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ABSTRACT

This study investigates the dynamic interplay among agricultural growth, total energy consumption, renewable energy penetration, and CO₂ 
emissions in Kazakhstan, using annual data for 2001-2024. Augmented Dickey-Fuller diagnostics classify all series as I(1), and information 
criteria favor a parsimonious VAR(1). Variance decompositions indicate that agricultural growth is primarily driven by own shocks, with a growing 
medium-horizon contribution from CO₂. Total energy use remains largely self-propelled, accompanied by modest spillovers from agriculture 
and a gradual feedback from emissions. The renewable share increasingly reflects movements in total energy demand at longer horizons, while 
agriculture contributes a smaller but persistent portion; the direct role of CO₂ in renewable dynamics is negligible under orthogonalized innovations. 
Emissions variability is governed chiefly by shocks to aggregate energy demand and by own persistence. Pairwise Granger tests uncover a 
single predictive channel - total energy use Granger-causing the renewable share - whereas other pairs do not exhibit short-run directionality 
at conventional thresholds. Taken together, the evidence portrays a demand-led nexus in which aggregate energy conditions steer near-term 
adjustments, agricultural performance reflects internal dynamics and environmental pressure, and emissions co-move with energy demand. The 
findings underscore policy relevance for demand management, grid integration with bankable procurement of renewables, and climate-smart 
upgrades in irrigation and inputs.
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JEL Classifications: C32, Q42, Q43, Q54

1. INTRODUCTION

Kazakhstan’s development path combines high overall energy 
demand, a still-modest but gradually expanding base of renewables, 
and a climate-sensitive agricultural sector that remains central to 
rural livelihoods. In this context, clarifying how total energy use, 
the renewable share, and CO₂ emissions relate to agricultural 
performance is not just an academic exercise; it is foundational 
for reconciling productivity, resilience, and decarbonization 

objectives. Recent country studies point to asymmetric real-
sector responses to energy-linked shocks and other external 
drivers, suggesting that commodity-market conditions can 
filter into domestic production structures and sectoral output 
(Baisholanova et al., 2025; Beisenova et al., 2025). Sector-level 
evidence for Kazakhstan further indicates non-linear emissions 
income relationships across energy, agriculture, and industry, 
consistent with EKC-type dynamics and heterogeneous turning 
points (Issayeva et al., 2024).
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International research provides a structured lens for interpreting 
these interactions. Foundational work on energy, growth, and 
the environment shows that environmental outcomes co-evolve 
with income via scale, composition, and technique effects, with 
turning points that depend on structural features and technology 
(Stern, 2011; Pao and Tsai, 2011). A broad empirical literature 
also finds that aggregate energy demand and fossil intensity 
are first-order determinants of carbon outcomes, while sectoral 
composition and openness condition the magnitude and timing of 
responses (Apergis and Payne, 2010; Omri, 2013). These insights 
motivate a practical distinction between the “demand/intensity” 
margin  -  total energy consumption  -  and the “composition/
transition” margin - renewable penetration - when tracing how 
energy conditions map into emissions and real activity.

A complementary strand suggests that total energy shocks tend 
to dominate the short run, whereas the benefits of renewables 
accumulate more slowly. Multi-country studies frequently report 
that movements in total energy use anchor near-term emissions 
dynamics, while mitigation through renewables unfolds with lags 
tied to grid integration, finance, and policy credibility (Shafiei and 
Salim, 2014; Zoundi, 2017). Recent evidence links the depth and 
mix of renewable technologies to national carbon intensity, with 
stronger gains as systems add flexibility, storage, and cross-border 
interconnection (Sarkodie and Strezov, 2019; Destek and Aslan, 
2020). For agriculture, these system characteristics matter: input 
costs, irrigation and processing energy needs, and exposure to 
climate risk shape yields, technology adoption, and investment 
behavior.

