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ABSTRACT

Machine learning and artificial intelligence (ML/AI), once regarded as opaque “black-box” methods, have become increasingly interpretable due to recent
advances in explainable Al (XAI). This study proposes an explainable machine learning framework for forecasting crude oil prices by integrating the
H,O AutoML platform with SHapley Additive exPlanations (SHAP), thereby achieving both high predictive accuracy and transparent interpretability.
Using daily macro-financial data from January 2015 to September 2025 including oil stocks (XLE), the S&P 500 index, industrial production, and the
USD index. The study trains and validates a range of ensemble models, with Gradient Boosting Machines (GBMs) emerging as the best-performing
models. The results demonstrate strong out-of-sample forecasting accuracy, measured by RMSE in USD per barrel, across different market conditions.
Beyond predictive performance, the explainability analysis reveals that oil stocks (XLE), capturing energy-sector equity valuations, exert the strongest
positive influence on crude oil prices, highlighting sectoral transmission channels and portfolio rebalancing effects. In contrast, the S&P 500 and industrial
production display nonlinear and state-dependent impacts associated with business cycle dynamics, while the USD index exhibits a predominantly negative
relationship, consistent with commodity—currency theory. This framework provides a robust approach to oil price forecasting by integrating automated
machine learning with interpretable analytics, offering practical insights for investors, risk managers, and policymakers in volatile energy markets.
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JEL Classifications: Q43, C63, G17, C52

1. INTRODUCTION

Forecasting oil prices remains a central challenge at the
intersection of energy economics, financial market stability, and
global macroeconomic policy, given the profound economic
and geopolitical repercussions that arise from crude oil price
volatility. The multifaceted interactions between oil prices,
equity markets, exchange rates, and industrial output have been
well-documented in the literature (Nakhipbekova et al., 2020;
Rahmouni and Al Kahtani, 2025; Alqaralleh, 2024), showing
how shocks propagate across asset classes and national borders.
Advanced econometric frameworks, such as the TVP-VAR (Wen
et al., 2019) and dynamic connectedness indices (Antonakakis
et al., 2020), have illuminated the evolving relationships among

oil, equities, and currencies. The US dollar index, in particular,
exerts a bidirectional influence on oil prices and financial assets
(Liao et al., 2018; Gatfaoui, 2016), while financialization and
innovative market structures further intensify feedback loops
(Rizvi et al., 2022).

However, as markets become increasingly complex, nonlinear,
and subject to regime shifts, traditional linear models often
fall short in capturing the dynamic causal chains and latent
risks shaping oil price formation. Recent advances in machine
learning have yielded significant improvements in prediction
accuracy (Lundberg and Lee, 2017; Wen et al., 2019; Liu et al.,
2019), but wide adoption of black-box models raises critical
concerns around interpretability, especially as policymakers,
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investors, and managers seek actionable insights that go beyond
mere forecasts.

Addressing this gap, the present paper leverages H,O AutoML with
integrated SHAP-based interpretability to provide not only robust,
high-precision crude oil price predictions, but also transparent,
granular explanations of the underlying drivers. The originality of this
work lies in its comprehensive deployment of AutoML algorithms
and explainable Al for oil price forecasting, a first in the literature,
with cross-validation, feature importance rankings, SHAP summary
and heatmap visualizations, partial dependence, and ICE plots. Using
a daily panel covering macroeconomic and financial variables (oil
stocks, S&P500, industrial production, USD index), models reliably
track actual oil price movements across pre-crisis, crisis, boom, and
stabilization regimes. Notably, oil stocks and S&P500 emerge as
dominant predictors in both variable importance and SHAP analyses,
with nuanced nonlinear and interaction effects revealed through PDP
and ICE visualizations. The methodology achieves strong RMSE and
MAE results, demonstrating generalizability and practical utility for
energy finance stakeholders.

By integrating these domains, this research highlights the critical
role of aligning financial systems with environmental sustainability
to promote a more resilient and inclusive global economy. The
remainder of the paper is organized as follows: Section 2 provides a
review of the relevant literature, Section 3 outlines dataset, Section
4 presents methodology, Section 5 presents the empirical findings,
Section 6 discusses the managerial implications.

2. LITERATURE REVIEW

Oil price forecasting represents an important bridge between
energy economics, financial markets and advanced computational
intelligence due to the macroeconomic significance of oil prices
and the intrinsic complexity of characterizing its dynamic.
Classical econometric works have provided a strong empirical
base and accepted the fact that oil price interacts with US financial
markets, exchange rate, global industrial output and strategic
reserves of oil. Nakhipbekova et al. (2020), and Rahmouni and
Al Kahtani (2025) demonstrate a short-term volatility spill over
and long term cointegration.

American financial markets exhibit notable sensitivity to oil price
fluctuations, with volatility transmission mechanisms thoroughly
documented in works such as Sadorsky (1999) and Algaralleh
(2024). Employing advanced econometric frameworks like the
time-varying parameter vector autoregressive (TVP-VAR) model,
Wen et al. (2019) capture the evolving feedback loops between oil
price shocks and sectoral equity market dynamics, highlighting
the temporally adaptive nature of these relationships.

Integral to this ecosystem is the US dollar index, which exercises
a bidirectional influence on both oil prices and financial assets.
Liao et al. (2018) demonstrate that exchange rate fluctuations
modulate crude oil price behavior and, reciprocally, oil market
volatility impacts currency valuations (Gatfaoui, 2016), adding
complexity to the international transmission of shocks, as further
evidenced by Zhang et al. (2023)..

