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ABSTRACT

The global agro-industry is changing, with a shift toward high-tech, data-driven systems to tackle environmental challenges and resource shortages.
This study examines how digital and energy transitions are occurring together within the agricultural innovation ecosystem, driven by global demand
for sustainability. Using a dataset of more than 2 million patents filed from 2000 to 2019, the research maps how technology spreads with Main Path
Analysis (MPA) and explores the factors behind this process using an Exponential Random Graph Model (ERGM). The MPA identifies 12 main
technology paths, starting with GPS-based management and progressing to advanced, energy-efficient uses of Al, IoT, and blockchain. ERGM results
show that the innovation network forms selective, trust-based clusters and follows a “Matthew Effect,” where leading technologies attract more
investment. The analysis finds that aligning policy frameworks is the most important factor in building these networks, even more than traditional R&D
spending. Environmental sustainability also has a strong positive effect, showing that the ecosystem favors technologies that lower carbon emissions
and energy costs. While individual farmers do not yet have much influence on the larger innovation network, including them is important for fair
technology sharing and system resilience. These results provide policymakers and agribusinesses with a strategic guide, showing that a successful
digital and energy transition requires a balanced approach that combines market forces, robust regulations, and inclusive innovation.
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1. INTRODUCTION

The global agro-industry is going through major changes,
shifting from traditional farming to high-tech, data-driven food
distribution systems (Kitsios and Kamariotou, 2021; Warner
and Wiger, 2019). Digital farming has become increasingly
important to address growing environmental pressures and the

need for better resource management (Ahmed et al., 2022; Ba
et al., 2023). By leveraging technologies such as the Internet of
Things (IoT), Artificial Intelligence (AI), and drones, the industry
is moving toward green energy systems that aim for zero-carbon
electrification (Chien et al., 2021). This combination of digital tools
and energy solutions not only boosts production but also supports
the sustainable practices needed to tackle global food insecurity,

This Journal is licensed under a Creative Commons Attribution 4.0 International License

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 2 *




Rustenova, et al.: Digital and Energy Transitions in the Agro-Industry: An Economic Analysis of Technology Diffusion and Sustainable Innovation Pathways

exacerbated by climate change and a growing population
(Ba et al., 2023; Zhang et al., 2020). A strong agricultural
innovation system comprising farmers, technology companies,
scientists, and policymakers is essential for this transformation
(Ibarra et al., 2020; Kitsios and Kamariotou, 2021).

These systems help people work together and share knowledge to
develop new ideas (Sun et al., 2021). Still, the digital approach is
about more than just hardware. It also needs a network of trade
systems, training programs, and rules to support digital solutions
(Caoetal.,2022; Wang et al., 2020). When used effectively, these
tools provide producers with real-time information on soil health
and climate, helping them farm more precisely and in ways that
are better for the environment (Van Zeebroeck et al., 2021; Warner
and Wiéger, 2019).

Even with these advancements, major challenges remain,
especially the “digital divide” between developed and developing
countries (Ciarli et al., 2021; Nambisan et al., 2019). In many
underdeveloped areas, high equipment costs and poor internet
infrastructure make it difficult to access technology, thereby
exacerbating global food system inequalities (Nicoletti et al., 2020;
Zhang et al., 2020). There is also a lack of global regulations and
ongoing worries about data security and privacy, which cause
many traditional farmers to hesitate (Almansoori et al., 2023; Zhou
et al., 2023). To address this, technology needs to be affordable
and easy to use, and training programs should show clear, practical
benefits (Gong and Hansen, 2023; Zhou et al., 2023).

Current research shows a clear gap. Technical studies have looked
at how digital tools work, but few have compared how global
consumer demand for sustainability directly drives both digital
and energy transitions. Most models assume everyone adopts
new technology in the same way, overlooking how consumer
loyalty and market-specific traits affect the pace of innovation
(Pantano and Vannucci, 2019; Wang et al., 2020). This study
addresses this gap by exploring how digital progress and energy
use are connected (Yang et al., 2021; Xue et al., 2022). The goal
is to create a framework that shows how global demand drives
technological innovation and to identify key factors, such as a
company’s IT capability, that affect the success of these changes
(Wang et al., 2020; Zhang et al., 2020).

