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ABSTRACT

Transitioning towards sustainable energy needs decision models able to integrate economic, environmental, and technological factors in conditions of 
uncertainty. This paper introduces an innovative multicriteria ordinal classification approach based on the so-called HI-INTERCLASS-nB method to support 
strategic investment decisions in the energy sector. The approach can consider evaluation criteria organized in a hierarchical structure, and capture interactions 
among financial, environmental, and operational indicators. Unlike traditional approaches, the proposal allows the use of both precise and interval-based 
data, which improves robustness when the information is incomplete or imprecise. A computational experiment was conducted using data from energy-
producing and energy-intensive companies, which are listed in major global markets. The results demonstrate that the proposed approach can effectively 
determine high-performance investment alternatives, providing stable and interpretable classifications across multiple scenarios. The results also confirm 
that HI-INTERCLASS-nB can be a valuable decision-support tool for policymakers and investors to promote efficient and sustainable energy strategies.

Keywords: Multicriteria Decision-Making; Energy Investment; Sustainability; Ordinal Classification; Uncertainty Modeling 
JEL Classifications:  Q40, C44, G11, Q48

1. INTRODUCTION

The global energy sector is undoubtedly changing due to 
decarbonization commitments, new technologies, and increased 
market volatility. Decision-makers, both public and private, make 
decisions in complex contexts, where investment opportunities 
include renewable energy generation projects and grid flexibility 
investments, on the one hand, and energy-intensive industrial 
retrofits, on the other. Each has implications such as financial 
returns, emissions savings, regulatory risk, and social acceptance. 
In such a situation, tools that can manage diverse types of data, 
manage uncertainty, and offer ranked options rather than a single 
optimal option are very useful.

Multi-criteria decision analysis (MCDA) methods offer structured 
approaches to combining multiple competing measures (e.g., 
economic, environmental, operational, and social factors) into 
energy investment scenarios (Siksnelyte-Butkiene et al., 2020). 
Reviews of MCDA in the energy sector identify the so-called 
outranking-based methods, such as ELECTRE and PROMETHEE, 
as predominant where transparency is crucial and also where 
stakeholder issues are highlighted (Diaz et al., 2022; Sahoo 
et al., 2025; Siksnelyte-Butkiene et al., 2020; Solares et al., 2025; 
Solares et al., 2022). Particularly, MCDA’s ordinal categorization 
techniques are best suited to address a type of classification problem 
called sorting, where each of a set of alternatives or decision 
objects must be assigned to an element of a set of classes that are 
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preferentially ordered; for example, categorizing firms or projects 
into strategic levels (e.g., “High Priority”, “Medium”, “Deferred”, 
etc.), which benefits both policymakers and portfolio managers. 
Despite these advances, two major methodological weaknesses 
persist in the field of energy investment: (1) Most MCDA models 
assume exact numerical values and linear weighting, which fails 
to account for the imprecise and interval-based nature of real-
world data (e.g., projected savings, technology readiness levels, 
policy risk ranges), and (2) criterion hierarchies (e.g., reducing 
emissions risk is complex and it requires the decision-maker 
to consider subfactors) are often overlooked (Fernández et al., 
2022; Fernández et al., 2023). Failure to model these situations 
may result in a classification that lacks sufficient robustness and 
interpretability to provide useful practical strategic guidance.

To address these shortcomings, this work suggests a very recent 
sorting method from the MCDA literature, the HI-INTERCLASS-
nB method (Fernández et al., 2022) for improving energy 
investment decisions. This hierarchical interval and ordinal 
classification method allows for the incorporation of interval-valued 
criterion scores, hierarchical structuring of criteria, and explicit 
facilitation of interactions between criteria (Fernández et al., 2022).

Within the energy investment paradigm, HI-INTERCLASS-nB 
offers several advantages:
• It supports interval data, allowing for more realistic

modeling of uncertain projections, technology cost ranges,
implementation timelines, and regulatory risk bands.

• It preserves the hierarchical nature of energy projects; for
example, the highest-level dimensions could be Economic,
Environmental, and Operational, each broken down into
sub-criteria (CAPEX/OPEX, emissions/local pollutants,
flexibility/availability).

