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ABSTRACT

The global agro-industry is changing, with a shift toward high-tech, data-driven systems to tackle environmental challenges and resource shortages. 
This study examines how digital and energy transitions are occurring together within the agricultural innovation ecosystem, driven by global demand 
for sustainability. Using a dataset of more than 2 million patents filed from 2000 to 2019, the research maps how technology spreads with Main Path 
Analysis (MPA) and explores the factors behind this process using an Exponential Random Graph Model (ERGM). The MPA identifies 12 main 
technology paths, starting with GPS-based management and progressing to advanced, energy-efficient uses of AI, IoT, and blockchain. ERGM results 
show that the innovation network forms selective, trust-based clusters and follows a “Matthew Effect,” where leading technologies attract more 
investment. The analysis finds that aligning policy frameworks is the most important factor in building these networks, even more than traditional R&D 
spending. Environmental sustainability also has a strong positive effect, showing that the ecosystem favors technologies that lower carbon emissions 
and energy costs. While individual farmers do not yet have much influence on the larger innovation network, including them is important for fair 
technology sharing and system resilience. These results provide policymakers and agribusinesses with a strategic guide, showing that a successful 
digital and energy transition requires a balanced approach that combines market forces, robust regulations, and inclusive innovation.

Keywords: Digital Agriculture, Energy Transition, Patent Network Analysis, ERGM, Innovation Ecosystem, Sustainable Development 
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1. INTRODUCTION

The global agro-industry is going through major changes, 
shifting from traditional farming to high-tech, data-driven food 
distribution systems (Kitsios and Kamariotou, 2021; Warner 
and Wäger, 2019). Digital farming has become increasingly 
important to address growing environmental pressures and the 

need for better resource management (Ahmed et al., 2022; Ba 
et al., 2023). By leveraging technologies such as the Internet of 
Things (IoT), Artificial Intelligence (AI), and drones, the industry 
is moving toward green energy systems that aim for zero-carbon 
electrification (Chien et al., 2021). This combination of digital tools 
and energy solutions not only boosts production but also supports 
the sustainable practices needed to tackle global food insecurity, 
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exacerbated by climate change and a growing population 
(Ba et al., 2023; Zhang et al., 2020). A  strong agricultural 
innovation system comprising farmers, technology companies, 
scientists, and policymakers is essential for this transformation 
(Ibarra et al., 2020; Kitsios and Kamariotou, 2021).

These systems help people work together and share knowledge to 
develop new ideas (Sun et al., 2021). Still, the digital approach is 
about more than just hardware. It also needs a network of trade 
systems, training programs, and rules to support digital solutions 
(Cao et al., 2022; Wang et al., 2020). When used effectively, these 
tools provide producers with real-time information on soil health 
and climate, helping them farm more precisely and in ways that 
are better for the environment (Van Zeebroeck et al., 2021; Warner 
and Wäger, 2019).

Even with these advancements, major challenges remain, 
especially the “digital divide” between developed and developing 
countries (Ciarli et al., 2021; Nambisan et al., 2019). In many 
underdeveloped areas, high equipment costs and poor internet 
infrastructure make it difficult to access technology, thereby 
exacerbating global food system inequalities (Nicoletti et al., 2020; 
Zhang et al., 2020). There is also a lack of global regulations and 
ongoing worries about data security and privacy, which cause 
many traditional farmers to hesitate (Almansoori et al., 2023; Zhou 
et al., 2023). To address this, technology needs to be affordable 
and easy to use, and training programs should show clear, practical 
benefits (Gong and Hansen, 2023; Zhou et al., 2023).

Current research shows a clear gap. Technical studies have looked 
at how digital tools work, but few have compared how global 
consumer demand for sustainability directly drives both digital 
and energy transitions. Most models assume everyone adopts 
new technology in the same way, overlooking how consumer 
loyalty and market-specific traits affect the pace of innovation 
(Pantano and Vannucci, 2019; Wang et al., 2020). This study 
addresses this gap by exploring how digital progress and energy 
use are connected (Yang et al., 2021; Xue et al., 2022). The goal 
is to create a framework that shows how global demand drives 
technological innovation and to identify key factors, such as a 
company’s IT capability, that affect the success of these changes 
(Wang et al., 2020; Zhang et al., 2020).