This study seeks to fill these gaps by comparing how global
consumer demand shapes technological innovation in the
agro-industry. The main objectives are to assess how digital
technologies such as IoT and Al relate to energy transition goals
in agriculture, identify key socio-economic factors that affect
technology adoption across different global markets, and propose
a framework for cross-border policy that balances data privacy
with technological compatibility. This research is unique because
it treats the digital and energy transitions in the agro-industry as a
single, connected process rather than separate trends. By examining
how technology spreads and where knowledge originates (Wang
etal., 2020; Zhou et al., 2023), the study provides a strategic plan
to guide technological growth aligned with the main challenges
of sustainable development (Popkova et al., 2022).

2. LITERATURE REVIEW

2.1. The Digital Agriculture Innovation Ecosystem
(DAIS)

Developing a digital agriculture innovation ecosystem requires
balancing technological capability, policy frameworks, and
human factors. Research shows these ecosystems result from
strategic collaboration and targeted policy interventions, not just
technological progress (Kerber, 2019). Advances in Artificial
Intelligence (Al), the Internet of Things (IoT), and big data
analytics are key drivers of digital farming transformation (Pantano
and Vannucci, 2019). While smart farming tools can significantly
increase crop yields, success relies on applying these innovations
through cross-sector partnerships rather than on technology alone
(Wang et al., 2021).

2.2. Policy Frameworks and Market Dynamics
Governance is key to creating an environment that supports
innovation. When governments establish robust legal systems
and offer financial incentives, they can boost research and
development (R&D) and protect intellectual property rights,
thereby accelerating the adoption of new technologies (Vial,
2021). Targeted policies also help close the digital gap by making
digital tools available to smallholder farmers, not just large-scale
operations (Popkova et al., 2022). Cetindamar and Phaal (2021)
point out that technology should be designed for the end user. If
farmers are not involved or do not find the technology useful, they
are less likely to adopt it (Alsharida et al., 2023). In addition to
policy, market factors, such as the cost-to-benefit ratio, affect how
quickly new technology spreads (Liu et al., 2023). Sustainable
change occurs only when the economic benefits outweigh the
initial costs, and this depends heavily on changing market
conditions (Yang et al., 2021).

2.3. Technological Integration and Sustainability

One of the main challenges in today’s agro-industry is integrating
disparate technological systems into a single, interoperable
framework (Zheng et al., 2021). Interoperability is important
for smooth data sharing and maintaining a healthy innovation
ecosystem over time (Al-Emran and Griffy-Brown, 2023). New
technologies like blockchain and gene editing can help make the
food supply chain more transparent and efficient (Tang et al.,
2023). Digital solutions also need to support environmental goals,
using loT-based precision irrigation and nutrient management to
reduce ecological harm (Bielig, 2023; Zhang et al., 2020). Still,
handling the large amounts of data generated raises issues of
storage, privacy, and security, so clear governance rules are needed
(Mingzer et al., 2021; Mohsin and Jamaani, 2023).

2.4. Human Capital and Financial Constraints

Adopting digital tools in agriculture depends on educating and
training the workforce (Wang et al., 2020). Training programs and
extension services help farmers gain the technical skills needed for
modern systems (Wang et al., 2020). However, financial barriers
remain a challenge. Small-scale farmers and agri-businesses
need access to credit and investment options to cover the high
costs of digital technology (Ahmed et al., 2022; Yu and Sheng,
2020). Strong leadership and clear governance also help by

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 2 * 2026



Rustenova, et al.: Digital and Energy Transitions in the Agro-Industry: An Economic Analysis of Technology Diffusion and Sustainable Innovation Pathways

encouraging accountability and innovation (Guerini et al., 2023;
Robinson et al., 2019).

2.5. Theoretical Gaps and Research Opportunities

Although there is a wide range of research, some important gaps
remain. Such as there is little evidence on how well digital farming
technologies scale from small pilot projects to widespread use
(Almansoori et al., 2023). More long-term studies are needed to
understand how these technologies affect global food systems over
time (Iram et al., 2020; Xue et al., 2022). In addition, we still know
little about the social and cultural factors that lead some farmers
to resist adopting these tools, especially across age, education, and
regional differences (Nambisan et al., 2019; Nicoletti et al., 2020).