• The model’s interaction considers that improving one criterion 
(e.g., operational flexibility) can affect another (e.g., emissions
risk reduction), which, in turn, can affect financial stability
and investment categorization.

Therefore, in this work, HI-INTERCLASS-nB is used to classify 
energy investment alternatives into strategic priority classes (e.g., 
high, medium, low) based on empirical evidence from energy 
producing and using companies. The objective is to demonstrate 
that the proposal can generate transparent and stable rankings 
suitable for strategy formulation and policy advice, and that 
they are better than or comparable to conventional outranking 
methods in terms of robustness and transparency. Our contribution 
is therefore threefold: (1) We extend the research on interval 
outranking to the energy investment domain by proposing a new 
methodology exploiting the HI-INTERCLASS-nB method; (2) we 
perform an empirical demonstration on realistic energy investment 
data with uncertainty, hierarchy, and interactions; and (3) we 
generate practical implications for energy policy.

2. LITERATURE REVIEW

2.1. MCDA in Energy and Investment
The changes in paradigms to low-carbon and energy-resilient 
systems have created the necessity for analytical tools that can 

manage multiple, often conflicting, criteria in policy design and 
investment decision-making. Energy choices (e.g., the selection 
of generation technologies, infrastructure development, efficiency 
improvements and energy market investments) involve obvious 
trade-offs between costs, feasibility, environmental impact, 
and social acceptability (Wieckowski and Sałabun, 2023). As a 
result, MCDA has emerged as an interesting methodology for 
integrating heterogeneous data sources, expert judgment, and 
policy preferences into transparent and replicable decision-making 
(Leyva et al., 2023; Navarro et al., 2023; Sahoo et al., 2025).

MCDA consists of a set of techniques that can be used to evaluate 
and rank alternatives under conditions of uncertainty. These 
methods are used in the technological assessment of energy 
systems, energy mix optimization, renewable energy site selection, 
and the evaluation of energy efficiency plans (Sahoo et al., 2025; 
Sahoo et al., 2025). Ranking-based methods such as the Analytic 
Hierarchy Process (AHP) and the Technique for Ordering by 
Similarity to Ideal Solution (TOPSIS) are often used to compare 
renewable energy technologies or investment portfolios (Ayuketah 
et al., 2025). These methods allow decision-makers to integrate 
quantitative and qualitative criteria and assess trade-offs across 
various dimensions.

However, as energy systems become more complex, outranking-
based methods such as ELECTRE and PROMETHEE have gained 
increasing interest from the academic filed as well as practitioners, 
since the methods can express preferences and encompass non-
trade-off relations between criteria (Diaz et al., 2024; Fernandez 
et al., 2022; Siksnelyte-Butkiene et al., 2020). Different from 
additive models, outranking methods allow for the identification 
of veto criteria that avoid that good performances, such as 
appealing economic performance, are allowed even in presence 
of unacceptable performances, such as improper emissions, 
making these methods particularly suitable for policy applications 
focused on sustainability (Wieckowski and Sałabun, 2023). 
Recent empirical applications in electricity system investment and 
renewable energy planning indicate that outranking techniques 
are more resilient than additive models, providing results that are 
less sensitive to extreme values and subjective weights (Sahoo 
et al., 2025).

2.2. Sorting and Ordinal Classification Methods in 
MCDA
For multicriteria decision analysis, traditional techniques mainly 
refer to ranking or scoring options, but for more sophisticated 
choice situations, sorting or ordinal classification is increasingly 
a valuable task. Sorting refers to a decision problem where 
alternatives must be assigned (classified) into groups (classes or 
categories) ordered by some sort of preference that reflects the 
general performance of the groups. Instead of creating a continuous 
ranking, sorting methods separate alternatives into classes such as 
“High Priority”, “Moderate Priority”, and “Low Priority”, which 
is typically more relevant to policy or investment planning (Ben 
Amor et al., 2023).