This study seeks to fill these gaps by comparing how global 
consumer demand shapes technological innovation in the 
agro-industry. The main objectives are to assess how digital 
technologies such as IoT and AI relate to energy transition goals 
in agriculture, identify key socio-economic factors that affect 
technology adoption across different global markets, and propose 
a framework for cross-border policy that balances data privacy 
with technological compatibility. This research is unique because 
it treats the digital and energy transitions in the agro-industry as a 
single, connected process rather than separate trends. By examining 
how technology spreads and where knowledge originates (Wang 
et al., 2020; Zhou et al., 2023), the study provides a strategic plan 
to guide technological growth aligned with the main challenges 
of sustainable development (Popkova et al., 2022).

2. LITERATURE REVIEW

2.1. The Digital Agriculture Innovation Ecosystem 
(DAIS)
Developing a digital agriculture innovation ecosystem requires 
balancing technological capability, policy frameworks, and 
human factors. Research shows these ecosystems result from 
strategic collaboration and targeted policy interventions, not just 
technological progress (Kerber, 2019). Advances in Artificial 
Intelligence (AI), the Internet of Things (IoT), and big data 
analytics are key drivers of digital farming transformation (Pantano 
and Vannucci, 2019). While smart farming tools can significantly 
increase crop yields, success relies on applying these innovations 
through cross-sector partnerships rather than on technology alone 
(Wang et al., 2021).

2.2. Policy Frameworks and Market Dynamics
Governance is key to creating an environment that supports 
innovation. When governments establish robust legal systems 
and offer financial incentives, they can boost research and 
development (R&D) and protect intellectual property rights, 
thereby accelerating the adoption of new technologies (Vial, 
2021). Targeted policies also help close the digital gap by making 
digital tools available to smallholder farmers, not just large-scale 
operations (Popkova et al., 2022). Cetindamar and Phaal (2021) 
point out that technology should be designed for the end user. If 
farmers are not involved or do not find the technology useful, they 
are less likely to adopt it (Alsharida et al., 2023). In addition to 
policy, market factors, such as the cost-to-benefit ratio, affect how 
quickly new technology spreads (Liu et al., 2023). Sustainable 
change occurs only when the economic benefits outweigh the 
initial costs, and this depends heavily on changing market 
conditions (Yang et al., 2021).

2.3. Technological Integration and Sustainability
One of the main challenges in today’s agro-industry is integrating 
disparate technological systems into a single, interoperable 
framework (Zheng et al., 2021). Interoperability is important 
for smooth data sharing and maintaining a healthy innovation 
ecosystem over time (Al-Emran and Griffy-Brown, 2023). New 
technologies like blockchain and gene editing can help make the 
food supply chain more transparent and efficient (Tang et al., 
2023). Digital solutions also need to support environmental goals, 
using IoT-based precision irrigation and nutrient management to 
reduce ecological harm (Bielig, 2023; Zhang et al., 2020). Still, 
handling the large amounts of data generated raises issues of 
storage, privacy, and security, so clear governance rules are needed 
(Minzer et al., 2021; Mohsin and Jamaani, 2023).

2.4. Human Capital and Financial Constraints
Adopting digital tools in agriculture depends on educating and 
training the workforce (Wang et al., 2020). Training programs and 
extension services help farmers gain the technical skills needed for 
modern systems (Wang et al., 2020). However, financial barriers 
remain a challenge. Small-scale farmers and agri-businesses 
need access to credit and investment options to cover the high 
costs of digital technology (Ahmed et al., 2022; Yu and Sheng, 
2020). Strong leadership and clear governance also help by 
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encouraging accountability and innovation (Guerini et al., 2023; 
Robinson et al., 2019).

2.5. Theoretical Gaps and Research Opportunities
Although there is a wide range of research, some important gaps 
remain. Such as there is little evidence on how well digital farming 
technologies scale from small pilot projects to widespread use 
(Almansoori et al., 2023). More long-term studies are needed to 
understand how these technologies affect global food systems over 
time (Iram et al., 2020; Xue et al., 2022). In addition, we still know 
little about the social and cultural factors that lead some farmers 
to resist adopting these tools, especially across age, education, and 
regional differences (Nambisan et al., 2019; Nicoletti et al., 2020).