In addition, discussions about the economic sustainability of
digital tools often do not include a full analysis of costs over
their entire life cycle, so we do not fully understand the long-term
costs of maintaining and disposing of these tools (Ciarli et al.,
2021). Also, while digital farming is said to help the environment,
there is still little data on its long-term effects on biodiversity,
water quality, and carbon storage (Cao et al., 2022). As data
becomes increasingly important in agriculture, the lack of robust
cybersecurity measures, especially for small farms in developing
countries, poses a serious risk that future research should address
(Baet al., 2023; Sun et al., 2021).

3. METHODOLOGY

3.1. Research Design

The main data source is patent records from 2000 to 2019,
specifically focused on the energy transition in agriculture.
Instead of labelling patents solely as “digital,” we group them
into two categories: Direct energy transition patents and indirect
energy-efficiency patents. Direct energy transition patents cover
technologies that help bring renewable energy to farming, such
as solar-powered irrigation systems and biomass-based energy
solutions. Indirect energy efficiency patents include digital
innovations such as Al, IoT, and Big Data applications that help
reduce energy use by enabling precision agriculture, improving
production efficiency, and optimizing logistics.

These 41 technology types were classified using the Reference
Relation Table of International Patent Classification and National
Economic Industry Classification (2018) to align technological
innovation with economic output. Data were sourced from the

PatSnap World Patent Database, filtered for legally valid invention
patents to ensure the dataset represents high-impact, commercially
viable innovations.

Table 1 provides an overview of key digital agricultural
technologies examined in this study, connecting industry
classifications and primary IPC codes to global demand drivers,
including sustainability, food security, and ethical supply chains.
The table demonstrates how each technology supports the energy
transition in agriculture by enhancing efficiency, reducing carbon
intensity, and decreasing energy-related costs within production
systems.

3.2. Economic Framework

Main path analysis (MPA), which uses the search path count
(SPC) algorithm, helps identify the most important technological
developments in the patent network. In energy economics, these
main paths show how energy-efficient technologies and practices
become standard in agriculture. By looking at the Liu and Lu,
(2012) main path, we can see how one energy-saving innovation,
like a smart sensor, spreads through related patents and becomes
widely adopted. This spread leads to greater efficiency and lowers
the sector’s overall marginal cost of energy.

3.3. The Exponential Random Graph Model (ERGM)
This research uses the Exponential Random Graph Model
(ERGM) to assess whether structural dependencies, rather than
random chance, explain the observed digital technology diffusion
network. Unlike traditional regression models, ERGM captures
the complex interdependence among network nodes and considers
both internal structures and external factors. This method helps
clarify the multifaceted connections within the digital farming
innovation system. The model is defined by the following
probability distribution

_epif ey, X)

P(Y|y) i

(1
Within the framework of technology diffusion, y represents the
set of possible binary relationships in the network, specifying
whether a connection exists between patent nodes i and j. The
observed network, denoted as y, captures the actual pattern of
connections formed during the diffusion of digital agricultural
technologies. The variable X denotes the exogenous variables,
specifically the attribute variables associated with each node,
that influence the structure of the main path network. Model
goodness of fit is assessed using the Akaike Information Criterion

Table 1: Categorization of digital technologies supporting energy transitions in agriculture

Technology

Agri-data analytics 119 GO6F17, GO6N99

Industry code IPC codes (Primary) Global demand focus
Transparency &

Energy—economic impact
Optimizes resource allocation and minimizes energy

Sustainability waste across agricultural systems.

Precision equipment 2930 A01B69, A01C7 Food Security & Reduces fuel consumption through autonomous and
Resource Efficiency precision-guided machinery.

Drone monitoring 3032 B64C39, B64D47 Sustainable Crop Lowers the carbon footprint relative to traditional
Management aerial surveying methods.