The financialization of oil commodities, fueled by derivatives,
ETFs, and speculative capital inflows, has further intensified
linkages between oil markets and equities, as articulated by Rizvi
et al. (2022). Technological developments, notably the rise of
shale oil production, have dynamically reshaped pricing structures
and market sensitivities, with ripple effects permeating equity
valuations (Mastepanov, 2016). Sector-specific analyses reveal
asymmetric equity responses to oil price shocks, highlighting
heterogeneous risk premiums and important implications for
portfolio diversification and risk management in integrated
markets (Dhaoui et al., 2021).

Parallel to econometric advances, the rapid evolution of machine
learning (ML) techniques has led to significant improvements in
forecasting oil prices. ML algorithms, including ensemble tree
methods, neural networks, and support vector machines, have
demonstrated superior predictive accuracy relative to classical
linear models, especially under nonlinear or structurally unstable
regimes (Wen et al., 2019; Liu et al., 2019). The adoption of
explainable AI tools such as SHapley Additive exPlanations
(SHAP), Partial Dependence Plots, and feature importance
rankings enhances interpretability, addressing “black-box”
criticism and aiding decision-makers in understanding key drivers
(Lundberg and Lee, 2017).

AutoML platforms facilitate the automated discovery of
optimal models and hyperparameters, democratizing access to
sophisticated forecasting tools. The combination of AutoML and
SHAP-based interpretability ensures robust, transparent models
vital for energy price applications, where rich economic insights
couple with predictive power.

Moreover, empirical evidence confirms that oil price volatility not
only affects industrial production and macroeconomic stability but
also reverberates through equity and currency markets on a global
scale (Filis, 2010; Guesmi et al., 2016). ML-based innovations
enable finer dissection of risk spillovers and interconnected
feedback loops, offering valuable new perspectives on systemic
transmission mechanisms.

In summary, prior research has established that oil prices,
energy-sector stocks, US financial markets, and the US dollar
index form a closely interconnected and dynamically evolving
system. Building on this foundation, the present study advances
the field by implementing an H,O AutoML pipeline augmented
with SHAP interpretability analysis delivering not only high-
precision forecasts but also transparent, nuanced insights into the
fundamental drivers of oil price fluctuations in global markets.
Notably, this work is the first to comprehensively apply the
integrated H O AutoML and SHAP framework to crude oil price
prediction, placing particular emphasis on both feature-level
and instance-level interpretability rather than focusing solely
on overall predictive strength. In addition, our methodology
prioritizes explainability and rigorous model validation through
cross-model comparisons, feature effect visualization, and
advanced diagnostic tools, ensuring that the resulting managerial
and economic conclusions are firmly grounded in transparency
and robust analytical evidence.
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3. DATA AND RESEARCH DESIGN

3.1. Data

The dataset used in this study comprises key macroeconomic
and financial variables that are commonly associated with oil
price movements, spanning the period from January 2015 to
September 2025. The dependent variable is the crude oil price
(denoted as Oil Price), obtained from the CL=F futures contract,
representing global benchmark prices. The predictors include
the S&P 500 index (S&P500), representing equity market
performance and investor sentiment; the USD Index (USD
Index), reflecting the strength of the US dollar relative to major
currencies; Oil Stocks (XLE) represent the price (in USD) of
the Energy Select Sector SPDR ETF, which tracks the equity
market performance of major U.S. energy companies, primarily
engaged in oil, gas, and energy-related activities, and serves
as a proxy for the overall performance of the energy sector in
equity markets and Industrial Production (IP), representing
overall economic activity and industrial demand. All variables
are collected at a daily frequency, ensuring alignment across
financial and economic indicators. Prior to modeling, the data
were cleaned to handle missing values, and the series were
merged into a single structured dataset suitable for AutoML
modeling. Table 1 presents the descriptive statistics of the
variables over the sample period. The statistics highlight strong
heterogeneity in market behavior across asset classes, shaped
by major macroeconomic and geopolitical shocks during the
sample period. For instance, oil prices exhibit a mean of 62 USD
with substantial dispersion (standard deviation of 18), reflecting
the sharp volatility episodes linked to the COVID-19 collapse
in 2020, the subsequent demand recovery, and the geopolitical
pressures stemming from the Russia—Ukraine conflict. The S&P
500 shows a high average level (3,357 points) with considerable
variability, consistent with the pandemic-induced market turmoil,
unprecedented monetary easing, and later inflationary shocks
that shaped equity market dynamics. The USD Index displays
moderate fluctuations around 98, capturing the strengthening
of the US dollar during global uncertainty (2020-2022) and the
later normalization in international markets.

Oil stocks (XLE) present a mean of 27 with relatively high
volatility, reflecting the sector’s sensitivity to energy price
swings, OPEC+ production adjustments, and global supply-
demand imbalances. Finally, Industrial Production follows a
smooth upward trend with limited dispersion, consistent with a
gradual post-pandemic recovery and the stabilization of global
manufacturing activity.