In addition, discussions about the economic sustainability of 
digital tools often do not include a full analysis of costs over 
their entire life cycle, so we do not fully understand the long-term 
costs of maintaining and disposing of these tools (Ciarli et al., 
2021). Also, while digital farming is said to help the environment, 
there is still little data on its long-term effects on biodiversity, 
water quality, and carbon storage (Cao et al., 2022). As data 
becomes increasingly important in agriculture, the lack of robust 
cybersecurity measures, especially for small farms in developing 
countries, poses a serious risk that future research should address 
(Ba et al., 2023; Sun et al., 2021).

3. METHODOLOGY

3.1. Research Design
The main data source is patent records from 2000 to 2019, 
specifically focused on the energy transition in agriculture. 
Instead of labelling patents solely as “digital,” we group them 
into two categories: Direct energy transition patents and indirect 
energy-efficiency patents. Direct energy transition patents cover 
technologies that help bring renewable energy to farming, such 
as solar-powered irrigation systems and biomass-based energy 
solutions. Indirect energy efficiency patents include digital 
innovations such as AI, IoT, and Big Data applications that help 
reduce energy use by enabling precision agriculture, improving 
production efficiency, and optimizing logistics.

These 41 technology types were classified using the Reference 
Relation Table of International Patent Classification and National 
Economic Industry Classification (2018) to align technological 
innovation with economic output. Data were sourced from the 

PatSnap World Patent Database, filtered for legally valid invention 
patents to ensure the dataset represents high-impact, commercially 
viable innovations.

Table  1 provides an overview of key digital agricultural 
technologies examined in this study, connecting industry 
classifications and primary IPC codes to global demand drivers, 
including sustainability, food security, and ethical supply chains. 
The table demonstrates how each technology supports the energy 
transition in agriculture by enhancing efficiency, reducing carbon 
intensity, and decreasing energy-related costs within production 
systems.

3.2. Economic Framework
Main path analysis (MPA), which uses the search path count 
(SPC) algorithm, helps identify the most important technological 
developments in the patent network. In energy economics, these 
main paths show how energy-efficient technologies and practices 
become standard in agriculture. By looking at the Liu and Lu, 
(2012) main path, we can see how one energy-saving innovation, 
like a smart sensor, spreads through related patents and becomes 
widely adopted. This spread leads to greater efficiency and lowers 
the sector’s overall marginal cost of energy.

3.3. The Exponential Random Graph Model (ERGM)
This research uses the Exponential Random Graph Model 
(ERGM) to assess whether structural dependencies, rather than 
random chance, explain the observed digital technology diffusion 
network. Unlike traditional regression models, ERGM captures 
the complex interdependence among network nodes and considers 
both internal structures and external factors. This method helps 
clarify the multifaceted connections within the digital farming 
innovation system. The model is defined by the following 
probability distribution

P Y y
exp y X

k
t( | )

{ ( , )
�

� g
� (1)

Within the framework of technology diffusion, y represents the 
set of possible binary relationships in the network, specifying 
whether a connection exists between patent nodes i and j. The 
observed network, denoted as y, captures the actual pattern of 
connections formed during the diffusion of digital agricultural 
technologies. The variable X denotes the exogenous variables, 
specifically the attribute variables associated with each node, 
that influence the structure of the main path network. Model 
goodness of fit is assessed using the Akaike Information Criterion 

Table 1: Categorization of digital technologies supporting energy transitions in agriculture
Technology Industry code IPC codes (Primary) Global demand focus Energy–economic impact
Agri‑data analytics 119 G06F17, G06N99 Transparency & 

Sustainability
Optimizes resource allocation and minimizes energy 
waste across agricultural systems.

Precision equipment 2930 A01B69, A01C7 Food Security & 
Resource Efficiency

Reduces fuel consumption through autonomous and 
precision‑guided machinery.

Drone monitoring 3032 B64C39, B64D47 Sustainable Crop 
Management

Lowers the carbon footprint relative to traditional 
aerial surveying methods.

Smart irrigation 2913 B05B3, G05D7 Water Conservation Decouples water pumping from high energy‑grid 
dependence via optimized control systems.

