
International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026 809

International Journal of Energy Economics and 
Policy

ISSN: 2146-4553

available at http: www.econjournals.com

International Journal of Energy Economics and Policy, 2026, 16(2), 809-820.

From Data to Decision: Predictive Modeling of Oil Prices using 
AutoML and SHAP Analysis

Rihab Belguith*

Probability and Statistics Laboratory (LR18ES28), Faculty of Business and Economic Sciences, University of Sfax, Sfax, Tunisia. 
*Email: belguithrihab@gmail.com

Received: 17 Ausgut 2025	 Accepted: 13 December 2025� DOI: https://doi.org/10.32479/ijeep.22356

ABSTRACT

Machine learning and artificial intelligence (ML/AI), once regarded as opaque “black-box” methods, have become increasingly interpretable due to recent 
advances in explainable AI (XAI). This study proposes an explainable machine learning framework for forecasting crude oil prices by integrating the 
H2O AutoML platform with SHapley Additive exPlanations (SHAP), thereby achieving both high predictive accuracy and transparent interpretability. 
Using daily macro-financial data from January 2015 to September 2025 including oil stocks (XLE), the S&P 500 index, industrial production, and the 
USD index. The study trains and validates a range of ensemble models, with Gradient Boosting Machines (GBMs) emerging as the best-performing 
models. The results demonstrate strong out-of-sample forecasting accuracy, measured by RMSE in USD per barrel, across different market conditions. 
Beyond predictive performance, the explainability analysis reveals that oil stocks (XLE), capturing energy-sector equity valuations, exert the strongest 
positive influence on crude oil prices, highlighting sectoral transmission channels and portfolio rebalancing effects. In contrast, the S&P 500 and industrial 
production display nonlinear and state-dependent impacts associated with business cycle dynamics, while the USD index exhibits a predominantly negative 
relationship, consistent with commodity–currency theory. This framework provides a robust approach to oil price forecasting by integrating automated 
machine learning with interpretable analytics, offering practical insights for investors, risk managers, and policymakers in volatile energy markets.

Keywords: Oil Price Forecasting, AutoML (H2O), Energy and Financial Markets, Non-linear Effects 
JEL Classifications: Q43, C63, G17, C52

1. INTRODUCTION

Forecasting oil prices remains a central challenge at the 
intersection of energy economics, financial market stability, and 
global macroeconomic policy, given the profound economic 
and geopolitical repercussions that arise from crude oil price 
volatility. The multifaceted interactions between oil prices, 
equity markets, exchange rates, and industrial output have been 
well-documented in the literature (Nakhipbekova et al., 2020; 
Rahmouni and Al Kahtani, 2025; Alqaralleh, 2024), showing 
how shocks propagate across asset classes and national borders. 
Advanced econometric frameworks, such as the TVP-VAR (Wen 
et al., 2019) and dynamic connectedness indices (Antonakakis 
et al., 2020), have illuminated the evolving relationships among 

oil, equities, and currencies. The US dollar index, in particular, 
exerts a bidirectional influence on oil prices and financial assets 
(Liao et al., 2018; Gatfaoui, 2016), while financialization and 
innovative market structures further intensify feedback loops 
(Rizvi et al., 2022).

However, as markets become increasingly complex, nonlinear, 
and subject to regime shifts, traditional linear models often 
fall short in capturing the dynamic causal chains and latent 
risks shaping oil price formation. Recent advances in machine 
learning have yielded significant improvements in prediction 
accuracy (Lundberg and Lee, 2017; Wen et al., 2019; Liu et al., 
2019), but wide adoption of black-box models raises critical 
concerns around interpretability, especially as policymakers, 
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investors, and managers seek actionable insights that go beyond 
mere forecasts.

Addressing this gap, the present paper leverages H2O AutoML with 
integrated SHAP-based interpretability to provide not only robust, 
high-precision crude oil price predictions, but also transparent, 
granular explanations of the underlying drivers. The originality of this 
work lies in its comprehensive deployment of AutoML algorithms 
and explainable AI for oil price forecasting, a first in the literature, 
with cross-validation, feature importance rankings, SHAP summary 
and heatmap visualizations, partial dependence, and ICE plots. Using 
a daily panel covering macroeconomic and financial variables (oil 
stocks, S&P500, industrial production, USD index), models reliably 
track actual oil price movements across pre-crisis, crisis, boom, and 
stabilization regimes. Notably, oil stocks and S&P500 emerge as 
dominant predictors in both variable importance and SHAP analyses, 
with nuanced nonlinear and interaction effects revealed through PDP 
and ICE visualizations. The methodology achieves strong RMSE and 
MAE results, demonstrating generalizability and practical utility for 
energy finance stakeholders.

By integrating these domains, this research highlights the critical 
role of aligning financial systems with environmental sustainability 
to promote a more resilient and inclusive global economy. The 
remainder of the paper is organized as follows: Section 2 provides a 
review of the relevant literature, Section 3 outlines dataset, Section 
4 presents methodology, Section 5 presents the empirical findings, 
Section 6 discusses the managerial implications.

2. LITERATURE REVIEW

Oil price forecasting represents an important bridge between 
energy economics, financial markets and advanced computational 
intelligence due to the macroeconomic significance of oil prices 
and the intrinsic complexity of characterizing its dynamic. 
Classical econometric works have provided a strong empirical 
base and accepted the fact that oil price interacts with US financial 
markets, exchange rate, global industrial output and strategic 
reserves of oil. Nakhipbekova et al. (2020), and Rahmouni and 
Al Kahtani (2025) demonstrate a short-term volatility spill over 
and long term cointegration.

American financial markets exhibit notable sensitivity to oil price 
fluctuations, with volatility transmission mechanisms thoroughly 
documented in works such as Sadorsky (1999) and Alqaralleh 
(2024). Employing advanced econometric frameworks like the 
time-varying parameter vector autoregressive (TVP-VAR) model, 
Wen et al. (2019) capture the evolving feedback loops between oil 
price shocks and sectoral equity market dynamics, highlighting 
the temporally adaptive nature of these relationships.

