 2.168, and a P-value
of 2.005. The FGLS and PCSE models provide corresponding
statistics for these variables, with some variation in coefficients

G, 2.070%** 1.320 0.004 3 .
G, 1.080 2.690 0.005 and standard errors across models. For instance, CREI in the FGLS
U, 1.210%%* 1.080 0.005 model has a coefficient of 2.215, a standard error of 10.79, and a
P, 2.050%** 2.630 0.006 P-value of 2.017. In the PCSE model, ESDI has a coefficient of
##% *Sionificance at the 1%, 5%, and 10% levels, respectively —0.141, a standard error of 1.839, and a P-value of 0.184.
Table 7: Modeling using CS-ARDL Table 9 presents six key attributes of Changbai Mountain tourism,
identified through interviews with tourists and local residents.
Constant 0.4 02 4 <0.001 First, the trend of ‘Surprising and Fl.ip.p.ing’ highlights the
EGD 1.50 0.3 6.40 <0.001 integration of hotels and recreational activities alongside natural
CREI -0.80 0.20 —4 <0.001 attractions. These facilities are constructed with environmental
TAIEP 0.5 0.2 5 <0.001 considerations, minimizing disruption to the landscape. Second,
SERM —0.2 0.06 -8 <0.001 Changbai Mountain is increasingly associated with artisan crafts,
ESDI 0.50 0.05 359 <0.001 which have become popular souvenirs, supported by its central
GAEI 0.40 0.07 6.22 <0.001 1 . 1 the Ch ishan Touri d | | id
Lagged EGD 03 0.05 _6 <0.001 oc.atlon in the Changbaishan . ourls.t. an .Cu tural Corridor.
Lagged CREI 0.30 0.04 8.29 <0.001 Third, nature reserves and tourist facilities incorporate Carbon
Lagged TAIEP -0.20 0.03 -7.4 <0.001 workshops for performance, consultation, display, storage, and
Lagged SERM 0.2 0.02 11 <0.001 maintenance, providing essential support during harsh winter
Lagged ESDI —0.04 0.75 -7 <0.001 months. The Training Base for Green Energy and Environment
Lagged GAEI 0.2 0.04 5 <0.001

Table 8: Several measures of durability (Drescoll-kray, FGLS, and PCSE) are assessed

is notably situated at an altitude of 6,000 meters. Fourth, the

EGD -2.155 2.060 2.018 -2.225 2.040 2.004 —2.220 2.079 2.020
CREI 2.500 2.168 2.005 2.215 10.79 2.017 2.070 2.055 5.090
TAIEP 1.980 1.449 1.006 1.477 1.320 1.005 1.579 1.220 1.009
SERM 1.810 1.750 1.030 1.318 1.370 1.040 1.355 1.549 1.060
ESDI -1.870 2.613 1.007 -1.850 1.610 1.009 —-1.698 1.680 1.009
GAEI 1.806 1.750 1.030 1.319 1.659 1.040 1.350 1.560 1.060

Table 9: Dumitrescu-Hurlin panel analysis of causation

EGD - 2.38769 2.41239 7.07137** 2.19223 3.30150%*
CREI 3.11120 - 3.28630 2.74670 1.58598 3.90140
TAIEP 4.14570 2.35897 - 1.98356 2.07377 2.60520
SERM 2.28060 253218 3.09869 - 3.20199 1.69950
ESDI 5.45697 3.22862%* 13.3589%** 3.99609 - 2.43460
GAEI 3.91032 2.95989 3.99120 1.55589 2.29420 -

**% *Significance at the 1%, 5%, and 10% levels, respectively
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‘Ski-China’ initiative is being actively promoted throughout the
region. Fifth, the ‘Efflorescence of Snow and Ice’ is showcased by
six surrounding townships, which are often submerged in spring
due to melting ice and rainfall. Finally, the Sweet Gingko Free
Trade Zone serves as a notable entry point, generating positive
reactions from visitors and fostering a lively atmosphere. The
correlation coefficient between ESDI and SERM is 3.99609,
which falls outside the typical range and should be investigated
for potential data issues. Similarly, the coefficients for ESDI and
GAEI (2.43460) and EGD and GAEI (3.91032) are also anomalous
and require further review. Asterisks in the table indicate statistical
significance: one asterisk denotes a 0.05 significance level, and
three asterisks indicate a 0.001 level. In this table, the correlation
coefficient of 7.07137 between EGD and SERM is marked with
two asterisks, signifying significance at the 0.01 level.