Smart irrigation 2913 B05B3, GO5D7 Water Conservation Decouples water pumping from high energy-grid

dependence via optimized control systems.
Livestock monitoring 2931 A01K11, G08B21 Ethical & Sustainable  Improves metabolic efficiency and reduces

Food Chains

feed-related energy losses.
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(AIC) and Bayesian Information Criterion (BIC). Lower AIC and
BIC values indicate a model that more accurately represents the
observed digital technology diffusion network. The exponential
random graph model (ERGM) is constructed and fitted using the
statnet package in the R programming environment. Parameter
estimation is conducted using the Markov Chain Monte Carlo
Maximum Likelihood Estimation (MCMCMLE) method, which
is widely regarded as the standard for analyzing complex network
dependencies.

3.4. Variables and Measures

This study utilizes a multi-dimensional set of variables to analyze
digital and energy transitions within the agro-industry. Technical
attributes are assessed to characterize the knowledge base of
innovations, while endogenous structural variables are used to
evaluate the efficiency of the innovation ecosystem.

Table 2 presents the variables employed to model technology
diffusion and energy economic dynamics within agro-innovation
networks, categorizing them as explanatory, endogenous, and
control variables. These variables represent a technology’s capacity
to facilitate energy transition and enhance economic efficiency.

Knowledge diversity, or technical capital, denotes the breadth
of technological knowledge within a patent; greater IPC
diversity suggests a higher potential for integrating fields
such as digital agriculture and renewable energy. Cooperative
potential, quantified by weighted degree centrality, identifies
patents that serve as energy-innovation hubs and promote the
diffusion of green technologies. Combinatorial opportunities
evaluate a patent’s ability to connect distinct technical domains,
emphasizing innovations that link digital tools with clean-
energy solutions and foster cross-cluster knowledge exchange.
Technological proximity measures thematic similarity using
IPC homophily, indicating clustering around specific green
objectives, such as carbon-reduction technologies in agriculture.

These variables characterize the internal mechanisms that
drive network evolution. Clustering (GWESP) indicates the
development of trusted, closed structures that mitigate uncertainty
and lower adoption risks for capital-intensive energy technologies.
Activity (GWODegree) measures the outward diffusion, or
radiation effect, of energy innovations throughout the agricultural
sector. Convergence (GWIDegree) reflects the Matthew Effect,
identifying technologies that accumulate citations and become
dominant standards in energy efficiency.

To isolate technological and demand-side effects, the model
incorporates controls for geographical proximity, which accounts
for shared local energy infrastructure and policy environments,
as well as organizational proximity, which captures institutional
influences such as common affiliations and government-funded
green energy research.

3.5. Data Analysis

Data analysis proceeded through a multi-stage computational
process. Initially, the raw dataset of over two million patent
records was standardized and deduplicated to construct
an asymmetrical adjacency matrix representing citation
linkages. After matrix construction, main path analysis
(MPA) was performed using the search path count (SPC)
algorithm in the Pajek software environment to identify the
primary diffusion trajectories and technological backbones
of the agro-energy transition. The exponential random graph
model (ERGM) was then fitted using the statnet package
in R, applying the Markov Chain Monte Carlo Maximum
Likelihood Estimation (MCMCMLE) method to estimate
parameter coefficients for explanatory, endogenous, and control
variables. The structural integrity and predictive accuracy of
the model were evaluated by assessing goodness of fit (GOF)
using the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC).

Table 2: Description of ERGM-related variables in the context of agro-energy transitions

Energy—economic significance
Represents the “backbone” of energy-efficient technology
diffusion in agriculture

Category Variable Operationalization/legend
Explained Main path Asymmetrical adjacency matrix (Yij)
variable network of patent citations
Node attributes Knowledge Number of IPC subclasses per patent
(Explanatory) diversity
Cooperative Weighted degree centrality (Ci/T)
potential
Combinatorial Structural hole efficiency (Burt’s
opportunities constraint)
Technology Principal IPC code homophily
proximity
Endogenous Clustering Count of closed triangles in the
configuration (GWESP) network
Activity Geometrically weighted out-degree
(GWODegree)
Convergence Geometrically weighted in-degree
(GWIDegree)
Control Geographical Matching city location of applicants
variables proximity
Organizational Shared affiliations
proximity (e.g., university or R&D center)