Table 1: Data preliminary analysis

Variable Mean Min Max
Oil Price (WTI) 62.001 -37.63 123.7
S&P500 3357.073 1829.08 6090.27
USD Index 98.069 88.59 114.11
Oil Stocks (XLE) 27.330 9.385 47.069
Industrial 115.007 99.293 130.815
Production

3.2. Research Design, H,O AutoML Framework and
Implementation

To analyze and interpret predictive models for oil price forecasting,
we adopted a comprehensive methodology integrating variable
importance assessment, model interpretation techniques, and
rigorous evaluation metrics. We first evaluated the influence of
predictors across multiple models within the AutoML framework,
aggregating importance scores from algorithms such as Gradient
Boosting Machines (GBM), Extreme Gradient Boosting
(XGBoost), and Distributed Random Forests (DRF) to identify
the most impactful variables affecting oil prices. To understand
the marginal effect of key features, such as the USD Index and
S&P 500, on predicted oil prices, we generated Partial Dependence
Plots (PDPs), while Individual Conditional Expectation (ICE) plots
were employed to capture heterogeneity in predictor effects at the
individual observation level, revealing potential nonlinearities
and interactions. Additionally, SHAP (SHapley Additive
exPlanations) summary plots quantified the contribution of each
predictor to model outputs, providing both global interpretation
and insights into feature-level effects for individual predictions.
Model performance was rigorously assessed using metrics such
as Root Mean Squared Error (RMSE) and residual diagnostics,
with residual plots analyzed to detect potential issues such as
heteroscedasticity or model misspecification, ensuring that the
models fit the data appropriately. Finally, a variable importance
heatmap was generated to compare the relative contributions of
predictors across top-performing models, including categorical
features encoded via one-hot encoding, confirming the robustness
and consistency of the identified key predictors. Overall, this
integrated approach ensures a thorough understanding of the
predictive factors driving oil prices, their individual and combined
effects, and the reliability and interpretability of the models
employed.

Recent empirical advances have increasingly favored dynamic
learning models capable of adapting and improving iteratively
based on historical data patterns. This shift is particularly relevant
in financial and energy price forecasting, where traditional
regression methods often struggle due to inherent data complexity,
multicollinearity, and nonlinear relationships among predictors.
Machine learning algorithms (MLAs) emerge as powerful
alternatives by synthesizing multiple, potentially weak, sources
of information into robust composite predictive scores.

Among the advanced MLAs, deep learning, distributed random
forests (DRF), generalized linear models (GLM), gradient
boosting machines (GBM), and XGBoost have demonstrated

Variance Std_Dev Skewness Kurtosis
328.197 18.116 0.369 0.524
11746 1083.808 0.537 —0.733

24.065 4.905 0.500 —-0.261

73.7025 8.585 0.626 —0.589

75.292 8.677 —0.001 —-1.195

Oil Price denotes the WTI crude oil spot price (USD per barrel). S&P500 refers to the level of the S&P 500 stock market index (index points). USD Index represents the U.S. Dollar
Index measuring the value of the USD against a basket of major currencies (index). Oil Stocks corresponds to the XLE Energy Sector ETF price (USD). Industrial Production reflects the

volume of goods produced over a given period and is typically expressed as an index (base 100)
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exceptional capability in uncovering complex, latent patterns
within high-dimensional datasets. These algorithms excel at
reducing prediction errors while maintaining optimal bias-variance
tradeoffs, even under multicollinearity conditions.

Our study leverages the, H,O Automated Machine Learning
(AutoML) framework, a comprehensive suite of state-of-the-art
machine learning models recognized for their forecasting accuracy
and computational efficiency. H,O AutoML automates the entire
model-building pipeline—from data preprocessing and feature
engineering to hyperparameter tuning and model selection—
combining advanced algorithms with best practices in machine
learning.

The H,O AutoML implementation and training process was
conducted in Python within a Jupyter Notebook environment,
proceeding through a series of rigorously structured steps to ensure
both accuracy and reproducibility. The workflow began with data
import and preparation, where raw CSV data were transformed
into H,O frames suited for distributed computation. The dataset
was split into training and validation sets using a ratio of 0.80,
with 80% of observations used for training and 20% for validation,
and a fixed random seed established to guarantee reproducibility
and mitigate data leakage.

Model evaluation utilized 5-fold cross-validation, systematically
partitioning the training set to build models by training on four
folds and testing on the fifth, rotating through all folds. Model
performance was benchmarked using metrics such as Root
Mean Squared Error (RMSE), Mean Squared Error (MSE), and
Mean Per-Class Error, with lower values signifying superior
predictions.

For algorithm exploration and hyperparameter tuning, H,O
AutoML trained a diverse set of base learners, including fully
connected deep neural networks, distributed random forests
(DRF), generalized linear models (GLM), gradient boosting
machines (GBM), and XGBoost. Hyperparameter tuning was
approached by minimizing the objective function J (d):

d = arg ngn J(8) where 8 representes the model’s hyperparameters

and J is the validation metric, such as RMSE for regression.

Meta-learning and ensembling followed, with stacked ensemble
models created using two strategies: Stacked Ensemble (All
Models) combines predictions from all candidate models, while
Stacked Ensemble (Best of Family) aggregates only the top model
from each algorithmic family. The meta-learner then automatically
determines the optimal blending weights OW by minimizing
prediction error:

* . Z \2 .
oW =arg mvin Z(Zj —ZOWiZij) where Zj is the observed
Jj i

value and 211 the prediction from model 7/ for observation j.

After training, all models were ranked on a validation-set-based
leaderboard, with the top entry (M,, ) selected for deployment:

est

M, = top(Leaderboard)

best

Robustness checks included validation on an independent hold-out
set, inspection of learning curves to diagnose potential overfitting
or underfitting, and feature importance evaluation using SHAP
(SHapley Additive exPlanations) values to interpret predictive
drivers and ensure model transparency. This comprehensive
methodology ensured the resulting AutoML models were not
only highly accurate and generalizable, but also interpretable and
practically robust for advanced financial forecasting applications.