Integral to this ecosystem is the US dollar index, which exercises 
a bidirectional influence on both oil prices and financial assets. 
Liao et al. (2018) demonstrate that exchange rate fluctuations 
modulate crude oil price behavior and, reciprocally, oil market 
volatility impacts currency valuations (Gatfaoui, 2016), adding 
complexity to the international transmission of shocks, as further 
evidenced by Zhang et al. (2023)..

The financialization of oil commodities, fueled by derivatives, 
ETFs, and speculative capital inflows, has further intensified 
linkages between oil markets and equities, as articulated by Rizvi 
et al. (2022). Technological developments, notably the rise of 
shale oil production, have dynamically reshaped pricing structures 
and market sensitivities, with ripple effects permeating equity 
valuations (Mastepanov, 2016). Sector-specific analyses reveal 
asymmetric equity responses to oil price shocks, highlighting 
heterogeneous risk premiums and important implications for 
portfolio diversification and risk management in integrated 
markets (Dhaoui et al., 2021).

Parallel to econometric advances, the rapid evolution of machine 
learning (ML) techniques has led to significant improvements in 
forecasting oil prices. ML algorithms, including ensemble tree 
methods, neural networks, and support vector machines, have 
demonstrated superior predictive accuracy relative to classical 
linear models, especially under nonlinear or structurally unstable 
regimes (Wen et al., 2019; Liu et al., 2019). The adoption of 
explainable AI tools such as SHapley Additive exPlanations 
(SHAP), Partial Dependence Plots, and feature importance 
rankings enhances interpretability, addressing “black-box” 
criticism and aiding decision-makers in understanding key drivers 
(Lundberg and Lee, 2017).

AutoML platforms facilitate the automated discovery of 
optimal models and hyperparameters, democratizing access to 
sophisticated forecasting tools. The combination of AutoML and 
SHAP-based interpretability ensures robust, transparent models 
vital for energy price applications, where rich economic insights 
couple with predictive power.

Moreover, empirical evidence confirms that oil price volatility not 
only affects industrial production and macroeconomic stability but 
also reverberates through equity and currency markets on a global 
scale (Filis, 2010; Guesmi et al., 2016). ML-based innovations 
enable finer dissection of risk spillovers and interconnected 
feedback loops, offering valuable new perspectives on systemic 
transmission mechanisms.

In summary, prior research has established that oil prices, 
energy-sector stocks, US financial markets, and the US dollar 
index form a closely interconnected and dynamically evolving 
system. Building on this foundation, the present study advances 
the field by implementing an H2O AutoML pipeline augmented 
with SHAP interpretability analysis delivering not only high-
precision forecasts but also transparent, nuanced insights into the 
fundamental drivers of oil price fluctuations in global markets. 
Notably, this work is the first to comprehensively apply the 
integrated H2O AutoML and SHAP framework to crude oil price 
prediction, placing particular emphasis on both feature-level 
and instance-level interpretability rather than focusing solely 
on overall predictive strength. In addition, our methodology 
prioritizes explainability and rigorous model validation through 
cross-model comparisons, feature effect visualization, and 
advanced diagnostic tools, ensuring that the resulting managerial 
and economic conclusions are firmly grounded in transparency 
and robust analytical evidence.
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3. DATA AND RESEARCH DESIGN

3.1. Data
The dataset used in this study comprises key macroeconomic 
and financial variables that are commonly associated with oil 
price movements, spanning the period from January 2015 to 
September 2025. The dependent variable is the crude oil price 
(denoted as Oil Price), obtained from the CL=F futures contract, 
representing global benchmark prices. The predictors include 
the S&P 500 index (S&P500), representing equity market 
performance and investor sentiment; the USD Index (USD 
Index), reflecting the strength of the US dollar relative to major 
currencies; Oil Stocks (XLE) represent the price (in USD) of 
the Energy Select Sector SPDR ETF, which tracks the equity 
market performance of major U.S. energy companies, primarily 
engaged in oil, gas, and energy-related activities, and serves 
as a proxy for the overall performance of the energy sector in 
equity markets and Industrial Production (IP), representing 
overall economic activity and industrial demand. All variables 
are collected at a daily frequency, ensuring alignment across 
financial and economic indicators. Prior to modeling, the data 
were cleaned to handle missing values, and the series were 
merged into a single structured dataset suitable for AutoML 
modeling. Table  1 presents the descriptive statistics of the 
variables over the sample period. The statistics highlight strong 
heterogeneity in market behavior across asset classes, shaped 
by major macroeconomic and geopolitical shocks during the 
sample period. For instance, oil prices exhibit a mean of 62 USD 
with substantial dispersion (standard deviation of 18), reflecting 
the sharp volatility episodes linked to the COVID-19 collapse 
in 2020, the subsequent demand recovery, and the geopolitical 
pressures stemming from the Russia–Ukraine conflict. The S&P 
500 shows a high average level (3,357 points) with considerable 
variability, consistent with the pandemic-induced market turmoil, 
unprecedented monetary easing, and later inflationary shocks 
that shaped equity market dynamics. The USD Index displays 
moderate fluctuations around 98, capturing the strengthening 
of the US dollar during global uncertainty (2020–2022) and the 
later normalization in international markets.

Oil stocks (XLE) present a mean of 27 with relatively high 
volatility, reflecting the sector’s sensitivity to energy price 
swings, OPEC+ production adjustments, and global supply-
demand imbalances. Finally, Industrial Production follows a 
smooth upward trend with limited dispersion, consistent with a 
gradual post-pandemic recovery and the stabilization of global 
manufacturing activity.