Livestock monitoring 2931 A01K11, G08B21 Ethical & Sustainable 
Food Chains

Improves metabolic efficiency and reduces 
feed‑related energy losses.
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(AIC) and Bayesian Information Criterion (BIC). Lower AIC and 
BIC values indicate a model that more accurately represents the 
observed digital technology diffusion network. The exponential 
random graph model (ERGM) is constructed and fitted using the 
statnet package in the R programming environment. Parameter 
estimation is conducted using the Markov Chain Monte Carlo 
Maximum Likelihood Estimation (MCMCMLE) method, which 
is widely regarded as the standard for analyzing complex network 
dependencies.

3.4. Variables and Measures
This study utilizes a multi-dimensional set of variables to analyze 
digital and energy transitions within the agro-industry. Technical 
attributes are assessed to characterize the knowledge base of 
innovations, while endogenous structural variables are used to 
evaluate the efficiency of the innovation ecosystem.

Table  2 presents the variables employed to model technology 
diffusion and energy economic dynamics within agro-innovation 
networks, categorizing them as explanatory, endogenous, and 
control variables. These variables represent a technology’s capacity 
to facilitate energy transition and enhance economic efficiency.

Knowledge diversity, or technical capital, denotes the breadth 
of technological knowledge within a patent; greater IPC 
diversity suggests a higher potential for integrating fields 
such as digital agriculture and renewable energy. Cooperative 
potential, quantified by weighted degree centrality, identifies 
patents that serve as energy-innovation hubs and promote the 
diffusion of green technologies. Combinatorial opportunities 
evaluate a patent’s ability to connect distinct technical domains, 
emphasizing innovations that link digital tools with clean-
energy solutions and foster cross-cluster knowledge exchange. 
Technological proximity measures thematic similarity using 
IPC homophily, indicating clustering around specific green 
objectives, such as carbon-reduction technologies in agriculture.

These variables characterize the internal mechanisms that 
drive network evolution. Clustering (GWESP) indicates the 
development of trusted, closed structures that mitigate uncertainty 
and lower adoption risks for capital-intensive energy technologies. 
Activity (GWODegree) measures the outward diffusion, or 
radiation effect, of energy innovations throughout the agricultural 
sector. Convergence (GWIDegree) reflects the Matthew Effect, 
identifying technologies that accumulate citations and become 
dominant standards in energy efficiency.

To isolate technological and demand-side effects, the model 
incorporates controls for geographical proximity, which accounts 
for shared local energy infrastructure and policy environments, 
as well as organizational proximity, which captures institutional 
influences such as common affiliations and government-funded 
green energy research.

3.5. Data Analysis
Data analysis proceeded through a multi-stage computational 
process. Initially, the raw dataset of over two million patent 
records was standardized and deduplicated to construct 
an asymmetrical adjacency matrix representing citation 
linkages. After matrix construction, main path analysis 
(MPA) was performed using the search path count (SPC) 
algorithm in the Pajek software environment to identify the 
primary diffusion trajectories and technological backbones 
of the agro-energy transition. The exponential random graph 
model (ERGM) was then fitted using the statnet package 
in R, applying the Markov Chain Monte Carlo Maximum 
Likelihood Estimation (MCMCMLE) method to estimate 
parameter coefficients for explanatory, endogenous, and control 
variables. The structural integrity and predictive accuracy of 
the model were evaluated by assessing goodness of fit (GOF) 
using the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC).

Table 2: Description of ERGM‑related variables in the context of agro‑energy transitions
Category Variable Operationalization/legend Energy–economic significance
Explained 
variable

Main path 
network

Asymmetrical adjacency matrix (Yᵢⱼ) 
of patent citations

Represents the “backbone” of energy‑efficient technology 
diffusion in agriculture

Node attributes 
(Explanatory)

Knowledge 
diversity

Number of IPC subclasses per patent Indicates the “technical capital” available to address complex 
energy–food nexus challenges

Cooperative 
potential

Weighted degree centrality (Cᵢ/T) Identifies central innovation hubs for renewable energy 
technologies

Combinatorial 
opportunities

Structural hole efficiency (Burt’s 
constraint)

Measures the ability of a technology to bridge gaps between 
digital tools and clean energy

Technology 
proximity

Principal IPC code homophily Reflects clustering around specific green energy themes (e.g., 
carbon reduction)

Endogenous 
configuration

Clustering 
(GWESP)

Count of closed triangles in the 
network

Reduces transaction costs and risks in adopting 
capital‑intensive energy‑efficient infrastructure

Activity 
(GWODegree)

Geometrically weighted out‑degree Represents the “radiation effect” of energy‑innovation 
suppliers across the industry