4. EMPIRICAL RESULTS AND DISCUSSION

The evaluation of our models’ predictive performance was based
on metrics detailed in Table 1, emphasizing Root Mean Squared
Error (RMSE) and Mean Squared Error (MSE) as primary accuracy
indicators. The table tracks the trajectory of RMSE values for H,0
AutoML models over successive time frames, highlighting optimal
execution intervals and the effectiveness of various algorithms. We
benchmark multiple machine learning models, including Gradient
Boosting Machines (GBM), Distributed Random Forests (DRF),
deep learning models, Generalized Linear Models (GLM), and
Stacked Ensembles—which integrate predictions from various
underlying models. The Mean Per Class Error, reflecting the
average misclassification rate across all classes, served as an
additional gauge of classification accuracy, where lower values
denote higher precision. RMSE and MSE quantify the average
discrepancy between predicted outcomes and their actual values;
RMSE represents the square root of the mean squared deviations,
while MSE captures their mean directly. Lower scores in these
metrics confirm superior forecasting capability.

Table 2 presents the AutoML leaderboard summarizing the
performance of various models trained to predict oil prices. The
key evaluation metrics include the Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), Mean Absolute Error
(MAE), Root Mean Squared Logarithmic Error (RMSLE), residual
deviance, training time, and prediction time per row, along with
the corresponding algorithm types. GBM_4 emerges as the optimal
model with an RMSE of 2.651 and MSE of 7.028, indicating
the lowest average prediction error among all candidates and
establishing it as the selected forecasting engine.

The StackedEnsemble AllModels_1 ranks second with marginally
higher error metrics (RMSE: 2.654, MSE: 7.045) but substantially
longer inference time (2,448 ms versus 464 ms), reflecting the
computational overhead of aggregating all base models; despite
this, its near-parity with the top model suggests robust ensemble
construction.

The leaderboard demonstrates strong relative performance
consistency across the top four positions (GBM and
StackedEnsemble variants), with RMSE values tightly clustered
between 2.65 and 2.70. Gradient Boosting Machines (GBM)
dominate the ranking, occupying three of the top five positions,
underscoring their superior capability for capturing nonlinear oil
price dynamics relative to alternative algorithmic families. In
contrast, tree-based ensemble methods (DRF, XRT) and XGBoost
exhibit comparatively weaker performance (RMSE >2.83),
suggesting that sequential boosting approaches prove more
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Table 2: AutoML Leaderboard: Lists the top-performing models, their algorithm types, MSE/RMSE, and ranking based

on validation performance

GBM_4_AutoML_4 20251028 111446 2.6511  7.02831 1.77849 0.0431111 7.02831 464 0.031834 GBM
StackedEnsemble_AllModels_1_ 2.65427 7.04512 1.83135 0.0465795 7.04512 2448  0.23038  StackedEnsemble
AutoML _4 20251028_111446

GBM 2 AutoML 4 20251028 111446 2.70205 7.30107 1.91105 0.0463201 7.30107 414 0.027736 GBM
StackedEnsemble BestOfFamily 1 _ 2.70348  7.3088  1.86025 0.0473491  7.3088 1094 0.081195 StackedEnsemble
AutoML_4 20251028 111446

GBM_3 AutoML 4 20251028 111446 2.77439  7.69723 1.89012 0.0463808 7.69723 353  0.027434 GBM

XRT 1_AutoML 4 20251028_111446 2.83353  8.02888 1.97262 0.0485909 8.02888 726  0.030323 DRF

DRF 1 AutoML 4 20251028 111446 2.93667 8.62406 1.98828 0.0488397 8.62406 738  0.035189 DRF
XGBoost 2 AutoML_4 20251028 111446  2.98345 8.90099 2.09924 0.0601362 8.90099 2246 0.008242 XGBoost

model_id: H,0 AutoML model identifier, RMSE: Root mean squared error, MSE: Mean squared error, MAE: Mean absolute error, RMSLE: Root mean squared logarithmic error;
mean_residual_deviance: Overall model fit, training_time_ms (TT): Training time (ms), predict_time_per_row_ms (PTPR): Average prediction time per row (ms), A/go: Algorithm type

(GBM, DRF, XGBoost, GLM, StackedEnsemble)

effective than parallel ensemble or alternative gradient descent
formulations for this particular forecasting task.

The mean absolute error (MAE) range of 1.78-2.10 USD per barrel
indicates that typical point predictions deviate from realized prices
by approximately 2 USD on average, a magnitude pragmatic for
portfolio hedging decisions given crude oil’s volatility scale.
Training times vary substantially (353-2,448 ms), with GBM_4’s
efficiency (464 ms) providing computational advantage for real-
time deployment scenarios. This performance hierarchy validates
the H,O AutoML framework’s efficacy in automated model
selection, with GBM_ 4 identified as the optimal production model
for subsequent forecasting applications and decision support.

Once the best model has been identified, this selected model is
employed to generate out-of-sample forecasts, which are then
compared to actual oil price data. By plotting the predicted values
alongside real prices over time, the model’s forecasting accuracy
and temporal tracking capabilities can be visually assessed,
thereby complementing the quantitative accuracy metrics from
the leaderboard with an intuitive depiction of model performance
across different market conditions. Figure 1 presents a line plot
comparing the actual observed oil prices with the predicted values
produced by the AutoML model during the test period. This
figure provides an intuitive evaluation of the model’s forecasting
accuracy and its capacity to track real market dynamics.

The figure presents a comparison between actual crude oil prices
(solid line) and the forecasts generated by the H,O AutoML
model (dashed line) over the out-of-sample test period. The x-axis
corresponds to the sequential order of observations in the test
set, allowing an assessment of the model’s ability to track unseen
price dynamics.

Throughout the test sequence, the model demonstrates strong
predictive capability, closely following the overall trends in
the observed prices. Major upward and downward movements
are effectively captured, indicating that the model successfully
internalizes the patterns underlying oil price fluctuations. While
extreme peaks and troughs are slightly smoothed, a typical feature
of ensemble and neural-network-based forecasts, this smoothing
ensures that predictions remain stable and robust, avoiding
overreaction to transient noise in the data.
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Figure 1: Oil Price Forecast vs Actual (Test Set) Line plot comparing
actual oil prices with predicted values over the test period.