Against this backdrop, Kazakhstan presents a distinctive 
configuration: a fossil-reliant legacy, a gradual renewable rollout, 
and a large agricultural base. In such a setting, movements in 
total energy demand can anchor near-term emissions, while 
the renewable channel strengthens as integration and capacity 
expand. Agriculture may both respond to the energy - emissions 
environment and feed back into energy pathways through 
technology choices and shifts along the value chain. Framing 
agricultural growth alongside total energy use, the renewable 
share, and CO₂ emissions therefore addresses a policy-relevant 
gap for a resource-dependent economy: it clarifies whether the 
dominant transmission margin lies in demand, composition, or 
environmental pressure  -  and how the timing and strength of 
these channels map into sectoral performance and sustainable 
development (Baisholanova et al., 2025; Issayeva et al., 2024).

2. LITERATURE REVIEW

Evidence from the energy-environment-growth literature suggests 
that agriculture responds to both fossil energy demand and 
the speed of the renewable transition. In this review, we focus 
on studies that inform a Kazakhstan-specific VAR in which 
agricultural growth is the outcome and total energy use, renewable 
energy, and CO₂ serve as the driving variables.

Zhang et al. (2019) assess farm-sector carbon performance 
across China’s major grain regions using a sector-focused 
panel design that distinguishes agricultural mechanisms from 

aggregate dynamics. The analysis identifies agricultural energy 
intensity as the central driver of CO₂ in the rural economy, and 
shows that output growth interacts with emissions in a non-
linear way consistent with an EKC profile. Robustness checks 
across alternative specifications underscore the roles of structural 
upgrading and energy-efficiency improvements in lowering the 
carbon footprint without sacrificing yields. Spatial heterogeneity 
is also noted: provinces with more modern input mixes tend to 
decouple earlier. By mapping agriculture-specific channels rather 
than relying on economy-wide proxies, the study offers parameters 
and identification cues that carry directly into VAR settings where 
agricultural output is the dependent variable and energy measures 
act as drivers. Such sectoral granularity is especially useful for 
tracing short-run transmission and allocating shock contributions 
to forecast variance in agriculture-focused models.

Chidiebere-Mark et al. (2022) explore interactions among 
agricultural output, renewable uptake, FDI, and CO₂ across 
African economies using ARDL-style time-series and panel 
methods. Greater penetration of renewables is associated with 
lower emissions, whereas capital inflows and intensive input 
use can raise carbon intensity where technologies are weak or 
power systems remain carbon-heavy. Elasticities differ by country 
group and horizon, pointing to multiple propagation routes. This 
heterogeneity supports a multivariate specification capable of 
separating whether changes in renewable shares anticipate shifts in 
agriculture-related emissions or, alternatively, whether agricultural 
expansions feed back into the composition of the energy mix.

Tleppayev and Zeinolla (2023) document a durable positive link 
between Kazakhstan’s economic activity and CO₂ emissions, 
highlighting how decarbonization is difficult without a 
reconfiguration of the energy structure. National institutions 
and pricing are emphasized as additional constraints shaping 
the trajectory. These patterns argue for treating emissions as 
endogenous to macro-energy conditions in country-specific VAR 
systems, where agriculture can be modeled as the outcome of 
shocks to total energy use and the carbon pathway.

Sadorsky (2009) analyzes G7 data with panel cointegration and 
error-correction techniques to connect renewable consumption, 
emissions, and oil price dynamics. Long-run relations indicate 
that income and carbon pressures stimulate renewable uptake, 
while higher renewable use aligns with reduced emissions over 
time. Oil prices act as external signals that influence the energy 
mix and the speed of transition. For VAR applications, this implies 
modeling renewable and total energy jointly, letting energy-price 
shocks enter the system and allocating variance across fossil and 
renewable channels.

Halicioglu (2009) applies bounds testing and cointegration to 
uncover a long-run equilibrium in which energy consumption 
and income dominate Turkey’s emissions trajectory, with trade 
openness also shaping outcomes. Short-run adjustments reveal 
meaningful error-correction toward the long-run path. Structurally, 
this places total energy use at the heart of causal ordering - an 
approach that matches VAR designs testing whether energy 
shocks forecast near-term movements in real-sector indicators 
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and the carbon path, particularly when agriculture is specified as 
the response variable.

Chebbi and Boujelbene (2008) analyze Tunisia’s growth-energy-
emissions links using country-level time-series tools and report 
persistent connections between energy use and CO₂. Periods of 
expansion coincide with inefficient energy intensity, limiting 
progress on decarbonization. The evidence points toward 
multivariate frameworks that can capture feedback between 
output and energy demand and trace the transmission of shocks 
to emissions and sectoral activity.