Convergence 
(GWIDegree)

Geometrically weighted in‑degree Reflects the “Matthew Effect,” where dominant energy 
standards attract more investment

Control 
variables

Geographical 
proximity

Matching city location of applicants Controls for local energy infrastructure and regional 
environmental policies

Organizational 
proximity

Shared affiliations 
(e.g., university or R&D center)

Controls for institutional influence and government‑funded 
green energy research
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4. RESULTS AND DISCUSSION

The main path analysis (MPA) clarifies the structural evolution 
of the digital agriculture innovation ecosystem by identifying 
technological trajectories that characterize the industry’s digital 
and energy transitions. Application of the search path count 
(SPC) algorithm to the citation network identified 12 distinct 
pathways that constitute the backbone of knowledge diffusion 
from 2003 to 2021. These pathways reveal a chronological 
progression from foundational GPS-based systems to advanced, 
energy-efficient integrations of artificial intelligence, the Internet 
of Things, and blockchain technologies, reflecting the increasing 
global demand for sustainable, traceable food systems. Table 3 
presents a comprehensive summary of these principal diffusion 
pathways, emphasizing their thematic focus, duration, and primary 
geographical centers of innovation.

Table 3 provides an overview of the main technological diffusion 
pathways identified within the digital agricultural innovation 
network. Each pathway constitutes a distinct cluster of patents, 
connected by citation linkages, which reveal the progression of 
digital and energy-efficient technologies over time. The durations 
correspond to active developmental periods, while the descriptions 
emphasize dominant themes, ranging from foundational GPS 
management (Alpha) to advanced artificial intelligence and smart 
irrigation controls (Nu) that contribute to reduced marginal energy 
costs. The identified geographic locations serve as innovation hubs, 
demonstrating the spatial concentration of development in cities 
such as Beijing and Wuhan, which utilize regional energy policies 
to stimulate growth. Collectively, these pathways demonstrate 
the multi-directional and regionally diverse character of digital 
agricultural innovation, signifying the ongoing transition toward 
a zero-carbon agro-industrial ecosystem.

4.1. Analysis of the Formation Mechanism
The exponential random graph model (ERGM) analytical 
outcomes were ascertained utilizing the Statnet package within 
the R programming environment. The inferential procedure 
employed was the Markov chain Monte Carlo maximum likelihood 
estimation (MCMC MLE).

Table  4 shows the exponential random graph model (ERGM) 
estimates for four model specifications. The Null Model measures 
the baseline network density and reports a significant negative 
coefficient for Edges. This result indicates that the network is 
very sparse, a common feature of innovation ecosystems where 
collaboration is selective rather than random.

The Network Structure Model finds strong, positive, and significant 
coefficients for Gwesp, Gwidegree, and Gwodegree. This confirms 
that the agricultural innovation ecosystem is shaped by internal 
structural processes. The significant Gwesp value indicates a 
strong tendency toward closed triads, suggesting that collaborative 
groups form around shared technologies or institutional ties. The 
positive in-degree and out-degree results point to influential hub 
nodes that either attract or spread knowledge more than others.

The Node Attribute Model adds characteristics at the actor level. 
R&D Intensity and Farmer Engagement have small negative 
effects and are only significant in the Comprehensive Model. This 
suggests that actors with higher R&D intensity and more active 
farmer involvement are more selective in their collaborations. 
In contrast, Policy Framework Alignment and Technology 
Development Pace have strong, positive effects. This means 
that actors who align with national digital and energy transition 
policies are much more likely to form connections. These variables 
stay highly significant in the comprehensive model, showing 

Table 3: Principal diffusion pathways for digital agricultural technologies
Pathway Nodes Duration Description of diffusion path Key patents Primary locations
Alpha 26 2012‑2017 Early diffusion of GPS‑based farm management 

technologies.
[Altered patent IDs] Suzhou, Wuxi

Beta 48 2007‑2020 Propagation of digital algorithms for precision farming and 
drone‑enabled crop automation.

[Altered patent IDs] Beijing, Wuhan, 
Guangzhou

Gamma 15 2015‑2020 Integration of IoT and blockchain for agri‑food supply chain 
traceability.

[Altered patent IDs] Beijing, Jinan, Hangzhou

Delta 18 2003‑2018 Adoption of cloud analytics for agro‑ecological and climate 
forecasting.