3.2. Research Design, H2O AutoML Framework and 
Implementation
To analyze and interpret predictive models for oil price forecasting, 
we adopted a comprehensive methodology integrating variable 
importance assessment, model interpretation techniques, and 
rigorous evaluation metrics. We first evaluated the influence of 
predictors across multiple models within the AutoML framework, 
aggregating importance scores from algorithms such as Gradient 
Boosting Machines (GBM), Extreme Gradient Boosting 
(XGBoost), and Distributed Random Forests (DRF) to identify 
the most impactful variables affecting oil prices. To understand 
the marginal effect of key features, such as the USD Index and 
S&P 500, on predicted oil prices, we generated Partial Dependence 
Plots (PDPs), while Individual Conditional Expectation (ICE) plots 
were employed to capture heterogeneity in predictor effects at the 
individual observation level, revealing potential nonlinearities 
and interactions. Additionally, SHAP (SHapley Additive 
exPlanations) summary plots quantified the contribution of each 
predictor to model outputs, providing both global interpretation 
and insights into feature-level effects for individual predictions. 
Model performance was rigorously assessed using metrics such 
as Root Mean Squared Error (RMSE) and residual diagnostics, 
with residual plots analyzed to detect potential issues such as 
heteroscedasticity or model misspecification, ensuring that the 
models fit the data appropriately. Finally, a variable importance 
heatmap was generated to compare the relative contributions of 
predictors across top-performing models, including categorical 
features encoded via one-hot encoding, confirming the robustness 
and consistency of the identified key predictors. Overall, this 
integrated approach ensures a thorough understanding of the 
predictive factors driving oil prices, their individual and combined 
effects, and the reliability and interpretability of the models 
employed.

Recent empirical advances have increasingly favored dynamic 
learning models capable of adapting and improving iteratively 
based on historical data patterns. This shift is particularly relevant 
in financial and energy price forecasting, where traditional 
regression methods often struggle due to inherent data complexity, 
multicollinearity, and nonlinear relationships among predictors. 
Machine learning algorithms (MLAs) emerge as powerful 
alternatives by synthesizing multiple, potentially weak, sources 
of information into robust composite predictive scores.

Among the advanced MLAs, deep learning, distributed random 
forests (DRF), generalized linear models (GLM), gradient 
boosting machines (GBM), and XGBoost have demonstrated 

Table 1: Data preliminary analysis
Variable Mean Min Max Variance Std_Dev Skewness Kurtosis
Oil Price (WTI) 62.001 −37.63 123.7 328.197 18.116 0.369 0.524
S&P500 3357.073 1829.08 6090.27 11746 1083.808 0.537 −0.733
USD Index 98.069 88.59 114.11 24.065 4.905 0.500 −0.261
Oil Stocks (XLE) 27.330 9.385 47.069 73.7025 8.585 0.626 −0.589
Industrial
Production

115.007 99.293 130.815 75.292 8.677 −0.001 −1.195

Oil Price denotes the WTI crude oil spot price (USD per barrel). S&P500 refers to the level of the S&P 500 stock market index (index points). USD Index represents the U.S. Dollar 
Index measuring the value of the USD against a basket of major currencies (index). Oil Stocks corresponds to the XLE Energy Sector ETF price (USD). Industrial Production reflects the 
volume of goods produced over a given period and is typically expressed as an index (base 100)
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exceptional capability in uncovering complex, latent patterns 
within high-dimensional datasets. These algorithms excel at 
reducing prediction errors while maintaining optimal bias-variance 
tradeoffs, even under multicollinearity conditions.

Our study leverages the, H2O Automated Machine Learning 
(AutoML) framework, a comprehensive suite of state-of-the-art 
machine learning models recognized for their forecasting accuracy 
and computational efficiency. H2O AutoML automates the entire 
model-building pipeline—from data preprocessing and feature 
engineering to hyperparameter tuning and model selection—
combining advanced algorithms with best practices in machine 
learning.

The H2O AutoML implementation and training process was 
conducted in Python within a Jupyter Notebook environment, 
proceeding through a series of rigorously structured steps to ensure 
both accuracy and reproducibility. The workflow began with data 
import and preparation, where raw CSV data were transformed 
into H2O frames suited for distributed computation. The dataset 
was split into training and validation sets using a ratio of 0.80, 
with 80% of observations used for training and 20% for validation, 
and a fixed random seed established to guarantee reproducibility 
and mitigate data leakage.

Model evaluation utilized 5-fold cross-validation, systematically 
partitioning the training set to build models by training on four 
folds and testing on the fifth, rotating through all folds. Model 
performance was benchmarked using metrics such as Root 
Mean Squared Error (RMSE), Mean Squared Error (MSE), and 
Mean Per-Class  Error, with lower values signifying superior 
predictions.

For algorithm exploration and hyperparameter tuning, H2O 
AutoML trained a diverse set of base learners, including fully 
connected deep neural networks, distributed random forests 
(DRF), generalized linear models (GLM), gradient boosting 
machines (GBM), and XGBoost. Hyperparameter tuning was 
approached by minimizing the objective function J (δ):

* arg min ( )J=
θ

δ δ where δ representes the model’s hyperparameters
and J is the validation metric, such as RMSE for regression.

Meta-learning and ensembling followed, with stacked ensemble 
models created using two strategies: Stacked Ensemble (All 
Models) combines predictions from all candidate models, while 
Stacked Ensemble (Best of Family) aggregates only the top model 
from each algorithmic family. The meta-learner then automatically 
determines the optimal blending weights OW by minimizing 
prediction error:

* 2arg min ( ˆ )j i ij
j i

OW Z OW Z= −∑ ∑w
 where Zj is the observed 

value and ˆ
ijZ  the prediction from model i for observation j.

After training, all models were ranked on a validation-set-based 
leaderboard, with the top entry (Mbest) selected for deployment:

Mbest = top(Leaderboard)

Robustness checks included validation on an independent hold-out 
set, inspection of learning curves to diagnose potential overfitting 
or underfitting, and feature importance evaluation using SHAP 
(SHapley Additive exPlanations) values to interpret predictive 
drivers and ensure model transparency. This comprehensive 
methodology ensured the resulting AutoML models were not 
only highly accurate and generalizable, but also interpretable and 
practically robust for advanced financial forecasting applications.