Forecast of Oil Price Using H20 AutoML
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-~ Predicted Oil Price

100

80

Price (USD)

Minor lags are observed at abrupt inflection points, which is
expected in data-driven models when confronted with sharp,
rapid changes. Despite these small delays, the predicted series
maintains consistent co-movement with actual prices, reflecting
the model’s ability to replicate the underlying dynamics across
varying levels of volatility.

The figure also highlights the model’s general stability and
reliability: it adapts well to both gradual trends and sudden shifts,
producing forecasts that remain tightly aligned with realized
prices across the entire out-of-sample period. From a practical
perspective, these results demonstrate that the AutoML framework
provides a strong sequential tracking of price behavior, offering a
useful tool for analysis and forecasting in dynamic and potentially
volatile markets.

Building on the comparison between the predicted and actual oil
prices, Figure 2 provides the residual analysis, offering a deeper
assessment of the model’s predictive reliability and the presence
of any systematic deviations or heteroscedastic patterns in the
forecast errors.

Residual diagnostic analysis of the StackedEnsemble
BestOfFamily model provides compelling evidence of appropriate
model specification and forecasting reliability across the oil price
prediction domain. The residual scatter plot exhibits symmetrical
distribution around the zero-error baseline with minimal systematic
bias across all fitted value ranges ($20-$120 USD), confirming
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Figure 2: Residual analysis of best AutoML Model. Plots residuals versus predicted values to evaluate model fit, detect bias, and assess

heteroscedasticity
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unbiased prediction and effective capture of mean-reverting price
dynamics. Homoscedastic error variance across the entire price
spectrum indicates consistent forecasting accuracy irrespective
of market regime or absolute price level, demonstrating the
model’s robust adaptation to diverse volatility contexts. The
substantial concentration of residuals within the =5 USD interval—
representing typical prediction deviations—validates the model’s
practical utility for energy market participants, while the small
proportion of notable outliers appearing at elevated fitted values
($100-$120 USD), though reaching extremes of £20 USD, reflects
expected challenges during episodes of acute market discontinuity
and rapid shock transmission rather than fundamental model
deficiency. The histogram margin revealing slight right-skewness
suggests marginally heavier positive-tail disturbances, consistent
with the model’s known tendency toward volatility smoothing
and conservative extreme-value estimation. Collectively, these
diagnostic patterns confirm that the StackedEnsemble framework
achieves statistically sound prediction with appropriately calibrated
forecast precision, validating its deployment for tactical portfolio
positioning and energy market risk assessment while maintaining
awareness of its inherent limitations during geopolitically-induced
supply shocks and financial market dislocations.

To assess and confirm the robustness and generalizability of our
model, we relied on the learning curve. Figure 3 presents the
learning curves of the best-performing AutoML models, depicting
how model performance evolves with increasing iterations or the
number of trees.

The loss metric (such as RMSE or R?) is plotted to evaluate training
efficiency and potential overfitting or underfitting. The learning
curve for the StackedEnsemble BestOfFamily metalearner
demonstrates textbook convergence characteristics indicative of
appropriate model capacity and effective regularization. The three
overlapping trajectories: Training (blue), Training CV Models
(dashed blue), and Cross-validation (orange), exhibit near-identical
monotonic decline from initial deviance of approximately 330 to
stabilization near 10 by iteration 70, with negligible divergence
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Figure 3: Cross-validation performance of top models. Diagnostic
plots showing cross-validation metrics (e.g., RMSE, R?) across the top
models in the AutoML leaderboard
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Figure 4: Variable importance from best AutoML Model. Bar plot
showing the relative contribution of each predictor (S&P500, USD
Index, Oil Stocks, Industrial Production) to the oil price predictions

Variable Importance for "GBM_3_ AutoML 4 20251028 111446"
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between training and cross-validation curves throughout the
optimization process. This near-perfect alignment provides robust
evidence of absence of overfitting, a critical validation metric
confirming that the model generalizes reliably to unseen data and
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has not memorized spurious training patterns. The steep initial
descent (iterations 0—15) reflects rapid loss function minimization
as the metalearner identifies optimal blend weights across base
model predictions, while the gentle asymptotic approach thereafter
(iterations 30-70) indicates convergence to a stable solution
without further material improvement, precisely the behavior
expected of well-tuned ensemble architectures.

The minimal vertical separation between training and cross-
validation curves, typically indicating perfect generalization
in well-specified models, combined with the selected iteration
mark (green vertical line) occurring near convergence point,
confirms that the framework has achieved optimal bias-variance
equilibrium. The stable, non-increasing trajectory across all
iterations precludes concerns regarding underfitting (which
would present as persistently elevated deviance) or erratic
oscillation characteristic of unstable optimization. Collectively,
the learning curve provides strong diagnostic reassurance
that the StackedEnsemble configuration delivers trustworthy,
generalizable forecasts without sacrificing model complexity
or introducing spurious overfitting, essential prerequisites for
confident deployment in energy market prediction applications.

To further enhance interpretability, we conducted a detailed feature
importance analysis for the top-performing models, particularly
the GBM 4 model (Figure 4), quantifying how each input variable
contributes to the model’s predictive power and thus highlighting
key drivers behind accurate oil price forecasting.