Sorting methods, or multi-criteria sorting or classification 
models, have been widely suggested in the outranking family 
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of MCDA methods. Some of the best known among them are 
ELECTRE TRI, ELECTRE TRI-C, and ELECTRE TRI-nC, 
which classify alternatives into pre-specified ordered categories 
on the basis of concordance, discordance, and credibility indices 
and characteristic reference profiles (Almeida-Dias et al., 2010). 
These methods have been found to work well in various disciplines 
such as environmental risk assessment, project choice, and policy 
evaluation. Their value in energy decision-making lies in the fact 
that they can be interpreted and are in accordance with real policy-
making processes, where decision-makers typically must classify 
projects to funding or implementation levels rather than give a 
simple ranking (Baseer et al., 2023; Espin-Andrade et al., 2015; 
Solares et al., 2022). Recently, (Fernández et al., 2022) presented 
a new variation of this type of methods called ELECTRE TRI-nB 
that can work with reference profiles that are on the boundaries 
between classes. This method has not been proved in the context 
of environmental risk assessment and project choice.

According to the comprehensive bibliometric review by Ben 
Amor et al. (2023), research on multi-criteria sorting and 
classification gained momentum considerably over the past 
decade. The study identified the energy and sustainability sectors 
as main upcoming fields for these models due to the fact that they 
are capable of processing mixed data types and non-compensatory 
interaction among appraisal attributes. For instance, in renewable-
energy portfolio planning, a project with high conflict of land 
use or social opposition can be justifiably disqualified from the 
“Acceptable” class even if it performs very well in economic 
terms (Sahoo et al., 2025). This is a non-compensatory logic 
that is more effective in capturing public-policy priorities than 
additive scoring techniques.

Further research has proved the necessity for sorting models able 
to address uncertainty and partial information. Fuzzy and interval-
valued versions of ELECTRE TRI and PROMETHEE have been 
formulated to capture imprecise or probabilistic performance or 
threshold estimates (Wieckowski and Sałabun, 2023). In addition, 
hybrid models combining machine learning and MCDA have 
been developed so that ordinal classification can exploit data-
driven learning while retaining decision-theoretic interpretability 
(Kahraman, 2008). Such methods are more robust and transparent, 
two qualities increasingly required for energy and environmental 
investment analysis.

While some innovations that aim to do this exist, few energy-sector 
analyses use hierarchical or interval-based sorting models 
that consider interdependencies between criteria. Economic, 
environmental, and technical dimensions in energy projects tend 
to be interconnected (e.g., technological innovation reduces both 
emissions and life-cycle costs). The lack of a modeling tool to 
address these interrelations is a methodological deficiency of 
the literature. Some interval-outranking models such as HI-
INTERCLASS-nB can help to bridge this; however, to the best 
of our knowledge, this method has not been used this way before. 
Therefore, this work uses the evolution of sorting methods and 
employs a sophisticated hierarchical classification system within 
the energy-investment decision context with a view to injecting 
analytical richness as well as policy utility.

2.3. Application of Ordinal Classification in Energy 
Investment and Policy
Recent literature reveals growing demand for sorting and 
classification techniques for renewable-energy investment, 
energy-efficiency technologies, and sustainability analysis 
(Belahcène et al., 2024).

A crucial field of experimentation is energy-efficiency and 
building retrofitting planning, where decision makers must 
prioritize interventions under high data uncertainty. (Dell’Anna, 
2023) proposed an ELECTRE TRI-B framework for the sorting 
of retrofit projects at the district scale, showing how ordinal 
categories can embody managerial targets and constraints on 
energy savings. Similarly, (Baseer et al., 2023) developed the 
probabilistic ELECTRE-Tri (pELECTRE-Tri) model, which uses 
Monte Carlo simulation to propagate uncertainty through class-
assignment probabilities; their case study of housing renovation 
illustrated improved transparency and stakeholder trust. (Baseer 
et al., 2023) applied ELECTRE TRI to order building-energy-
efficiency projects, sorting options into ranked ranks of retrofit 
priority. (Siksnelyte-Butkiene et al., 2020) applied a multi-criteria 
sorting model to rank and sort renewable-energy production 
technologies by environmental footprints, lifecycle cost, and 
grid-integration opportunity. These studies identify that ordinal 
classification models provide transparency and credibility 
when decision-makers are required to justify funding or policy 
prioritization decisions.