4. EMPIRICAL RESULTS AND DISCUSSION

The evaluation of our models’ predictive performance was based 
on metrics detailed in Table 1, emphasizing Root Mean Squared 
Error (RMSE) and Mean Squared Error (MSE) as primary accuracy 
indicators. The table tracks the trajectory of RMSE values for H2O 
AutoML models over successive time frames, highlighting optimal 
execution intervals and the effectiveness of various algorithms. We 
benchmark multiple machine learning models, including Gradient 
Boosting Machines (GBM), Distributed Random Forests (DRF), 
deep learning models, Generalized Linear Models (GLM), and 
Stacked Ensembles—which integrate predictions from various 
underlying models. The Mean Per Class  Error, reflecting the 
average misclassification rate across all classes, served as an 
additional gauge of classification accuracy, where lower values 
denote higher precision. RMSE and MSE quantify the average 
discrepancy between predicted outcomes and their actual values; 
RMSE represents the square root of the mean squared deviations, 
while MSE captures their mean directly. Lower scores in these 
metrics confirm superior forecasting capability.

Table  2 presents the AutoML leaderboard summarizing the 
performance of various models trained to predict oil prices. The 
key evaluation metrics include the Root Mean Squared Error 
(RMSE), Mean Squared Error (MSE), Mean Absolute Error 
(MAE), Root Mean Squared Logarithmic Error (RMSLE), residual 
deviance, training time, and prediction time per row, along with 
the corresponding algorithm types. GBM_4 emerges as the optimal 
model with an RMSE of 2.651 and MSE of 7.028, indicating 
the lowest average prediction error among all candidates and 
establishing it as the selected forecasting engine.

The StackedEnsemble_AllModels_1 ranks second with marginally 
higher error metrics (RMSE: 2.654, MSE: 7.045) but substantially 
longer inference time (2,448 ms versus 464 ms), reflecting the 
computational overhead of aggregating all base models; despite 
this, its near-parity with the top model suggests robust ensemble 
construction.

The leaderboard demonstrates strong relative performance 
consistency across the top four positions (GBM and 
StackedEnsemble variants), with RMSE values tightly clustered 
between 2.65 and 2.70. Gradient Boosting Machines (GBM) 
dominate the ranking, occupying three of the top five positions, 
underscoring their superior capability for capturing nonlinear oil 
price dynamics relative to alternative algorithmic families. In 
contrast, tree-based ensemble methods (DRF, XRT) and XGBoost 
exhibit comparatively weaker performance (RMSE  ≥2.83), 
suggesting that sequential boosting approaches prove more 
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effective than parallel ensemble or alternative gradient descent 
formulations for this particular forecasting task.

The mean absolute error (MAE) range of 1.78-2.10 USD per barrel 
indicates that typical point predictions deviate from realized prices 
by approximately 2 USD on average, a magnitude pragmatic for 
portfolio hedging decisions given crude oil’s volatility scale. 
Training times vary substantially (353-2,448 ms), with GBM_4’s 
efficiency (464 ms) providing computational advantage for real-
time deployment scenarios. This performance hierarchy validates 
the H2O AutoML framework’s efficacy in automated model 
selection, with GBM_4 identified as the optimal production model 
for subsequent forecasting applications and decision support.

Once the best model has been identified, this selected model is 
employed to generate out-of-sample forecasts, which are then 
compared to actual oil price data. By plotting the predicted values 
alongside real prices over time, the model’s forecasting accuracy 
and temporal tracking capabilities can be visually assessed, 
thereby complementing the quantitative accuracy metrics from 
the leaderboard with an intuitive depiction of model performance 
across different market conditions. Figure 1 presents a line plot 
comparing the actual observed oil prices with the predicted values 
produced by the AutoML model during the test period. This 
figure provides an intuitive evaluation of the model’s forecasting 
accuracy and its capacity to track real market dynamics.

The figure presents a comparison between actual crude oil prices 
(solid line) and the forecasts generated by the H2O AutoML 
model (dashed line) over the out-of-sample test period. The x-axis 
corresponds to the sequential order of observations in the test 
set, allowing an assessment of the model’s ability to track unseen 
price dynamics.

Throughout the test sequence, the model demonstrates strong 
predictive capability, closely following the overall trends in 
the observed prices. Major upward and downward movements 
are effectively captured, indicating that the model successfully 
internalizes the patterns underlying oil price fluctuations. While 
extreme peaks and troughs are slightly smoothed, a typical feature 
of ensemble and neural-network-based forecasts, this smoothing 
ensures that predictions remain stable and robust, avoiding 
overreaction to transient noise in the data.

Minor lags are observed at abrupt inflection points, which is 
expected in data-driven models when confronted with sharp, 
rapid changes. Despite these small delays, the predicted series 
maintains consistent co-movement with actual prices, reflecting 
the model’s ability to replicate the underlying dynamics across 
varying levels of volatility.

The figure also highlights the model’s general stability and 
reliability: it adapts well to both gradual trends and sudden shifts, 
producing forecasts that remain tightly aligned with realized 
prices across the entire out-of-sample period. From a practical 
perspective, these results demonstrate that the AutoML framework 
provides a strong sequential tracking of price behavior, offering a 
useful tool for analysis and forecasting in dynamic and potentially 
volatile markets.

Building on the comparison between the predicted and actual oil 
prices, Figure 2 provides the residual analysis, offering a deeper 
assessment of the model’s predictive reliability and the presence 
of any systematic deviations or heteroscedastic patterns in the 
forecast errors.