[Altered patent IDs] Tianjin, Qingdao

Epsilon 34 2006‑2018 AI‑driven drone navigation for precision input application. [Altered patent IDs] Nanjing, Harbin, Shanghai
Zeta 97 2003‑2020 Advancement of sensor‑based systems for real‑time soil and 

crop health diagnostics.
[Altered patent IDs] Shenzhen, Chengdu, Taipei

Eta 23 2009‑2021 Computational imaging for automated sorting and early 
disease detection.

[Altered patent IDs] Chengdu, Guangzhou, 
Shenzhen

Theta 22 2009‑2021 Precision guidance and control in autonomous agricultural 
machinery.

[Altered patent IDs] Shenyang, Shenzhen, 
Chongqing

Iota 19 2004‑2021 Visual identification and sensing for livestock tracking and 
health monitoring.

[Altered patent IDs] Lanzhou, Xi’an, 
Zhengzhou

Kappa 17 2010‑2019 Smart control and optimization of microgrid systems for 
agricultural energy management.

[Altered patent IDs] Wuhan, Changzhou, 
Tianjin

Lambda 21 2010‑2020 Neural‑network applications in agricultural surveying and 
material inspection.

[Altered patent IDs] Hangzhou, Beijing

Mu 450 2006‑2020 Large‑scale diffusion of advanced image processing for 
farm monitoring and pest detection.

[Altered patent IDs] Nanjing, Xi’an, Shenzhen, 
Hangzhou

Nu 55 2008‑2021 Smart system controls for agricultural robots and precision 
irrigation devices.

[Altered patent IDs] Shanghai, Ningbo, Wuhan
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their importance. The control variables act as expected. Market 
dynamics influence and environmental sustainability impact are 
both positive and significant. This suggests that organizations 
focused on the market or sustainability tend to collaborate more 
often within the innovation ecosystem. Model fit improves with 
each specification, and the comprehensive model fits best, as 
indicated by the lowest AIC and BIC values. This means that 
both the network’s internal structure and the characteristics of 
individual actors help explain how collaborative ties form in digital 
and energy transition technologies in agriculture.

The node attribute model looks at characteristics at the actor level. 
“R&D Intensity in Agriculture” (−0.069) and “Farmer Engagement 
Level” (−0.011) both have small, statistically insignificant negative 
effects, which means these factors alone do not significantly 
increase tie formation. However, when all variables are included 
in the comprehensive model, structural and contextual factors have 
a stronger impact. The “Edges” coefficient drops further to −8.989 
(P < 0.001). “Policy Framework Alignment” (7.570, P < 0.001) 
and “Technology Development Pace” (2.198, P < 0.001) both 
have strong positive effects, showing their key roles in shaping 
collaboration. The control variables, market dynamics influence 
(0.608, P < 0.001) and environmental sustainability impact 
(1.282, P < 0.001), stay positive and significant. This suggests 
that organizations focused on markets and sustainability are more 
likely to form network ties.

The model fit gets better with each specification. Both AIC and BIC 
values drop a lot from the null model (AIC 13,762.4; BIC 13,773.9) 
to the comprehensive model (AIC 11,510.1; BIC 11,625.6). 
This shows that the network is best explained when combining 

structure, node-level, and contextual factors. Overall, these results 
suggest that digital agricultural innovation depends much more 
on structural clustering and policy-technology alignment than on 
individual organizational traits.

Table  5 presents a numerical summary of the Exponential 
Random Graph Model (ERGM) analysis for the digital agriculture 
innovation network. This table enables a direct comparison 
of outcomes across model specifications. Among the network 
endogenous variables, the “Edges” variable exhibits a clear 
trend: as model complexity increases from the null model to 
the comprehensive model, the negative relationship becomes 
more pronounced, indicating a robust and consistent pattern. 
The coefficient’s absolute value increases and remains highly 
significant (P < 0.001), which suggests the network is less dense 
than would be expected by chance. This finding highlights the 
selective nature of relationships within the network. The positive 
coefficients for “Gwesp (Closed Triads)” (3.769 and 2.858 in the 
Network Structure and Comprehensive Models, respectively; 
P < 0.001) indicate a strong tendency toward triadic closure, 
characteristic of cohesive subgroups. The “Gwodegree” and 
“Gwidegree” variables also remain positive and significant across 
models, demonstrating that nodes with higher connectivity are 
central to the network’s structure.