Another dominant idea is to integrate interval and fuzzy 
information into ordinal sorting to handle uncertainty. Energy 
investment decisions in the real world too frequently need to 
be taken on the basis of incomplete or indefinite information 
(e.g., carbon prices estimated, technology performance levels, or 
fluctuating financial costs). Fuzzy and interval forms of ELECTRE 
TRI and PROMETHEE have therefore been adopted to tackle 
imprecision without compromising interpretability (Kahraman, 
2008; Wieckowski and Sałabun, 2023). These models allow 
analysts to capture uncertainty not only in thresholds, but also in 
criteria scores, to give more reliable class assignments for energy 
projects of a long-term nature.

The literature thus demonstrates that
• MCDA is firmly established in energy-investment

decision support but ranking continues to dominate most
applications.

• Ordinal classification methods (sorting) are increasingly
researched but even used sparingly in energy investments.

•	 Elegant MCDA models addressing interval data, hierarchical 
criteria, and interactions add greater robustness but are not
sufficiently exploited in the energy industry.

• There is a clear research gap for hierarchical interval-
outranking methods applied for energy strategy classification.

Our work bridges this gap through the application of 
HI-INTERCLASS-nB to energy-investment choices, marrying 
interval data, hierarchy of attributes, and attribute interactions, and 
providing explainable class outcomes to guide strategic energy-
policy and investment decisions.
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3. METHODOLOGY

The proposed methodology integrates the principles of MCDA 
and recent advances in hierarchical and interval-valued 
outranking theory. The methodology is structured into three 
parts. Subsection 3.1 places the theoretical foundations of the 
multi-criteria sorting method. Then, Subsection 3.2 describes 
the instantiation of the model into the energy-investment 
setting, detailing how criteria hierarchy, interaction structure, 
and uncertainty representation are established for practical use. 
Subsection 3.3 then describes the proposed data normalization 
procedure.

3.1. The HI-INTERCLASS-nB Method
The theoretical foundation of HI-INTERCLASS-nB (Hierarchical 
INTERCLASS-nB) lies in the outranking relation by (Roy, 
1991) and subsequently extended in the ELECTRE-TRI family 
(Almeida-Dias et al., 2010). Outranking models compare pairs 
of alternatives using two complementary indices: A concordance 
index, representing the extent of majority agreement (from 
the view of criteria scores) that one alternative is at least as 
good as the other, and a discordance (veto) index, representing 
level of opposition for any criterion. Whenever concordance 
predominates over discordance beyond a threshold of credibility 
(δ), one alternative is said to be “at least as good” as the other. 
Ordinal classification approaches such as HI-INTERCLASS-
nB exploit this logic by comparing each alternative with the 
reference profiles that delimit ordered classes (Ben Amor et al., 
2023). Each alternative is assigned into the class whose profile it 
most plausibly dominates depending on descending or ascending 
assignment rules.

HI-INTERCLASS-nB introduced three significant improvements:
• Interval representation of criteria, such that performance

values, thresholds, and weights may be expressed as intervals 
rather than single numbers;

• Hierarchical structuring of criteria, so that several aggregation
levels (e.g., at economic level that should be assessed
by measuring, e.g., CAPEX and OPEX indicators; or at
environmental level that should be assessed by measuring,
e.g., CO2 emissions and land use}).

• Inter-criteria modeling for redundancy or synergy relations
between criteria.

These extensions reduce cognitive effort required for parameter 
elicitation and increase model robustness under uncertainty, both 
of which are crucial for advanced investment analysis.

The main components of HI-INTERCLASS-nB are the following:
• A set of alternatives A = {a1,a2,…,am} that is evaluated over

a hierarchical set of criteria G = {g1,g2,…,gn}.
• Each criterion gjmay itself comprise sub-criteria, whose

performances are aggregated using outranking-based rules
at each node of the hierarchy (Fernández et al., 2022).

• Decision parameters include indifference, preference, and
veto thresholds (qj,pj,vj), all potentially defined as intervals.

• A credibility index S(a,b) that measures the strength of the
statement “alternative a outranks b.”

Alternatives are compared to profiles Bk that define the boundaries 
between ordered classes C1,C2,…,CK (where C1is the best class). 
The model applies two assignment rules:
1. Descending rule: Assign a to the highest class Ck for which

S(a,Bk)≥δ;
2. Ascending rule: assign a to the lowest class  Ck for which

S(Bk,a)<δ.