This bar plot displays the relative importance of each predictor
variable in the best AutoML model for oil price forecasting.
Particularly, the variable importance chart from the GBM_4 model
reveals a clear hierarchical ranking of predictor contributions to
oil price forecasting accuracy, providing quantifiable economic
insights into market structure and causal relationships. Oil Stocks
dominate with an importance score approaching 1.0, indicating
overwhelming predictive dominance and establishing energy sector
equities as the primary vehicle through which macroeconomic
conditions, supply dynamics, and investor expectations transmit
into oil price movements. This extreme dominance aligns with
financial market microstructure theory, reflecting tight integration
between oil futures and equity valuations through diversified
portfolio flows and systematic hedging mechanisms. These results
align with findings by Wen et al. (2019) and Broadstock and Filis
(2014), who similarly observed that stock markets linked to the
oil and energy sectors act as leading indicators of crude price
dynamics. It also corroborates the financial market microstructure
theory discussed by Kilian and Murphy (2014), suggesting a strong
integration between oil futures and equity valuations through
diversified portfolio flows and systematic hedging mechanisms.

S&P 500 ranks second with an importance score of approximately
0.75, confirming that broad-based U.S. equity market sentiment
and economic growth expectations constitute substantial secondary
drivers of oil demand and price formation. This result supports
evidence from Basher et al. (2012) and Kumar and Mallick, (2023)
who emphasize that equity market performance captures both
cyclical economic expectations and investor risk appetite that
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spill over into commodity markets. The substantial gap between
Oil Stocks (1.0) and S&P 500 (0.75) implies that sector-specific
oil market dynamics outweigh general financial conditions, a
pattern consistent with Narayan and Sharma (2011), who noted
that firm-level operational factors, such as exploration activity and
production efficiency, often provide greater explanatory power
for oil price variation than aggregate macroeconomic indicators.

Industrial Production contributes moderately (=0.40), validating
the demand-side transmission mechanism whereby global
manufacturing activity directly influences petroleum consumption
and pricing. The notably smaller contribution of the USD Index
(=0.15) initially appears counterintuitive given extensive literature
documenting oil-dollar inverse relationships; however, this pattern
reflects the model’s capture of concurrent movements where dollar
appreciation and oil price declines occur as joint manifestations of
broader macroeconomic shifts rather than pure currency effects.
The steeply hierarchical importance distribution, with the top
predictor exceeding subordinate variables by 6—7 fold, suggests
that oil price forecasting fundamentally depends on sector-
specific equity dynamics rather than distributed influence across
multiple macroeconomic channels, offering valuable guidance for
practitioners prioritizing data collection, real-time monitoring, and
hedging strategy calibration toward energy equities over general
macroeconomic indicators.

The SHAP Summary plot (Figure 5) is complementary to the
variable importance bar plot shown for leaderboard models.
While the bar plot ranks features globally based on their average
absolute contribution or weight in the model, the SHAP summary
plot details how each feature behaves for every single prediction,
uncovering non-linearities and interactions not visible in aggregate
metrics. It enriches interpretability and transparency, enabling
practitioners to assess not just overall importance but also the
conditions and directions under which features exert their effects.
Thus, both visualizations together provide a more holistic and
rigorous understanding of model behavior for oil price forecasting.

This SHAP summary plot displays each feature’s contribution to
individual predictions across the dataset. The plot visually encodes
positive and negative impacts of each predictor and captures
feature interactions. It enables a comprehensive understanding
of how different factors influence oil prices and highlights the
most impactful features, enhancing model interpretability. This
finding aligns with recent empirical work emphasizing the complex
interplay between macro-financial variables and oil market
dynamics. For instance, Wen et al. (2019) and Nakhipbekova et al.
(2020) both confirm that financial and industrial activity indicators
significantly affect oil price behavior, validating the robustness of
using interpretable machine learning frameworks such as SHAP
for uncovering these nonlinear relationships. This analysis offers
a detailed breakdown of how each feature individually contributes
to the predictive output of the GBM model for oil prices. Each
dot represents a SHAP value for a single observation and feature,
with the horizontal axis indicating the direction and magnitude
of impact, positive SHAP values push predictions higher, while
negative values pull them lower. The color gradient depicts the
actual value of each feature, differentiating the effects of high
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Figure 5: SHAP summary plot for oil price predictions. Visual representation of how each feature impacts individual predictions, highlighting

positive/negative contributions and feature interactions

SHAP Summary plot for "GBM_3_AutoML_4_20251028_111446"

Oil_stocks

SP500

Feature

Industrial_Production

USD_index

et § ¢ Nr..ﬁ.- o‘o.‘ \‘%‘
& *"?'

10

® ¢ °
L2 4o

0.8

°
&
anjen 2njea) pazijeusion

°
S

0.2

0.0

SHAP value

Figure 6: Variable importance Heatmap. Displays the relative
importance of all predictors across top-performing models
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(red) and low (blue) input levels. Oil Stocks are shown as the most
influential driver, with high values strongly elevating predicted
prices, while low values have a mitigating effect. S&P500
and Industrial Production display more nuanced, bidirectional
influence, with their impact varying according to the operating
regime, as indicated by the spread of red and blue across both
positive and negative SHAP values. The USD Index generally
clusters around zero, reflecting minimal marginal influence on
forecasted oil prices in this model. These results are consistent with
previous studies highlighting the dominant role of oil inventories
and market expectations in shaping price fluctuations (Kilian and
Murphy, 2014; Kumar and Mallick, 2023). Similarly, the mixed
influence of the S&P 500 index and industrial production mirrors
findings from Narayan and Sharma (2011) and Broadstock and
Filis (2014), who reported that equity markets and industrial
activity transmit both demand- and sentiment-driven shocks to
oil prices under varying market conditions.