The node attribute variables provide additional insights. “R&D 
Intensity in Agriculture” does not reach statistical significance, 
while “Farmer Engagement Level” approaches significance in the 
Comprehensive Model (P < 0.05), indicating a marginal negative 
effect on network connections. In contrast, “Policy Framework 
Alignment” and “Technology Development Pace” exhibit strong 

Table 4: ERGM model parameters for the digital and energy transitions in the agricultural innovation ecosystem
Variables Null model Network structure model Node attribute model Comprehensive model
Network endogenous variables

Edges −7.321*** −8.099*** −7.569*** −8.989***
−0.041 −0.109 −0.161 −0.209

Gwesp (closed triads) 3.769*** 2.858***
−0.268 −0.285

Gwodegree (out‑degree) 0.519*** 1.577***
−0.116 −0.141

Gwidegree (In‑degree) 2.896*** 3.037***
−0.147 −0.148

Node attribute variables
R&D intensity in agriculture −0.069 −0.113*

−0.051 −0.062
Farmer engagement level −0.011 −0.017*

−0.008 −0.007
Policy framework alignment 4.715*** 7.570***

−0.559 −0.74
Technology development pace 1.975*** 2.198***

−0.075 −0.084
Control variables

Market dynamics influence 0.595*** 0.608***
−0.071 −0.073

Environmental sustainability impact 1.195*** 1.282***
−0.079 −0.082

Goodness of fit
AIC 13762.4 13252.96 12252.62 11510.1
BIC 13773.92 13298.02 12333.52 11625.55

*P < 0.05, **P < 0.01, ***P < 0.001
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positive effects (coefficients of 7.589 and 2.211, respectively, in 
the Comprehensive Model), underscoring their central roles in the 
diffusion of digital agriculture technologies. Among the control 
variables, “Market Dynamics Influence” and “Environmental 
Sustainability Impact” remain significantly positive across all 
models, suggesting these factors facilitate the formation of 
network ties and systematically shape the network’s composition. 
Goodness-of-fit statistics further support the model’s validity. 
Both AIC and BIC decrease substantially from the Null Model 
to the Comprehensive Model (AIC: 13762.403-11510.102; BIC: 
13773.918-11625.553), indicating improved model fit as additional 
variables are incorporated. This pattern supports the suitability 
of the comprehensive model for capturing the complexity of the 
digital agriculture innovation network.

4.2. Discussion
The ERGM analysis of the digital agriculture innovation network 
reveals important patterns in how technology spreads, similar to 
those found in other ecosystem studies. The negative coefficient for 
“Edges” in all models indicates that the network forms selective 
connections, suggesting exclusivity and higher costs of building 
partnerships. This aligns with research showing that key hubs 
concentrate activity, supporting the idea that a few technological 
leaders shape the network. The positive “Gwesp” coefficients 
show that closed triads, or tight-knit groups, are common. This 
clustering is especially important in high-risk areas like energy-
efficient agriculture, where trust helps partners share knowledge 
and resources more effectively.

The model shows that some nodes gain more connections over 
time, as seen in the positive “Gwidegree.” This matches the idea of 
cumulative advantage, or the “Matthew Effect,” where established 
standards attract more innovation. The strong positive effects for 
“Policy Framework Alignment” and “Technology Development 
Pace” support research that highlights good policy as a key 
driver for innovation ecosystems. These factors are important for 
encouraging the adoption and spread of sustainable technologies 
across borders.

Interestingly, the variable “Farmer Engagement Level” presented 
only marginal significance, reflecting the systemic barriers that 
limit the influence of smaller stakeholders in shaping large-scale 

innovation trajectories, despite their central role as end-users. 
Conversely, the variable “Farmer Engagement Level” showed 
only a small effect, suggesting that smaller stakeholders face 
barriers to shaping large-scale innovation, even though they are 
key end-users. In contrast, “Market Dynamics Influence” and 
“Environmental Sustainability Impact” both have a positive effect 
on how the network forms. This supports the idea that market 
forces and sustainability are major drivers of innovation today. 
These factors are becoming increasingly important for tackling 
global issues such as food security and climate change. The model 
fits the data well, as shown by much lower AIC and BIC values, 
indicating that combining network structure with specific node 
features provides the best picture of digital farming innovation. 
This approach helps explain how technology, economics, and law 
all interact to shape the spread of digital agriculture.