Indicates the “technical capital” available to address complex
energy—food nexus challenges

Identifies central innovation hubs for renewable energy
technologies

Measures the ability of a technology to bridge gaps between
digital tools and clean energy

Reflects clustering around specific green energy themes (e.g.,
carbon reduction)

Reduces transaction costs and risks in adopting
capital-intensive energy-efficient infrastructure

Represents the “radiation effect” of energy-innovation
suppliers across the industry

Reflects the “Matthew Effect,” where dominant energy
standards attract more investment

Controls for local energy infrastructure and regional
environmental policies

Controls for institutional influence and government-funded
green energy research
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4. RESULTS AND DISCUSSION

The main path analysis (MPA) clarifies the structural evolution
of the digital agriculture innovation ecosystem by identifying
technological trajectories that characterize the industry’s digital
and energy transitions. Application of the search path count
(SPC) algorithm to the citation network identified 12 distinct
pathways that constitute the backbone of knowledge diffusion
from 2003 to 2021. These pathways reveal a chronological
progression from foundational GPS-based systems to advanced,
energy-efficient integrations of artificial intelligence, the Internet
of Things, and blockchain technologies, reflecting the increasing
global demand for sustainable, traceable food systems. Table 3
presents a comprehensive summary of these principal diffusion
pathways, emphasizing their thematic focus, duration, and primary
geographical centers of innovation.

Table 3 provides an overview of the main technological diffusion
pathways identified within the digital agricultural innovation
network. Each pathway constitutes a distinct cluster of patents,
connected by citation linkages, which reveal the progression of
digital and energy-efficient technologies over time. The durations
correspond to active developmental periods, while the descriptions
emphasize dominant themes, ranging from foundational GPS
management (Alpha) to advanced artificial intelligence and smart
irrigation controls (Nu) that contribute to reduced marginal energy
costs. The identified geographic locations serve as innovation hubs,
demonstrating the spatial concentration of development in cities
such as Beijing and Wuhan, which utilize regional energy policies
to stimulate growth. Collectively, these pathways demonstrate
the multi-directional and regionally diverse character of digital
agricultural innovation, signifying the ongoing transition toward
a zero-carbon agro-industrial ecosystem.

4.1. Analysis of the Formation Mechanism

The exponential random graph model (ERGM) analytical
outcomes were ascertained utilizing the Statnet package within
the R programming environment. The inferential procedure
employed was the Markov chain Monte Carlo maximum likelihood
estimation (MCMC MLE).

Table 4 shows the exponential random graph model (ERGM)
estimates for four model specifications. The Null Model measures
the baseline network density and reports a significant negative
coefficient for Edges. This result indicates that the network is
very sparse, a common feature of innovation ecosystems where
collaboration is selective rather than random.

The Network Structure Model finds strong, positive, and significant
coefficients for Gwesp, Gwidegree, and Gwodegree. This confirms
that the agricultural innovation ecosystem is shaped by internal
structural processes. The significant Gwesp value indicates a
strong tendency toward closed triads, suggesting that collaborative
groups form around shared technologies or institutional ties. The
positive in-degree and out-degree results point to influential hub
nodes that either attract or spread knowledge more than others.

The Node Attribute Model adds characteristics at the actor level.
R&D Intensity and Farmer Engagement have small negative
effects and are only significant in the Comprehensive Model. This
suggests that actors with higher R&D intensity and more active
farmer involvement are more selective in their collaborations.
In contrast, Policy Framework Alignment and Technology
Development Pace have strong, positive effects. This means
that actors who align with national digital and energy transition
policies are much more likely to form connections. These variables
stay highly significant in the comprehensive model, showing

Table 3: Principal diffusion pathways for digital agricultural technologies

Pathway Nodes Duration Description of diffusion path Key patents Primary locations

Alpha 26 2012-2017 Early diffusion of GPS-based farm management [Altered patent IDs] Suzhou, Wuxi
technologies.