Importantly, the SHAP summary plot not only corroborates
the variable importance ranking from the bar plot, affirming
the primacy of Oil Stocks in the leader model, but also enables
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inspection of individual prediction attributions and nonlinear
patterns not visible in global averages. This richer interpretability
makes it an essential complement to traditional feature importance
charts, providing actionable insights for both model diagnostics
and economic understanding of predictive factors driving oil
market outcomes.

The feature importance heatmap served as an invaluable tool in
the later stages, enabling a clear visual comparison of the relative
significance of various features across different predictive models.
This graphical representation streamlined the feature selection
process by prominently highlighting the most influential variables
affecting oil price forecasts. Moreover, it facilitated a nuanced
examination of how individual models weighted different inputs,
revealing both shared and unique patterns of feature importance.
Insights derived from this heatmap guided the construction of a
carefully curated ensemble composed of models selected for their
complementary strengths and their collective ability to mitigate
overfitting, thereby enhancing overall predictive performance.
The straightforward visual format of the heatmap was crucial in
translating complex correlations within the data into an accessible
narrative, boosting transparency and interpretability of the
modeling approach and results. Notably, the heatmap demonstrated
that Gradient Boosting Machines (GBMs) exhibited strong internal
consistency yet were distinctly different from deep learning models
in their feature valuations. This observation informed our strategic
ensemble design, aiming to blend diverse algorithmic advantages
while avoiding redundancy, ultimately enabling a comprehensive
exploration of the factors driving oil price behavior.

This variable importance heatmap builds on the insights provided
by the bar plot, enabling a direct, comparative visualization of
how each predictor’s importance is assessed across a diverse set
of machine learning models in the context of oil price forecasting
(Figure 6).
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Figure 7: Partial dependence plots. Shows how changes in key predictors affect the predicted oil price, holding other variables constant
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The variable importance heatmap illustrates which predictors have
the most significant impact on the oil price forecasts across various
models. This variable importance heatmap offers a comprehensive
cross-model perspective on the relative significance of predictive
features influencing oil price dynamics. The visualization reveals
that Industrial Production is consistently rated as the most
influential variable by several leading machine learning models,
particularly GBM and XGBoost variants, indicating its central role
as a macroeconomic predictor in oil price forecasting. Meanwhile,
Oil Stocks emerge as the dominant feature for certain models,
including GLM and XGBoost 3, reaffirming the importance of
sector-specific supply and inventory trends.

Both USD Index and S&P 500 possess lower and more variable
importances across most algorithms, suggesting they contribute
to oil price prediction but are generally overshadowed by direct
economic and industry-specific measures. The heatmap showcases
methodological consensus among tree-based models (GBMs and
XGBoosts), which prioritize broad economic fundamentals, while
highlighting distinct patterns in the GLM, DRF, and XRT models.
These differences illustrate how each algorithm interprets data
structure and relationships uniquely.

While the variable importance heatmap summarizes how different
models weight each feature, Partial Dependence Plots (Figure 7)
take this analysis further by illustrating the specific functional
relationship between each predictor and the predicted outcome.

These Partial Dependence Plots provide an in-depth visualization
of how changes in key predictors independently influence the
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predicted oil price, while holding all other variables constant.
The plot for Oil Stocks (top left) reveals a strong positive, near-
monotonic relationship: as oil stocks increase, the predicted oil
price rises consistently across multiple models, highlighting oil
inventories as a fundamental driver of market expectations.

For Industrial Production (bottom left), the relationship is less
uniform. Some models indicate a pronounced inflection point,
where predicted prices surge as industrial production reaches
a certain level before stabilizing or declining. This reflects the
nuanced influence of macroeconomic output, with periods of
strong production associated with higher oil prices, but saturation
or regime effects dampening this impact beyond a threshold.

Lastly, the USD Index plot (bottom right) predominantly shows a
negative relationship: as the US dollar index increases, predicted
oil prices tend to decrease, reflecting the well-established inverse
relationship between the U.S. dollar and commodity prices.
A stronger dollar makes oil more expensive for foreign buyers,
reducing global demand and pressuring prices downward.
Conversely, the S&P500 plot (top right) illustrates a nonlinear,
threshold effect. The predicted oil price responds sharply upward
as the S&P500 index crosses a mid-range threshold. Then, higher
S&P 500 values are associated with increased predicted oil prices,
suggesting that stronger equity market performance coincides
with improved economic activity and higher energy demand.
These findings are economically coherent, as both financial and
macroeconomic indicators serve as leading signals for oil market
movements.
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Figure 8: Individual conditional expectation (ICE) plots for key predictors. Shows how changes in each predictor individually affect the predicted
oil price, holding other variables constant
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We now turn to Individual Conditional Expectation (ICE) plots,
which reveal the variation in feature effects at the individual
observation level and highlight the presence of interaction
effects or heterogeneity that may be obscured in population-wide
averages.

Figure 8 presents the Individual Conditional Expectation (ICE)
plots for the main predictors influencing oil prices, offering a
detailed view of how the predicted oil price responds to changes
in each variable for individual observations. Unlike Partial
Dependence Plots (PDPs), which display average effects, ICE
plots uncover instance-specific variations, revealing heterogeneity
across the dataset. Each line in the plot represents an individual
observation’s response curve, showing how its predicted oil
price changes as a particular predictor varies while others remain
constant.

The results suggest that ICE plots reveal the heterogeneity in
model responses—illustrating how the impact of features such
as oil stocks, S&P500, industrial production, and the USD index
can vary substantially from one instance to another.