4.3. Policy Implementation and Recommendations
The results of this structural analysis provide important insights 
for stakeholders across the agricultural value chain, including 
policymakers, agri-tech enterprises, academic institutions, and end 
users. The selective structure of innovation networks suggests that 
interventions should prioritize facilitating strategic collaborations 
rather than broadly diffusing technology. Strengthening innovation 
hubs can streamline the transfer of technical capital and promote 
energy-efficient practices. For regulators, the strong impact of 
policy alignment underscores that legal frameworks and financial 
incentives are primary drivers of accelerating the adoption of 
digital-energy solutions. The frequent occurrence of closed triads 
within the network suggests that development programs should 
promote trust-based clusters among agricultural enterprises. 
Initiatives such as cross-sector workshops and research and 
development partnerships can help reduce the high transaction 
costs associated with capital-intensive digital infrastructure.

Additionally, the limited influence of individual farmers on broader 
innovation trajectories highlights the necessity for inclusive 
development strategies. Involving farmers through participatory 
research and targeted extension services can help bridge the digital 
divide and ensure equitable distribution of technological benefits. 
Moreover, since market dynamics and environmental sustainability 
are key drivers of network formation, agritech firms should align 
product development with global consumer demands for durability, 

Table 5: Key findings from ERGM analysis for the digital and energy transitions in the agricultural innovation network
Variable category Variable name Significance across 

models
Direction of 
relationship

Goodness of fit improvement

Network endogenous variables Edges Increased significance Negative Improved in comprehensive
Gwesp (Closed Triads) Significant in All Positive ‑
Gwodegree (Out‑degree) Significant in All Positive ‑
Gwidegree (In‑degree) Significant in All Positive ‑

Node attribute variables R&D Intensity in Agriculture Not Significant Negative ‑
Farmer Engagement Level Marginally Significant Negative ‑
Policy Framework Alignment Increased Significance Positive Improved in comprehensive
Technology Development Pace Significant in All Positive ‑

Control variables Market Dynamics Influence Significant in All Positive ‑
Environmental Sustainability 
Impact

Significant in All Positive ‑

Goodness of fit statistics AIC ‑ ‑ Decreased in comprehensive
BIC ‑ ‑ Decreased in comprehensive



Rustenova, et al.: Digital and Energy Transitions in the Agro-Industry: An Economic Analysis of Technology Diffusion and Sustainable Innovation Pathways

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026390

food security, and carbon reduction to maintain competitiveness 
in the evolving global market.

5. CONCLUSION

An examination of the digital agriculture innovation ecosystem 
clarifies the complex mechanisms underlying technological and 
energy transitions. Empirical evidence demonstrates that network 
connections are highly selective, favoring cohesive clusters 
and following the principle of cumulative advantage, in which 
dominant standards drive industry convergence. The findings 
highlight the critical importance of policy alignment and rapid 
technological evolution, indicating that sustainable transformation 
depends on robust regulatory planning and continuous investment 
in research and development.

Although individual farmers currently have limited influence on 
the broader innovation structure, their inclusion is essential for 
achieving long-term systemic resilience and equitable growth. 
The practical implications are evident: A resilient digital farming 
system relies on strategic collaboration, alignment of innovation 
incentives with environmental objectives, and integration of 
smallholder perspectives. As the agro-industry evolves, these 
findings offer a robust empirical foundation for balancing the 
complex demands of market forces, resource efficiency, and 
productivity through advanced technological solutions.

Despite the ERGM analysis offers valuable insights, this study 
has some limitations. Using only formal patent citation data might 
miss informal knowledge sharing and new connections among 
small-scale innovators or niche agritech startups. Although the 
model includes structural and node attributes, it may not fully 
reflect socio-cultural behaviors or outside political events that can 
affect technology diffusion. Also, because the network analysis is 
static, it cannot show how things change in real time.

Future research should use a wider range of data sources, such 
as field surveys or interviews, to better understand informal 
innovation. Long-term studies are also needed to follow how 
these networks change as technology and the global economy 
shift. Comparing different regions or agricultural sub-sectors could 
help identify what drives success and the best practices for digital 
farming across different social and economic settings.
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