Ridzuan et al. (2020) evaluate multi-country panel data within an 
EKC framework and find that renewable consumption is associated 
with lower CO₂, while agriculture and income exhibit non-linear 
effects. Results remain robust across alternative estimators and 
control sets, suggesting that both scale and composition effects 
are operative. The interplay motivates VAR-based designs that 
test whether renewable expansion can offset agriculture-related 
emissions and whether agriculture-specific shocks propagate 
differently from energy shocks; distinguishing these channels is 
essential for forecasting and for assigning variance contributions 
across horizons.

Zhai et al. (2024) analyze Kazakhstan’s energy-growth nexus 
using national time-series evidence and report bidirectional 
associations between energy use and output. Feedback effects 
help sustain energy intensity when structural change is limited, 
with implications for both emissions and sectoral performance. 
A joint system in which energy and output co-evolve provides a 
natural basis for extending shocks to downstream outcomes such 
as agricultural growth.

Triantafyllidou and Polychronidou (2025) present EU-wide 
evidence linking fossil and renewable energy consumption to 
emissions and growth in an empirical panel framework with 
dynamic specifications. Fossil energy exerts a strong positive effect 
on CO₂, while renewables provide a statistically significant-though 
smaller-mitigating influence. Dynamic responses and variance-
style metrics assign a larger share of emissions uncertainty to 
fossil-energy shocks. For VAR practice, the implication is direct: 
include both total and renewable energy as distinct drivers and 
allow their innovations to transmit to real-sector outcomes, 
including agriculture, through short-run channels that can be 
identified and quantified.

3. METHOD

Joint dynamics are examined with a Vector Autoregression, 
VAR(𝑝), in which all series are endogenous and respond to both 
own lags and the lags of the remaining series (Sims, 1980). Let 
yt ∈ ℝk be the k-vector of variables at time t. The general form of 
VAR is:

yt = μ + A1 yt-1 + A2 yt-2 +⋯+ Ap yt-p + ut� (1)

Where μ collects intercepts, Ai are coefficient matrices, and ut are 
reduced-form innovations with covariance Σu. Each equation is 

estimated by OLS; because the regressor set is identical across 
equations, this yields consistent and asymptotically efficient 
reduced-form estimates (Lütkepohl, 2013).

Prior to estimation, series are scaled consistently and assessed for 
stochastic trends using the Augmented Dickey-Fuller unit-root 
test (Dickey and Fuller, 1979; Said and Dickey, 1984). The ADF 
results determine whether variables enter the system in levels or 
after standard transformations. To keep the analysis coherent, 
the chosen representation is then applied unchanged across all 
VAR outputs  -  lag selection, coefficient estimation, variance 
decomposition, and causality testing - so that results are directly 
comparable (Lütkepohl, 2013).

Lag order 𝑝 is selected using the standard VAR lag-length 
criteria: the Akaike Information Criterion (AIC), the Schwarz/
Bayesian Information Criterion (SC/BIC), and the Hannan-Quinn 
(HQ) measure, complemented by the Final Prediction Error 
(FPE) and sequential likelihood-ratio (LR) tests. These criteria 
balance in-sample fit against parsimony, helping to avoid over-
parameterization in small samples (Akaike, 2003; Schwarz, 1978; 
Hannan and Quinn, 1979; Akaike, 1969). The selected 𝑝 is then 
held fixed for all subsequent procedures, ensuring a single dynamic 
structure underlies the reported tables (Sims, 1980).

With 𝑝 fixed, Vector Autoregression estimates are reported by 
equation, with attention to the sign and statistical significance 
of lagged effects to characterize short-run transmission across 
variables. For variance decomposition, forecast-error variance 
for each variable is attributed to orthogonalized reduced-form 
innovations obtained from a lower-triangular factorization of Σu. 
The economically motivated ordering is stated explicitly, and 
variance shares are reported at conventional horizons to quantify 
the relative importance of shocks within the same reduced-form 
and lag structure as the regression estimates (Lütkepohl, 2013).