Beta 48  2007-2020 Propagation of digital algorithms for precision farming and  [Altered patent IDs] Beijing, Wuhan,
drone-enabled crop automation. Guangzhou

Gamma 15 2015-2020 Integration of IoT and blockchain for agri-food supply chain [Altered patent IDs] Beijing, Jinan, Hangzhou
traceability.

Delta 18  2003-2018 Adoption of cloud analytics for agro-ecological and climate  [Altered patent IDs] Tianjin, Qingdao
forecasting.

Epsilon 34 2006-2018 Al-driven drone navigation for precision input application. ~ [Altered patent IDs] Nanjing, Harbin, Shanghai

Zeta 97  2003-2020 Advancement of sensor-based systems for real-time soil and [Altered patent IDs] Shenzhen, Chengdu, Taipei
crop health diagnostics.

Eta 23 2009-2021 Computational imaging for automated sorting and early [Altered patent IDs] Chengdu, Guangzhou,
disease detection. Shenzhen

Theta 22 2009-2021 Precision guidance and control in autonomous agricultural ~ [Altered patent IDs] Shenyang, Shenzhen,
machinery. Chongqing

Iota 19 2004-2021 Visual identification and sensing for livestock tracking and ~ [Altered patent IDs] Lanzhou, Xi’an,
health monitoring. Zhengzhou

Kappa 17 2010-2019 Smart control and optimization of microgrid systems for [Altered patent IDs] Wuhan, Changzhou,
agricultural energy management. Tianjin

Lambda 21 2010-2020 Neural-network applications in agricultural surveying and [Altered patent IDs] Hangzhou, Beijing
material inspection.

Mu 450  2006-2020 Large-scale diffusion of advanced image processing for [Altered patent IDs] Nanjing, Xi’an, Shenzhen,
farm monitoring and pest detection. Hangzhou

Nu 55  2008-2021 Smart system controls for agricultural robots and precision ~ [Altered patent IDs] Shanghai, Ningbo, Wuhan

irrigation devices.
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Table 4: ERGM model parameters for the digital and energy transitions in the agricultural innovation ecosystem

Network endogenous variables

Edges —7.321 %% —8.099%*** —7.569%** —8.989***
—0.041 —0.109 —0.161 -0.209
Gwesp (closed triads) 3.769%** 2.858%**
—0.268 —0.285
Gwodegree (out-degree) 0.519%** 1.577%%%*
—-0.116 —0.141
Gwidegree (In-degree) 2.896%** 3.037%**
—0.147 —0.148
Node attribute variables
R&D intensity in agriculture —0.069 —0.113%*
—0.051 —0.062
Farmer engagement level —-0.011 -0.017*
—0.008 —0.007
Policy framework alignment 4.715%%* 7.570%**
—0.559 -0.74
Technology development pace 1.975%** 2.198%**
—0.075 —0.084
Control variables
Market dynamics influence 0.595%** 0.608%**
—-0.071 —-0.073
Environmental sustainability impact 1.195%** 1.282%**
—-0.079 —0.082
Goodness of fit
AIC 13762.4 13252.96 12252.62 11510.1
BIC 13773.92 13298.02 12333.52 11625.55

*P <0.05, **P <0.01, ***P <0.001

their importance. The control variables act as expected. Market
dynamics influence and environmental sustainability impact are
both positive and significant. This suggests that organizations
focused on the market or sustainability tend to collaborate more
often within the innovation ecosystem. Model fit improves with
each specification, and the comprehensive model fits best, as
indicated by the lowest AIC and BIC values. This means that
both the network’s internal structure and the characteristics of
individual actors help explain how collaborative ties form in digital
and energy transition technologies in agriculture.

The node attribute model looks at characteristics at the actor level.
“R&D Intensity in Agriculture” (—0.069) and “Farmer Engagement
Level” (—0.011) both have small, statistically insignificant negative
effects, which means these factors alone do not significantly
increase tie formation. However, when all variables are included
in the comprehensive model, structural and contextual factors have
a stronger impact. The “Edges” coefficient drops further to —8.989
(P < 0.001). “Policy Framework Alignment” (7.570, P < 0.001)
and “Technology Development Pace” (2.198, P < 0.001) both
have strong positive effects, showing their key roles in shaping
collaboration. The control variables, market dynamics influence
(0.608, P < 0.001) and environmental sustainability impact
(1.282, P < 0.001), stay positive and significant. This suggests
that organizations focused on markets and sustainability are more
likely to form network ties.