4.4. Discussion

The correlation matrix offers initial insights into relationships
among the study variables. Most indicators meet academic
expectations. Notably, the strong associations between Economic
Green Development (EGD), Clean and Renewable Energy
Initiatives (CREI), and Green Agricultural Innovations (GAEI)
highlight significant interdependence in the Eurasian agro-
industrial sector. To ensure robust findings, we verified data
integrity using second-generation tests that address cross-sectional
dependency, which is essential in resource-rich economies. The
regression analysis demonstrates that digitalization and energy
efficiency are key drivers of the Eco-Sustainable Development
Index (ESDI). A positive, statistically significant coefficient for
Technology and Innovation in Eco-Policies (TAIEP) confirms that
digital transformation is a primary factor in sustainable growth for
Russia and Kazakhstan. In contrast, negative or lagging coefficients
for CREI in some models indicate that high initial capital costs
and continued reliance on traditional fuels hinder the transition to
renewable energy in the agro-industry. The negative association
with lagged EGD suggests that previous economic growth models,
which prioritized industrial output over ecological integrity, still
negatively affect current sustainability indices. To address model
sensitivity, this study used robust estimators such as Driscoll-Kraay
(D-K), Feasible Generalized Least Squares (FGLS), and Panel
Corrected Standard Errors (PCSE). These methods confirm the
stability of the main CS-ARDL results and ensure they are not
biased by heteroscedasticity or serial correlation. The CIPS and
CADEF tests reveal significant structural breaks in sustainability
indicators, highlighting the impact of major policy changes in the
region from 2000 to 2020.

5. CONCLUSION

This study investigates the intricate dynamics of sustainable
development in Russia and Kazakhstan, specifically focusing
on the nexus of digitalization, energy efficiency, and resource
management. Through rigorous econometric analyses, including
CS-ARDL, PCSE, and Driscoll-Kraay models, the research
demonstrates that Technology and Innovation in Eco-Policies
(TAIEP) and Green Agricultural Innovations (GAEI) are the
primary drivers of ecological sustainability. While traditional
economic growth has historically prioritized industrial output,

these findings confirm that integrating digitalized machinery and
clean energy initiatives is essential for decoupling productivity
from environmental degradation. Furthermore, the significance of
lagged variables underscores the persistence of historical economic
trends in shaping current sustainability outcomes, necessitating a
departure from legacy industrial patterns.

The identification of structural breaks using CIPS and CADF tests
underscores the need for flexible, adaptive policy frameworks
that can accommodate shifting economic and natural conditions.
Despite limitations such as data sensitivity and the complexity of
regional resource dependencies, this study provides a navigational
roadmap for policymakers to move beyond generic environmental
spending toward targeted, technology-driven interventions.
By prioritizing digital infrastructure and sustainable resource
extraction (SERM), resource-rich economies can bridge the gap
between industrial advancement and ecological preservation,
ensuring a resilient and inclusive future for the global agro-
industry.

5.1. Practical Implication of the Study

This research demonstrates that sustainable development in Russia
and Kazakhstan depends on moving from isolated environmental
projects to integrated digital and energy policies. Decision-
makers should prioritize targeted interventions that advance
both Economic Green Development (EGD) and digitalized eco-
policies (TAIEP), as these approaches most effectively separate
industrial growth from ecological harm. With structural breaks in
sustainability trends, governments must adopt adaptive strategies
that enable flexible policy adjustments as economic conditions
change. Significant investment in technology and innovation
(TAIEP and GAEI) will foster a research-driven environment,
encouraging businesses to replace outdated equipment with
energy-efficient, digital alternatives, resulting in both economic
and environmental benefits.

Sustainable Resource Management (SERM) and time-lagged
outcomes require a holistic approach that accounts for historical
economic trends and supports responsible resource extraction.
For long-term success, practitioners should implement continuous
monitoring and evaluation systems to assess the real-time impact
of digital transitions, rather than relying on generic spending.
By prioritizing high-impact factors such as green agricultural
innovations (GAEI) and reliable data validation, policymakers
can better connect resource extraction with sustainability, ensuring
the agro-industrial sector remains resilient and competitive for
future generations.

5.2. Limitation and Future Study

This study is limited by the selected variables and the possible
impact of unobserved contextual factors that may further explain
agro-industrial evolution. Data sensitivity, shown by anomalies
in correlation coefficients and differences across econometric
models, underscores the need for more rigorous validation and
quality control in future research. Future studies should broaden
the geographical scope and include additional socio-economic
indicators, such as gender and education, to examine their
intersection with eco-innovation adoption. Comparative research
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is also needed to assess the effectiveness of various policy
instruments in different socio-cultural and environmental contexts.
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