Residual diagnostic analysis of the StackedEnsemble_
BestOfFamily model provides compelling evidence of appropriate 
model specification and forecasting reliability across the oil price 
prediction domain. The residual scatter plot exhibits symmetrical 
distribution around the zero-error baseline with minimal systematic 
bias across all fitted value ranges ($20–$120 USD), confirming 

Table 2: AutoML Leaderboard: Lists the top‑performing models, their algorithm types, MSE/RMSE, and ranking based 
on validation performance
Model_id RMSE MSE MAE RMLSE MRD TT PTPR Algo
GBM_4_AutoML_4_20251028_111446 2.6511 7.02831 1.77849 0.0431111 7.02831 464 0.031834 GBM
StackedEnsemble_AllModels_1_
AutoML_4_20251028_111446

2.65427 7.04512 1.83135 0.0465795 7.04512 2448 0.23038 StackedEnsemble

GBM_2_AutoML_4_20251028_111446 2.70205 7.30107 1.91105 0.0463201 7.30107 414 0.027736 GBM
StackedEnsemble_BestOfFamily_1_
AutoML_4_20251028_111446

2.70348 7.3088 1.86025 0.0473491 7.3088 1094 0.081195 StackedEnsemble

GBM_3_AutoML_4_20251028_111446 2.77439 7.69723 1.89012 0.0463808 7.69723 353 0.027434 GBM
XRT_1_AutoML_4_20251028_111446 2.83353 8.02888 1.97262 0.0485909 8.02888 726 0.030323 DRF
DRF_1_AutoML_4_20251028_111446 2.93667 8.62406 1.98828 0.0488397 8.62406 738 0.035189 DRF
XGBoost_2_AutoML_4_20251028_111446 2.98345 8.90099 2.09924 0.0601362 8.90099 2246 0.008242 XGBoost
model_id: H2O AutoML model identifier, RMSE: Root mean squared error, MSE: Mean squared error, MAE: Mean absolute error, RMSLE: Root mean squared logarithmic error; 
mean_residual_deviance: Overall model fit, training_time_ms (TT): Training time (ms), predict_time_per_row_ms (PTPR): Average prediction time per row (ms), Algo: Algorithm type 
(GBM, DRF, XGBoost, GLM, StackedEnsemble)

Figure 1: Oil Price Forecast vs Actual (Test Set) Line plot comparing 
actual oil prices with predicted values over the test period.
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unbiased prediction and effective capture of mean-reverting price 
dynamics. Homoscedastic error variance across the entire price 
spectrum indicates consistent forecasting accuracy irrespective 
of market regime or absolute price level, demonstrating the 
model’s robust adaptation to diverse volatility contexts. The 
substantial concentration of residuals within the ±5 USD interval—
representing typical prediction deviations—validates the model’s 
practical utility for energy market participants, while the small 
proportion of notable outliers appearing at elevated fitted values 
($100–$120 USD), though reaching extremes of ±20 USD, reflects 
expected challenges during episodes of acute market discontinuity 
and rapid shock transmission rather than fundamental model 
deficiency. The histogram margin revealing slight right-skewness 
suggests marginally heavier positive-tail disturbances, consistent 
with the model’s known tendency toward volatility smoothing 
and conservative extreme-value estimation. Collectively, these 
diagnostic patterns confirm that the StackedEnsemble framework 
achieves statistically sound prediction with appropriately calibrated 
forecast precision, validating its deployment for tactical portfolio 
positioning and energy market risk assessment while maintaining 
awareness of its inherent limitations during geopolitically-induced 
supply shocks and financial market dislocations.

To assess and confirm the robustness and generalizability of our 
model, we relied on the learning curve. Figure  3 presents the 
learning curves of the best-performing AutoML models, depicting 
how model performance evolves with increasing iterations or the 
number of trees.

The loss metric (such as RMSE or R²) is plotted to evaluate training 
efficiency and potential overfitting or underfitting. The learning 
curve for the StackedEnsemble_BestOfFamily metalearner 
demonstrates textbook convergence characteristics indicative of 
appropriate model capacity and effective regularization. The three 
overlapping trajectories: Training (blue), Training CV Models 
(dashed blue), and Cross-validation (orange), exhibit near-identical 
monotonic decline from initial deviance of approximately 330 to 
stabilization near 10 by iteration 70, with negligible divergence 

between training and cross-validation curves throughout the 
optimization process. This near-perfect alignment provides robust 
evidence of absence of overfitting, a critical validation metric 
confirming that the model generalizes reliably to unseen data and 

Figure 2: Residual analysis of best AutoML Model. Plots residuals versus predicted values to evaluate model fit, detect bias, and assess 
heteroscedasticity

Figure 3: Cross-validation performance of top models. Diagnostic 
plots showing cross-validation metrics (e.g., RMSE, R²) across the top 

models in the AutoML leaderboard

Figure 4: Variable importance from best AutoML Model. Bar plot 
showing the relative contribution of each predictor (S&P500, USD 
Index, Oil Stocks, Industrial Production) to the oil price predictions
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has not memorized spurious training patterns. The steep initial 
descent (iterations 0–15) reflects rapid loss function minimization 
as the metalearner identifies optimal blend weights across base 
model predictions, while the gentle asymptotic approach thereafter 
(iterations 30–70) indicates convergence to a stable solution 
without further material improvement, precisely the behavior 
expected of well-tuned ensemble architectures.

The minimal vertical separation between training and cross-
validation curves, typically indicating perfect generalization 
in well-specified models, combined with the selected iteration 
mark (green vertical line) occurring near convergence point, 
confirms that the framework has achieved optimal bias-variance 
equilibrium. The stable, non-increasing trajectory across all 
iterations precludes concerns regarding underfitting (which 
would present as persistently elevated deviance) or erratic 
oscillation characteristic of unstable optimization. Collectively, 
the learning curve provides strong diagnostic reassurance 
that the StackedEnsemble configuration delivers trustworthy, 
generalizable forecasts without sacrificing model complexity 
or introducing spurious overfitting, essential prerequisites for 
confident deployment in energy market prediction applications.