Finally, predictive linkages within the estimated VAR(𝑝) are 
assessed using pairwise Granger causality tests. These are 
implemented as Wald/F tests of joint zero restrictions on the lagged 
coefficients of a candidate predictor in a target equation; rejection 
indicates that the predictor’s lags add incremental forecasting 
content in the VAR setting (Granger, 1969). The pipeline - ADF 
pre-tests, information-criterion-based lag selection, OLS 
reduced-form estimation, variance decompositions under a stated 
orthogonalization, and Granger tests with the same 𝑝 - provides 
a compact, reproducible VAR methodology suitable for applied 
macro-energy research (Lütkepohl, 2013; Sims, 1980).

4. FINDINGS

This research examines how agricultural growth, total energy 
consumption, renewable energy adoption, and CO₂ emissions co-
evolve in Kazakhstan. Agricultural growth - represented by the 
Agricultural Production Index - serves as the outcome variable, 
reflecting sectoral performance that is central to sustainable 
development. Total energy consumption, expressed in kilograms 
of oil equivalent per capita, captures the scale and intensity of 
energy demand. The share of renewable energy in total final 
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consumption is used to track the pace of the energy transition. 
CO₂ emissions, measured in metric tons of CO₂-equivalent, outline 
the environmental burden that conditions production and broader 
sectoral dynamics.

Variable definitions and data provenance for Kazakhstan’s 
agriculture-energy-emissions system are summarized in Table 1. 
The empirical sample spans 2001-2024. The research data were 
retrieved from https://data.worldbank.org and https://w3.unece.
org (Date of Access: September 09, 2025).

The sample exhibits stable descriptive and distributional features, 
as reported in Table 2. Across 2000-2024, AGRI averages 4.48 with 
a standard deviation of 0.27; ENRC averages 8.15 (0.19); RENE 
averages 1.86 (0.44); and CO2E register 5.36 (0.21). Jarque-Bera 
probabilities of 0.40, 0.23, 0.82, and 0.09, respectively, indicate 
no rejection of normality at the 5% level, validating these series 
for subsequent VAR-based inference.

The time path of agricultural output, total energy consumption, 
renewable share, and CO₂ emissions is reported in Graph 1. 
AGRI follows a clear upward trajectory from 2000, with brief 
dips around 2009 and 2015, and then advances to record levels 
after 2018. ENRC climbs steadily through 2011-2012, contracts 
in 2014-2016, and settles on a lower plateau from 2017 onward, 
signaling a break from the prior growth trend. RENE remains 
small (≈1-3%), falls through the late-2000s and early-2010s, 
and then edges higher after 2015, indicating a slow but ongoing 
re-entry of renewables into the mix. CO2E largely mirror 
total energy use: a sustained rise to an early-2010s peak, a 
pronounced drop in 2015-2017, and a partial rebound to a near-
flat level thereafter. Co-movement between ENRC and CO2E is 
pronounced, whereas AGRI rises mostly independent of short-run 
energy fluctuations, and the small RENE implies only limited 
aggregate mitigation.

Augmented Dickey-Fuller diagnostics indicate that none of the 
series rejects the unit-root null in levels, while each rejects it after 
first differencing in Table  3. Accordingly, agricultural growth 
(AGRI), energy consumption (ENRC), renewable energy share 
(RENE), and CO₂ emissions (CO2E) are treated as integrated 
of order one, I(1), over 2000-2024. This pattern is typical of 
macro-energy indicators that evolve with persistent trends and 
occasional structural shifts. Modeling choices therefore rely on 
stationary transformations to ensure that estimated short-run 
dynamics capture genuine co-movements rather than shared drifts. 
Taken together, the ADF evidence provides a consistent statistical 
basis for the subsequent VAR specification, interpretation of 
transmission mechanisms, and comparison of results across 
procedures.