The model fit gets better with each specification. Both AIC and BIC
values drop a lot from the null model (AIC 13,762.4; BIC 13,773.9)
to the comprehensive model (AIC 11,510.1; BIC 11,625.6).
This shows that the network is best explained when combining

structure, node-level, and contextual factors. Overall, these results
suggest that digital agricultural innovation depends much more
on structural clustering and policy-technology alignment than on
individual organizational traits.

Table 5 presents a numerical summary of the Exponential
Random Graph Model (ERGM) analysis for the digital agriculture
innovation network. This table enables a direct comparison
of outcomes across model specifications. Among the network
endogenous variables, the “Edges” variable exhibits a clear
trend: as model complexity increases from the null model to
the comprehensive model, the negative relationship becomes
more pronounced, indicating a robust and consistent pattern.
The coefficient’s absolute value increases and remains highly
significant (P < 0.001), which suggests the network is less dense
than would be expected by chance. This finding highlights the
selective nature of relationships within the network. The positive
coefficients for “Gwesp (Closed Triads)” (3.769 and 2.858 in the
Network Structure and Comprehensive Models, respectively;
P < 0.001) indicate a strong tendency toward triadic closure,
characteristic of cohesive subgroups. The “Gwodegree” and
“Gwidegree” variables also remain positive and significant across
models, demonstrating that nodes with higher connectivity are
central to the network’s structure.

The node attribute variables provide additional insights. “R&D
Intensity in Agriculture” does not reach statistical significance,
while “Farmer Engagement Level” approaches significance in the
Comprehensive Model (P < 0.05), indicating a marginal negative
effect on network connections. In contrast, “Policy Framework
Alignment” and “Technology Development Pace” exhibit strong
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Table 5: Key findings from ERGM analysis for the digital and energy transitions in the agricultural innovation network

Network endogenous variables Edges Increased significance ~ Negative Improved in comprehensive
Gwesp (Closed Triads) Significant in All Positive -
Gwodegree (Out-degree) Significant in All Positive -
Gwidegree (In-degree) Significant in All Positive -

Node attribute variables R&D Intensity in Agriculture Not Significant Negative -
Farmer Engagement Level Marginally Significant Negative -
Policy Framework Alignment Increased Significance  Positive Improved in comprehensive
Technology Development Pace  Significant in All Positive -

Control variables Market Dynamics Influence Significant in All Positive -
Environmental Sustainability Significant in All Positive -
Impact

Goodness of fit statistics AlIC - - Decreased in comprehensive
BIC - - Decreased in comprehensive

positive effects (coefficients of 7.589 and 2.211, respectively, in
the Comprehensive Model), underscoring their central roles in the
diffusion of digital agriculture technologies. Among the control
variables, “Market Dynamics Influence” and “Environmental
Sustainability Impact” remain significantly positive across all
models, suggesting these factors facilitate the formation of
network ties and systematically shape the network’s composition.
Goodness-of-fit statistics further support the model’s validity.
Both AIC and BIC decrease substantially from the Null Model
to the Comprehensive Model (AIC: 13762.403-11510.102; BIC:
13773.918-11625.553), indicating improved model fit as additional
variables are incorporated. This pattern supports the suitability
of the comprehensive model for capturing the complexity of the
digital agriculture innovation network.

4.2. Discussion

The ERGM analysis of the digital agriculture innovation network
reveals important patterns in how technology spreads, similar to
those found in other ecosystem studies. The negative coefficient for
“Edges” in all models indicates that the network forms selective
connections, suggesting exclusivity and higher costs of building
partnerships. This aligns with research showing that key hubs
concentrate activity, supporting the idea that a few technological
leaders shape the network. The positive “Gwesp” coefficients
show that closed triads, or tight-knit groups, are common. This
clustering is especially important in high-risk areas like energy-
efficient agriculture, where trust helps partners share knowledge
and resources more effectively.