To further enhance interpretability, we conducted a detailed feature 
importance analysis for the top-performing models, particularly 
the GBM_4 model (Figure 4), quantifying how each input variable 
contributes to the model’s predictive power and thus highlighting 
key drivers behind accurate oil price forecasting.

This bar plot displays the relative importance of each predictor 
variable in the best AutoML model for oil price forecasting. 
Particularly, the variable importance chart from the GBM_4 model 
reveals a clear hierarchical ranking of predictor contributions to 
oil price forecasting accuracy, providing quantifiable economic 
insights into market structure and causal relationships. Oil Stocks 
dominate with an importance score approaching 1.0, indicating 
overwhelming predictive dominance and establishing energy sector 
equities as the primary vehicle through which macroeconomic 
conditions, supply dynamics, and investor expectations transmit 
into oil price movements. This extreme dominance aligns with 
financial market microstructure theory, reflecting tight integration 
between oil futures and equity valuations through diversified 
portfolio flows and systematic hedging mechanisms. These results 
align with findings by Wen et al. (2019) and Broadstock and Filis 
(2014), who similarly observed that stock markets linked to the 
oil and energy sectors act as leading indicators of crude price 
dynamics. It also corroborates the financial market microstructure 
theory discussed by Kilian and Murphy (2014), suggesting a strong 
integration between oil futures and equity valuations through 
diversified portfolio flows and systematic hedging mechanisms.

S&P 500 ranks second with an importance score of approximately 
0.75, confirming that broad-based U.S. equity market sentiment 
and economic growth expectations constitute substantial secondary 
drivers of oil demand and price formation. This result supports 
evidence from Basher et al. (2012) and Kumar and Mallick, (2023) 
who emphasize that equity market performance captures both 
cyclical economic expectations and investor risk appetite that 

spill over into commodity markets. The substantial gap between 
Oil Stocks (1.0) and S&P 500 (0.75) implies that sector-specific 
oil market dynamics outweigh general financial conditions, a 
pattern consistent with Narayan and Sharma (2011), who noted 
that firm-level operational factors, such as exploration activity and 
production efficiency, often provide greater explanatory power 
for oil price variation than aggregate macroeconomic indicators.

Industrial Production contributes moderately (≈0.40), validating 
the demand-side transmission mechanism whereby global 
manufacturing activity directly influences petroleum consumption 
and pricing. The notably smaller contribution of the USD Index 
(≈0.15) initially appears counterintuitive given extensive literature 
documenting oil-dollar inverse relationships; however, this pattern 
reflects the model’s capture of concurrent movements where dollar 
appreciation and oil price declines occur as joint manifestations of 
broader macroeconomic shifts rather than pure currency effects. 
The steeply hierarchical importance distribution, with the top 
predictor exceeding subordinate variables by 6–7 fold, suggests 
that oil price forecasting fundamentally depends on sector-
specific equity dynamics rather than distributed influence across 
multiple macroeconomic channels, offering valuable guidance for 
practitioners prioritizing data collection, real-time monitoring, and 
hedging strategy calibration toward energy equities over general 
macroeconomic indicators.

The SHAP Summary plot (Figure  5) is complementary to the 
variable importance bar plot shown for leaderboard models. 
While the bar plot ranks features globally based on their average 
absolute contribution or weight in the model, the SHAP summary 
plot details how each feature behaves for every single prediction, 
uncovering non-linearities and interactions not visible in aggregate 
metrics. It enriches interpretability and transparency, enabling 
practitioners to assess not just overall importance but also the 
conditions and directions under which features exert their effects. 
Thus, both visualizations together provide a more holistic and 
rigorous understanding of model behavior for oil price forecasting.

This SHAP summary plot displays each feature’s contribution to 
individual predictions across the dataset. The plot visually encodes 
positive and negative impacts of each predictor and captures 
feature interactions. It enables a comprehensive understanding 
of how different factors influence oil prices and highlights the 
most impactful features, enhancing model interpretability. This 
finding aligns with recent empirical work emphasizing the complex 
interplay between macro-financial variables and oil market 
dynamics. For instance, Wen et al. (2019) and Nakhipbekova et al. 
(2020) both confirm that financial and industrial activity indicators 
significantly affect oil price behavior, validating the robustness of 
using interpretable machine learning frameworks such as SHAP 
for uncovering these nonlinear relationships. This analysis offers 
a detailed breakdown of how each feature individually contributes 
to the predictive output of the GBM model for oil prices. Each 
dot represents a SHAP value for a single observation and feature, 
with the horizontal axis indicating the direction and magnitude 
of impact, positive SHAP values push predictions higher, while 
negative values pull them lower. The color gradient depicts the 
actual value of each feature, differentiating the effects of high 
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(red) and low (blue) input levels. Oil Stocks are shown as the most 
influential driver, with high values strongly elevating predicted 
prices, while low values have a mitigating effect. S&P500 
and Industrial Production display more nuanced, bidirectional 
influence, with their impact varying according to the operating 
regime, as indicated by the spread of red and blue across both 
positive and negative SHAP values. The USD Index generally 
clusters around zero, reflecting minimal marginal influence on 
forecasted oil prices in this model. These results are consistent with 
previous studies highlighting the dominant role of oil inventories 
and market expectations in shaping price fluctuations (Kilian and 
Murphy, 2014; Kumar and Mallick, 2023). Similarly, the mixed 
influence of the S&P 500 index and industrial production mirrors 
findings from Narayan and Sharma (2011) and Broadstock and 
Filis (2014), who reported that equity markets and industrial 
activity transmit both demand- and sentiment-driven shocks to 
oil prices under varying market conditions.

Importantly, the SHAP summary plot not only corroborates 
the variable importance ranking from the bar plot, affirming 
the primacy of Oil Stocks in the leader model, but also enables 

inspection of individual prediction attributions and nonlinear 
patterns not visible in global averages. This richer interpretability 
makes it an essential complement to traditional feature importance 
charts, providing actionable insights for both model diagnostics 
and economic understanding of predictive factors driving oil 
market outcomes.