Lag selection is assessed with the sequential LR test, the Final 
Prediction Error, and the AIC/SC/HQ information criteria, as 
reported in Table  4. All three information criteria reach their 
lowest values at one lag, and FPE is also minimized at P = 1. The 
LR statistic clearly rejects a zero-lag specification in favor of one 
lag at the 5% level, while the additional move to P = 2 offers no 
meaningful improvement. Although the log-likelihood increases 
when more lags are added, the associated penalties in AIC/SC/HQ 
outweigh these small gains at P = 2, signaling diminishing returns 
and potential over-parameterization for an annual sample of this 
size. With roughly two dozen usable observations after adjustments, 
a parsimonious structure helps control estimation uncertainty and 
preserves degrees of freedom for downstream analysis. Taken 
together, the criteria align on a baseline VAR(1), which balances fit 
and tractability and is well suited for tracing short-run transmission, 
variance decomposition, and Granger causality.

On impact, AGRI is explained entirely by its own innovations; 
external shocks begin to matter only as the forecast horizon 
extends in Table 5. The own contribution declines from 100% 
to roughly three-fifths by period 10, while the share attributed to 
CO2E rises steadily to about two-fifths, pointing to a substantive 
environmental transmission channel. In contrast, contributions 
from ENRC and RENE remain consistently small across 
horizons - each staying below roughly 2% even at longer leads. 
Taken together, CO2E shocks are the dominant external force 
behind AGRI fluctuations, whereas ENRC and RENE provide 
only limited incremental explanatory power.

ENRC is predominantly driven by its own innovations across 
horizons: the own share falls from about 93% on impact to 

Table 2: Descriptive statistics findings of variables
Statistics AGRI ENRC RENE CO2E
Mean 4.476629 8.154698 1.860000 5.363428
Median 4.535820 8.191115 1.900000 5.427958
Maximum 4.862522 8.443715 2.800000 5.656689
Minimum 3.925926 7.704171 1.100000 4.871154
Standard deviation 0.268393 0.192332 0.436845 0.213716
Skewness −0.264404 −0.839137 −0.008570 −1.073223
Kurtosis 1.784387 3.196775 2.392069 3.256100
Jarque‑Bera 1.830577 2.974292 0.385285 4.867518
Probability 0.400401 0.226017 0.824777 0.087707

Table 3: Results of the ADF unit root test
Variable Level 1st difference

t‑ Statistics P value t‑ Statistics P value
AGRI −1.153613 0.6760 −14.09324 0.0000
ENRC −2.374618 0.1589 −4.482451 0.0019
RENE −1.880682 0.3351 −4.320027 0.0028
CO2E −2.404640 0.1510 −4.278562 0.0030
Test critical values

1% level −3.752946 −3.752946
5% level −2.998064 −2.998064
10% level −2.638752 −2.638752

Table 1: Variable definitions and sources
Variable Short description Source
AGRI Agricultural production index https://

w3.unece.org
ENRC Energy consumption (kg of oil 

equivalent per capita)
https://data.
worldbank.org

RENE Renewable energy consumption 
(% of total final energy consumption)

https://data.
worldbank.org

CO2E Total carbon dioxide (CO2) emissions 
(Mt CO2e)

https://data.
worldbank.org
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Graph 1: Research variables time series graph

Table 4: VAR lag length criteria
Lag LogL LR: Sequential modified LR test 

statistic (each test at 5% level)
FPE: Final 

prediction error
AIC: Akaike 

information criterion
SC: Schwarz 

information criterion
HQ: Hannan‑Quinn 
information criterion

0 50.88708 NA 1.99e‑07 −4.077137 −3.879660 −4.027472
1 96.92328 72.05666* 1.50e‑08* −6.688981* −5.701595* −6.440656*
2 111.7664 18.06985 1.93e‑08 −6.588380 −4.811085 −6.141396

Table 5: Variance decomposition of AGRI
Variance period Decomposition standard error LOG_AGRI LOG_ENRC RENE LOG_CO2E
1 0.141088 100.0000 0.000000 0.000000 0.000000
2 0.180840 69.48031 0.023843 0.897639 29.59820
3 0.200487 67.24239 0.392125 0.865880 31.49961
4 0.212160 64.62201 0.358402 0.821128 34.19846
5 0.219212 63.17785 0.376647 0.803270 35.64223
6 0.223847 62.00243 0.537118 0.777886 36.68256
7 0.227037 61.09452 0.783165 0.756998 37.36531
8 0.229311 60.38550 1.048637 0.742147 37.82372
9 0.230950 59.84726 1.288616 0.732438 38.13169
10 0.232137 59.44578 1.485980 0.726258 38.34198