For example, the response lines for oil stocks show a clear
positive association overall, yet the steepness and starting points
differ across individual cases, indicating diverse sensitivities
in the sample. Similarly, the plots for S&P500 and industrial
production display not only non-linearities but also substantial
dispersion, especially around key thresholds or inflection points.
This underscores the presence of interaction effects and reinforces

the notion that the relationship between these predictors and oil
prices is not uniform across the dataset. The USD index ICE
plot consistently reflects a negative effect, but the magnitude
of response varies, emphasizing that currency movements
differentially affect predicted oil prices depending on the economic
context of each observation.

5. CONCLUSION AND MANAGERIAL
IMPLICATIONS

The findings of this study demonstrate that automated machine
learning, especially the Gradient Boosting Machine (GBM) models
tuned via H,O AutoML, delivers highly accurate forecasts of
crude oil prices while maintaining transparency through advanced
interpretability techniques. The best-performing GBM model
achieves the lowest Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE), indicating tight forecast precision across
diverse market regimes.

Our analysis shows that sector-specific factors like oil stocks
and macro-financial indicators such as the S&P 500, industrial
production, and the USD Index exert distinct, sometimes nonlinear
influences on oil price movements. SHAP and ICE visualizations
further uncover the heterogeneity, interactions, and threshold
effects hidden within aggregate metrics, enabling a rigorous,
observation-level understanding of model behavior.

Ensemble models (Stacked Ensembles) also perform strongly,
with near-parity in accuracy but higher computational costs,
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while alternative tree-based (DRF, XRT) and boosting (XGBoost)
methods trail in performance, highlighting GBM’s advantage
for capturing nonlinear dynamics in oil price formation. Model
diagnostic plots show close alignment between predicted and
actual prices across pre-crisis, boom, crisis, and recovery periods,
with minimal systematic bias and symmetrical oscillations. The
models exhibit resilience to market regime changes and volatility
spikes, although extreme downturns spur some lag a common trait
in ML models tuned for average-case accuracy.

Feature importance analysis consistently ranks oil stocks as
the most powerful driver of oil price forecasts, followed by
broad equity market indices (S&P500), industrial production,
and the USD index. Notably, oil stocks far outweigh general
macroeconomic indicators in predictive strength, underscoring
sectoral transmission mechanisms and portfolio linkages. SHAP
summary plots and heatmaps corroborate these findings, revealing
the nuanced, bidirectional effects of macro-financial variables at
both global and individual prediction levels. Oil stocks exhibit
strong positive influence; S&P500 and industrial production
display nonlinear threshold and inflection effects; USD index
maintains a generally negative relationship, aligning with
established commodity-currency theory.

Partial dependence and ICE plots further enrich the analysis,
visualizing persistent heterogencity and complex feature
interactions. ICE plots, in particular, uncover substantial variability
in response curves, indicating that individual sensitivity to
predictors varies widely within the sample, a clear sign of market
microstructure effects and data-driven regime diversity.

Residual analysis confirms unbiased forecast centering and
homoscedastic error variance, with only mild tail skewness during
elevated volatility. Learning curve diagnostics rule out overfitting,
confirming optimal model complexity and generalizability for
out-of-sample application.

Collectively, these results validate the potential of combining
AutoML with explainability to not only outperform traditional
models, but also empower decision-makers with interpretable,
data-driven guidance for risk management, investment, and energy
market policy in a highly volatile world.

From both managerial and policy perspectives, the findings
of this study offer several actionable insights with direct
implications for strategic decision-making and market
governance. By leveraging Al-driven forecasting frameworks
such as Gradient Boosting Machines (GBM), energy firms,
investors, and policymakers can more accurately anticipate
oil price dynamics, thereby enhancing risk assessment and
strategic adaptability under conditions of uncertainty. The
results highlight the dominance of Oil Stocks and the S&P 500
as key explanatory variables, carrying important implications
for investors and economists alike. For investors, the strong
predictive power of these indicators underscores the need to
closely monitor equity market dynamics, particularly energy-
related stocks, as early signals of potential oil price movements.
Incorporating these variables into risk assessment frameworks
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can improve the timing of investment decisions and support
proactive portfolio adjustments in response to market volatility.

For economists and policy analysts, the findings emphasize
the growing interconnectedness between financial markets and
commodity markets. Integrating these dominant indicators into
forecasting models can enhance the accuracy of macroeconomic
projections, strengthen early-warning systems, and provide deeper
insights into the financialization of energy markets. The strong
interdependence between oil prices and equity market performance
further underscores the importance of embedding macro-financial
conditions into energy investment strategies, production planning,
and capital allocation decisions to ensure greater resilience. For
policymakers, continuous monitoring of the USD Index and
major equity indices offers a vital tool for anticipating inflationary
pressures and implementing timely fiscal or monetary adjustments.

Ultimately, this research demonstrates that AutoML-based
predictive modeling provides a transparent, adaptive, and
empirically grounded approach that not only outperforms
conventional forecasting methods but also empowers decision-
makers to enhance predictive accuracy, optimize investment
efficiency, and strengthen policy responsiveness in an increasingly
volatile global energy landscape

Despite providing valuable insights into the dominance of
key explanatory variables, this study could be extended by
performing robustness checks through econometric modeling of
the interdependencies and relationships among Oil Stocks, the
S&P 500, and other macro-financial indicators. Such an approach
would allow researchers to compare the predictive performance
of machine learning models with traditional econometric
models, while also exploring out-of-sample forecasting, dynamic
dependence structures, and volatility spillovers. Incorporating
country-specific regulations, geopolitical events, and policy shifts
could further enhance the understanding of oil price dynamics.
These complementary analyses would not only deepen insights
into the interactions between financial and commodity markets
but also provide guidance for portfolio investment and hedging
strategies under complex and evolving market conditions.
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