The feature importance heatmap served as an invaluable tool in 
the later stages, enabling a clear visual comparison of the relative 
significance of various features across different predictive models. 
This graphical representation streamlined the feature selection 
process by prominently highlighting the most influential variables 
affecting oil price forecasts. Moreover, it facilitated a nuanced 
examination of how individual models weighted different inputs, 
revealing both shared and unique patterns of feature importance. 
Insights derived from this heatmap guided the construction of a 
carefully curated ensemble composed of models selected for their 
complementary strengths and their collective ability to mitigate 
overfitting, thereby enhancing overall predictive performance. 
The straightforward visual format of the heatmap was crucial in 
translating complex correlations within the data into an accessible 
narrative, boosting transparency and interpretability of the 
modeling approach and results. Notably, the heatmap demonstrated 
that Gradient Boosting Machines (GBMs) exhibited strong internal 
consistency yet were distinctly different from deep learning models 
in their feature valuations. This observation informed our strategic 
ensemble design, aiming to blend diverse algorithmic advantages 
while avoiding redundancy, ultimately enabling a comprehensive 
exploration of the factors driving oil price behavior.

This variable importance heatmap builds on the insights provided 
by the bar plot, enabling a direct, comparative visualization of 
how each predictor’s importance is assessed across a diverse set 
of machine learning models in the context of oil price forecasting 
(Figure 6).

Figure 5: SHAP summary plot for oil price predictions. Visual representation of how each feature impacts individual predictions, highlighting 
positive/negative contributions and feature interactions

Figure 6: Variable importance Heatmap. Displays the relative 
importance of all predictors across top-performing models
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The variable importance heatmap illustrates which predictors have 
the most significant impact on the oil price forecasts across various 
models. This variable importance heatmap offers a comprehensive 
cross-model perspective on the relative significance of predictive 
features influencing oil price dynamics. The visualization reveals 
that Industrial Production is consistently rated as the most 
influential variable by several leading machine learning models, 
particularly GBM and XGBoost variants, indicating its central role 
as a macroeconomic predictor in oil price forecasting. Meanwhile, 
Oil Stocks emerge as the dominant feature for certain models, 
including GLM and XGBoost_3, reaffirming the importance of 
sector-specific supply and inventory trends.

Both USD Index and S&P 500 possess lower and more variable 
importances across most algorithms, suggesting they contribute 
to oil price prediction but are generally overshadowed by direct 
economic and industry-specific measures. The heatmap showcases 
methodological consensus among tree-based models (GBMs and 
XGBoosts), which prioritize broad economic fundamentals, while 
highlighting distinct patterns in the GLM, DRF, and XRT models. 
These differences illustrate how each algorithm interprets data 
structure and relationships uniquely.

While the variable importance heatmap summarizes how different 
models weight each feature, Partial Dependence Plots (Figure 7) 
take this analysis further by illustrating the specific functional 
relationship between each predictor and the predicted outcome.

These Partial Dependence Plots provide an in-depth visualization 
of how changes in key predictors independently influence the 

predicted oil price, while holding all other variables constant. 
The plot for Oil Stocks (top left) reveals a strong positive, near-
monotonic relationship: as oil stocks increase, the predicted oil 
price rises consistently across multiple models, highlighting oil 
inventories as a fundamental driver of market expectations.

For Industrial Production (bottom left), the relationship is less 
uniform. Some models indicate a pronounced inflection point, 
where predicted prices surge as industrial production reaches 
a certain level before stabilizing or declining. This reflects the 
nuanced influence of macroeconomic output, with periods of 
strong production associated with higher oil prices, but saturation 
or regime effects dampening this impact beyond a threshold.

Lastly, the USD Index plot (bottom right) predominantly shows a 
negative relationship: as the US dollar index increases, predicted 
oil prices tend to decrease, reflecting the well-established inverse 
relationship between the U.S. dollar and commodity prices. 
A stronger dollar makes oil more expensive for foreign buyers, 
reducing global demand and pressuring prices downward. 
Conversely, the S&P500 plot (top right) illustrates a nonlinear, 
threshold effect. The predicted oil price responds sharply upward 
as the S&P500 index crosses a mid-range threshold. Then, higher 
S&P 500 values are associated with increased predicted oil prices, 
suggesting that stronger equity market performance coincides 
with improved economic activity and higher energy demand. 
These findings are economically coherent, as both financial and 
macroeconomic indicators serve as leading signals for oil market 
movements.

Figure 7: Partial dependence plots. Shows how changes in key predictors affect the predicted oil price, holding other variables constant
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We now turn to Individual Conditional Expectation (ICE) plots, 
which reveal the variation in feature effects at the individual 
observation level and highlight the presence of interaction 
effects or heterogeneity that may be obscured in population-wide 
averages.

Figure 8 presents the Individual Conditional Expectation (ICE) 
plots for the main predictors influencing oil prices, offering a 
detailed view of how the predicted oil price responds to changes 
in each variable for individual observations. Unlike Partial 
Dependence Plots (PDPs), which display average effects, ICE 
plots uncover instance-specific variations, revealing heterogeneity 
across the dataset. Each line in the plot represents an individual 
observation’s response curve, showing how its predicted oil 
price changes as a particular predictor varies while others remain 
constant.

The results suggest that ICE plots reveal the heterogeneity in 
model responses—illustrating how the impact of features such 
as oil stocks, S&P500, industrial production, and the USD index 
can vary substantially from one instance to another.

For example, the response lines for oil stocks show a clear 
positive association overall, yet the steepness and starting points 
differ across individual cases, indicating diverse sensitivities 
in the sample. Similarly, the plots for S&P500 and industrial 
production display not only non-linearities but also substantial 
dispersion, especially around key thresholds or inflection points. 
This underscores the presence of interaction effects and reinforces 

the notion that the relationship between these predictors and oil 
prices is not uniform across the dataset. The USD index ICE 
plot consistently reflects a negative effect, but the magnitude 
of response varies, emphasizing that currency movements 
differentially affect predicted oil prices depending on the economic 
context of each observation.