Table 6: Variance decomposition of ENRC
Variance period Decomposition standard error LOG_AGRI LOG_ENRC RENE LOG_CO2E
1 0.094451 6.752830 93.24717 0.000000 0.000000
2 0.133049 8.935231 86.64530 1.847575 2.571895
3 0.147736 8.306121 86.20880 2.384193 3.100891
4 0.154480 7.841034 85.71044 2.665739 3.782786
5 0.157473 7.558006 85.35257 2.766102 4.323320
6 0.158952 7.424518 85.01452 2.796181 4.764782
7 0.159762 7.380118 84.72030 2.799142 5.100440
8 0.160255 7.377813 84.47758 2.794155 5.350455
9 0.160579 7.391542 84.28721 2.787919 5.533334
10 0.160801 7.408687 84.14277 2.782477 5.666070

roughly 84% by period 10 in Table  6. AGRI shocks account 
for a stable secondary portion - around 7-9% initially and near 
7.4% at longer leads - indicating limited but persistent spillovers 
from the real sector. The influence of CO2E rises monotonically 
from near zero to about 5-6% by period 10, suggesting a gradual 
environmental feedback into energy demand. RENE shocks 
contribute the least (≈2-3% at longer horizons), implying that 

shifts in the renewables ratio have only a weak short-run effect on 
aggregate ENRC. Overall, ENRC dynamics are self-driven, with 
modest contributions from agriculture and emissions and minimal 
renewable-induced variance.

RENE is driven by its own shocks at the outset, but this influence 
fades quickly as the horizon lengthens in Table 7. By the tenth 
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period, movements in ENRC account for the largest share of 
forecast-error variance  -  around three-fifths  -  signaling that 
aggregate energy demand and system constraints largely steer 
renewable uptake. AGRI contributes a smaller yet durable 
portion  -  roughly one-quarter  -  consistent with sectoral 
complementarities and investment co-movements. The role of 
CO2E remains negligible across horizons, indicating limited direct 
emissions-led adjustments under the chosen orthogonalization. 
Overall, RENE dynamics appear chiefly demand-led, with own 
shocks dissipating relatively quickly.

CO2E variability is driven chiefly by shocks to ENRC: İnnovations 
in ENRC explain roughly three-quarters of the forecast-error 
variance across horizons in Table 8. Own-shock persistence is 
the next most important factor, with the CO2E component rising 
from about one-fifth to nearly one-quarter by the tenth period, 
indicating a durable emissions process. Contributions from AGRI 
and RENE remain small and stable - generally around 1-2% - once 
system-wide energy shocks are orthogonalized. Taken together, 
the decomposition portrays emissions as largely demand-led by 

aggregate ENRC, with modest self-propagation and only limited 
incremental roles for AGRI and RENE over the forecast horizon.

Using annual observations for 2000-2024 and a one-lag 
specification, the Granger causality tests reveal limited short-run 
predictability among agricultural growth (AGRI), total energy 
consumption (ENRC), the renewable share (RENE), and CO₂ 
emissions (CO2E) are shown in Table  9. One linkage stands 
out: ENRC → RENE. Innovations in aggregate ENRC possess 
incremental forecasting power for subsequent movements in the 
RENE, whereas the reverse direction does not clear conventional 
significance thresholds. No other pairs display reliable directional 
effects at this horizon, suggesting that the remaining interactions 
are predominantly contemporaneous or adjust more slowly than 
a 1-year lag captures.

In Kazakhstan’s setting, the ENRC → RENE result is consistent 
with a demand-led energy system: changes in overall energy 
conditions precede adjustments in the RENE, while AGRI and 
CO2E offer little short-run predictive content for each other or 

Table 8: Variance decomposition of CO2E
Variance period Decomposition standard error LOG_AGRI LOG_ENRC RENE LOG_CO2E
1 0.080038 1.795434 69.80688 0.995372 27.40231
2 0.111001 1.413810 76.17364 0.849250 21.56330
3 0.129400 1.199349 76.56096 1.342337 20.89735
4 0.139091 1.038650 76.02459 1.604364 21.33239
5 0.144452 1.029490 75.15760 1.715613 22.09730
6 0.147574 1.133343 74.29525 1.747247 22.82416
7 0.149523 1.284174 73.54734 1.747752 23.42074
8 0.150806 1.437443 72.94712 1.738594 23.87684
9 0.151682 1.570840 72.48637 1.728200 24.21459
10 0.152293 1.677880 72.14221 1.719234 24.46068