The model shows that some nodes gain more connections over
time, as seen in the positive “Gwidegree.” This matches the idea of
cumulative advantage, or the “Matthew Effect,” where established
standards attract more innovation. The strong positive effects for
“Policy Framework Alignment” and “Technology Development
Pace” support research that highlights good policy as a key
driver for innovation ecosystems. These factors are important for
encouraging the adoption and spread of sustainable technologies
across borders.

Interestingly, the variable “Farmer Engagement Level” presented
only marginal significance, reflecting the systemic barriers that
limit the influence of smaller stakeholders in shaping large-scale

innovation trajectories, despite their central role as end-users.
Conversely, the variable “Farmer Engagement Level” showed
only a small effect, suggesting that smaller stakeholders face
barriers to shaping large-scale innovation, even though they are
key end-users. In contrast, “Market Dynamics Influence” and
“Environmental Sustainability Impact” both have a positive effect
on how the network forms. This supports the idea that market
forces and sustainability are major drivers of innovation today.
These factors are becoming increasingly important for tackling
global issues such as food security and climate change. The model
fits the data well, as shown by much lower AIC and BIC values,
indicating that combining network structure with specific node
features provides the best picture of digital farming innovation.
This approach helps explain how technology, economics, and law
all interact to shape the spread of digital agriculture.

4.3. Policy Implementation and Recommendations

The results of this structural analysis provide important insights
for stakeholders across the agricultural value chain, including
policymakers, agri-tech enterprises, academic institutions, and end
users. The selective structure of innovation networks suggests that
interventions should prioritize facilitating strategic collaborations
rather than broadly diffusing technology. Strengthening innovation
hubs can streamline the transfer of technical capital and promote
energy-efficient practices. For regulators, the strong impact of
policy alignment underscores that legal frameworks and financial
incentives are primary drivers of accelerating the adoption of
digital-energy solutions. The frequent occurrence of closed triads
within the network suggests that development programs should
promote trust-based clusters among agricultural enterprises.
Initiatives such as cross-sector workshops and research and
development partnerships can help reduce the high transaction
costs associated with capital-intensive digital infrastructure.

Additionally, the limited influence of individual farmers on broader
innovation trajectories highlights the necessity for inclusive
development strategies. Involving farmers through participatory
research and targeted extension services can help bridge the digital
divide and ensure equitable distribution of technological benefits.
Moreover, since market dynamics and environmental sustainability
are key drivers of network formation, agritech firms should align
product development with global consumer demands for durability,
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food security, and carbon reduction to maintain competitiveness
in the evolving global market.

5. CONCLUSION

An examination of the digital agriculture innovation ecosystem
clarifies the complex mechanisms underlying technological and
energy transitions. Empirical evidence demonstrates that network
connections are highly selective, favoring cohesive clusters
and following the principle of cumulative advantage, in which
dominant standards drive industry convergence. The findings
highlight the critical importance of policy alignment and rapid
technological evolution, indicating that sustainable transformation
depends on robust regulatory planning and continuous investment
in research and development.

Although individual farmers currently have limited influence on
the broader innovation structure, their inclusion is essential for
achieving long-term systemic resilience and equitable growth.
The practical implications are evident: A resilient digital farming
system relies on strategic collaboration, alignment of innovation
incentives with environmental objectives, and integration of
smallholder perspectives. As the agro-industry evolves, these
findings offer a robust empirical foundation for balancing the
complex demands of market forces, resource efficiency, and
productivity through advanced technological solutions.

Despite the ERGM analysis offers valuable insights, this study
has some limitations. Using only formal patent citation data might
miss informal knowledge sharing and new connections among
small-scale innovators or niche agritech startups. Although the
model includes structural and node attributes, it may not fully
reflect socio-cultural behaviors or outside political events that can
affect technology diffusion. Also, because the network analysis is
static, it cannot show how things change in real time.

Future research should use a wider range of data sources, such
as field surveys or interviews, to better understand informal
innovation. Long-term studies are also needed to follow how
these networks change as technology and the global economy
shift. Comparing different regions or agricultural sub-sectors could
help identify what drives success and the best practices for digital
farming across different social and economic settings.
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