5. CONCLUSION AND MANAGERIAL
IMPLICATIONS

The findings of this study demonstrate that automated machine 
learning, especially the Gradient Boosting Machine (GBM) models 
tuned via H2O AutoML, delivers highly accurate forecasts of 
crude oil prices while maintaining transparency through advanced 
interpretability techniques. The best-performing GBM model 
achieves the lowest Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE), indicating tight forecast precision across 
diverse market regimes.

Our analysis shows that sector-specific factors like oil stocks 
and macro-financial indicators such as the S&P 500, industrial 
production, and the USD Index exert distinct, sometimes nonlinear 
influences on oil price movements. SHAP and ICE visualizations 
further uncover the heterogeneity, interactions, and threshold 
effects hidden within aggregate metrics, enabling a rigorous, 
observation-level understanding of model behavior.

Ensemble models (Stacked Ensembles) also perform strongly, 
with near-parity in accuracy but higher computational costs, 

Figure 8: Individual conditional expectation (ICE) plots for key predictors. Shows how changes in each predictor individually affect the predicted 
oil price, holding other variables constant
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while alternative tree-based (DRF, XRT) and boosting (XGBoost) 
methods trail in performance, highlighting GBM’s advantage 
for capturing nonlinear dynamics in oil price formation. Model 
diagnostic plots show close alignment between predicted and 
actual prices across pre-crisis, boom, crisis, and recovery periods, 
with minimal systematic bias and symmetrical oscillations. The 
models exhibit resilience to market regime changes and volatility 
spikes, although extreme downturns spur some lag a common trait 
in ML models tuned for average-case accuracy.

Feature importance analysis consistently ranks oil stocks as 
the most powerful driver of oil price forecasts, followed by 
broad equity market indices (S&P500), industrial production, 
and the USD index. Notably, oil stocks far outweigh general 
macroeconomic indicators in predictive strength, underscoring 
sectoral transmission mechanisms and portfolio linkages. SHAP 
summary plots and heatmaps corroborate these findings, revealing 
the nuanced, bidirectional effects of macro-financial variables at 
both global and individual prediction levels. Oil stocks exhibit 
strong positive influence; S&P500 and industrial production 
display nonlinear threshold and inflection effects; USD index 
maintains a generally negative relationship, aligning with 
established commodity-currency theory.

Partial dependence and ICE plots further enrich the analysis, 
visualizing persistent heterogeneity and complex feature 
interactions. ICE plots, in particular, uncover substantial variability 
in response curves, indicating that individual sensitivity to 
predictors varies widely within the sample, a clear sign of market 
microstructure effects and data-driven regime diversity.

Residual analysis confirms unbiased forecast centering and 
homoscedastic error variance, with only mild tail skewness during 
elevated volatility. Learning curve diagnostics rule out overfitting, 
confirming optimal model complexity and generalizability for 
out-of-sample application.

Collectively, these results validate the potential of combining 
AutoML with explainability to not only outperform traditional 
models, but also empower decision-makers with interpretable, 
data-driven guidance for risk management, investment, and energy 
market policy in a highly volatile world.

From both managerial and policy perspectives, the findings 
of this study offer several actionable insights with direct 
implications for strategic decision-making and market 
governance. By leveraging AI-driven forecasting frameworks 
such as Gradient Boosting Machines (GBM), energy firms, 
investors, and policymakers can more accurately anticipate 
oil price dynamics, thereby enhancing risk assessment and 
strategic adaptability under conditions of uncertainty. The 
results highlight the dominance of Oil Stocks and the S&P 500 
as key explanatory variables, carrying important implications 
for investors and economists alike. For investors, the strong 
predictive power of these indicators underscores the need to 
closely monitor equity market dynamics, particularly energy-
related stocks, as early signals of potential oil price movements. 
Incorporating these variables into risk assessment frameworks 

can improve the timing of investment decisions and support 
proactive portfolio adjustments in response to market volatility.

For economists and policy analysts, the findings emphasize 
the growing interconnectedness between financial markets and 
commodity markets. Integrating these dominant indicators into 
forecasting models can enhance the accuracy of macroeconomic 
projections, strengthen early-warning systems, and provide deeper 
insights into the financialization of energy markets. The strong 
interdependence between oil prices and equity market performance 
further underscores the importance of embedding macro-financial 
conditions into energy investment strategies, production planning, 
and capital allocation decisions to ensure greater resilience. For 
policymakers, continuous monitoring of the USD Index and 
major equity indices offers a vital tool for anticipating inflationary 
pressures and implementing timely fiscal or monetary adjustments.

Ultimately, this research demonstrates that AutoML-based 
predictive modeling provides a transparent, adaptive, and 
empirically grounded approach that not only outperforms 
conventional forecasting methods but also empowers decision-
makers to enhance predictive accuracy, optimize investment 
efficiency, and strengthen policy responsiveness in an increasingly 
volatile global energy landscape

Despite providing valuable insights into the dominance of 
key explanatory variables, this study could be extended by 
performing robustness checks through econometric modeling of 
the interdependencies and relationships among Oil Stocks, the 
S&P 500, and other macro-financial indicators. Such an approach 
would allow researchers to compare the predictive performance 
of machine learning models with traditional econometric 
models, while also exploring out-of-sample forecasting, dynamic 
dependence structures, and volatility spillovers. Incorporating 
country-specific regulations, geopolitical events, and policy shifts 
could further enhance the understanding of oil price dynamics. 
These complementary analyses would not only deepen insights 
into the interactions between financial and commodity markets 
but also provide guidance for portfolio investment and hedging 
strategies under complex and evolving market conditions.
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