Table 9: Results of the Granger causality analysis
Null hypothesis Observations F‑statistic Probability
LOG_ENRC does not Grander Cause LOG_AGRI
LOG_AGRI does not Grander Cause LOG_ENRC

24 0.27461
0.10314

0.6057
0.7513

RENE does not Grander Cause LOG_AGRI
LOG_AGRI does not Grander Cause RENE

24 0.26099
0.12007

0.6148
0.7324

LOG_CO2E does not Grander Cause LOG_AGRI
LOG_AGRI does not Grander Cause LOG_CO2E

24 1.78844
0.02382

0.1954
0.8788

RENE does not Grander Cause LOG_ENRC
LOG_ENRC does not Grander Cause RENE

24 0.79300
13.3905

0.3833
0.0015

LOG_CO2E does not Grander Cause LOG_ENRC
LOG_ENRC does not Grander Cause LOG_CO2E

24 0.03685
0.41460

0.8496
0.5266

LOG_CO2E does not Grander Cause RENE
RENE does not Grander Cause LOG_CO2E

24 2.45462
0.78271

0.1321
0.3863

Table 7: Variance decomposition of RENE
Variance period Decomposition standard error LOG_AGRI LOG_ENRC RENE LOG_CO2E
1 0.186146 21.52645 1.615342 76.85821 0.000000
2 0.287551 25.08426 41.33600 32.79216 0.787582
3 0.361829 24.75076 53.32425 21.41125 0.514045
4 0.397104 24.00208 57.04357 13.52664 0.427708
5 0.411919 23.57098 58.35997 17.66652 0.402535
6 0.417471 23.34510 58.85109 17.40160 0.402209
7 0.419420 23.23667 59.03273 17.31938 0.411215
8 0.420080 23.18709 59.09804 17.29299 0.421876
9 0.420309 23.16515 59.11993 17.28348 0.431442
10 0.420396 23.15561 59.12601 17.27926 0.439116
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for energy variables. Taken together, the pattern complements the 
broader VAR evidence by indicating that near-term RENE uptake 
is chiefly responsive to movements in ENRC conditions rather 
than to lagged shifts in AGRI or CO2E.

5. CONCLUSION AND 
RECOMMENDATIONS

The results portray a demand-led nexus in Kazakhstan in which 
aggregate energy conditions anchor short-run adjustment. Forecast 
variance shares show AGRI driven mainly by its own shocks, 
with a tangible medium-horizon contribution from CO2E. ENRC 
remains largely self-propelled, while RENE is chiefly shaped by 
movements in ENRC; own shocks to RENE dissipate quickly, 
AGRI provides a smaller yet persistent share, and CO2E is 
negligible once shocks are orthogonalized. CO2E variability, in 
turn, reflects ENRC innovations and its own persistence. Pairwise 
Granger tests reinforce this pattern, identifying ENRC-RENE as 
the only robust link and indicating weak short-run directionality 
elsewhere. In sum, near-term dynamics originate on the energy-
demand margin; renewables and emissions adjust accordingly, 
whereas agriculture is influenced primarily by internal dynamics 
and an environmental channel.

Policy should act where transmission is strongest. In the near 
term, moderating total energy demand through industrial and 
building efficiency standards, time-of-use pricing, and demand-
response programs is most likely to register promptly in both 
renewable uptake and emissions. Converting these demand 
signals into durable capacity requires grid-side readiness: greater 
flexibility and interconnection, clearer dispatch and balancing 
rules, and a stable pipeline of competitively awarded projects 
under bankable long-term PPAs, complemented by storage and 
curtailment-reduction measures. Given the medium-run role of 
CO₂ in agricultural variance, climate-smart upgrades in irrigation, 
inputs, and post-harvest systems can bolster sectoral resilience 
without blunting output.
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