The intersection of both rules yields the final class. Because HI-
INTERCLASS-nB integrates hierarchical aggregation and interval 
computations, it provides both interpretability and robustness 
when applied to uncertain, multi-layered systems such as energy-
investment portfolios.

3.2. Application of HI-INTERCLASS-nB to the 
Energy Investment Context
The efficacy of a multicriteria decision model depends on its 
contextualization; that is, how its structure, parameters, and criteria 
are adjusted to the nature of the decision domain. In energy-
investment planning, alternatives must be evaluated by decision-
makers not only with financial performance but also varying 
technological maturity, environmental externalities, and policy 
goal congruence. The proposed approach is therefore developed 
to accommodate the hierarchical, fuzzy, and interdependent nature 
of these criteria.

The energy-investment choice problem is developed as a multi-
level criteria tree that decomposes the universal objective 
(i.e. sustainable energy investment) into primary and secondary 
criteria (Subsection 4.2). Three macro-dimensions are set at the 
first level:
• Economic dimension, determining financial viability in terms

of sub-criteria such as capital expenditure (CAPEX), operating 
expenditure (OPEX), and expected return on investment (ROI).

• Environmental dimension, measuring ecological performance 
based on carbon-emission reduction capability, resource use
efficiency, and land-use contribution.

• Technical and operational dimension, which reflects reliability,
technology maturity level, scalability, and integration with
current energy infrastructure.

This structure takes precedent from previous MCDA applications 
in sustainable energy planning, when balanced evaluation from 
economic, environmental, and technical columns is in the center 
of attention (Sahoo et al., 2025; Sahoo et al., 2025). Additional 
sub-criteria can be incorporated to depict social or governance 
considerations, i.e., job creation or regulatory adherence, 
depending on stakeholder priority (Ayuketah et al., 2025).

On the other hand, investments in energy are inherently risky due 
to rapidly changing market prices, rates of technological change, 
and schemes of regulation. Traditional crisp scoring will therefore 
result in erroneous conclusions. HI-INTERCLASS-nB addresses 
this restriction through the use of interval-valued data, which 
allows every performance measure, allowing each performance 
measure gj(a) for an alternative a to be expressed as a range 
[ , ]x xj
min

j
max rather than a single point. This approach is in 

accordance with the latest developments in energy-decision 



Robles, et al.: Multi-Criteria Ordinal Hierarchical Classification to Improve Energy Investment Decisions

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026 747

modeling, under which inclusion of fuzzy or imprecise data to 
represent uncertainty in forecasting is highlighted (Fernández 
et  al., 2022). Interval thresholds are similarly defined for 
preference, indifference, and veto parameters (pj,qj,vj), permitting 
flexible representation of tolerance levels. For example, in the 
ROI criterion, the decision-maker may consider two investment 
options equivalent if their expected returns differ by <3-5%, while 
in carbon reduction, the indifference range may depend on data 
accuracy or measurement uncertainty.

3.3. Data Preprocessing and Normalization
Before analysis, all quantitative criteria are normalized to make 
them dimensionless and comparable. For a criterion gj with values 
xij for each alternative ai, normalization to the interval [0,1] is 
performed according to its preference direction.

For benefit-type criteria (where higher values are better):

g a
x x
x xj i
ij j

j j

'
min

max min
( )

( )

( ) ( )
�

�

�

For cost-type criteria (where lower values are preferred):

g a
x x

x xj i
j ij

j j

'
max

max min
( )

( )

( ) ( )
�

�

�

When input data are interval-valued, each bound is normalized 
separately, preserving the uncertainty range (Fernández et al., 
2022). Qualitative indicators (e.g., policy alignment or social 
acceptance) are converted into ordinal scales through expert 
elicitation, as recommended by Figueira et al., 2005 multiple. All 
normalized values are stored as intervals g a g aj i j i

min max
( ), ( )�

�
�
�  to 

be used in the outranking computation.

4. DATA AND EXPERIMENTAL DESIGN

This section describes the data sources, structure, and experimental 
methods used to assess the proposed approach. The goal of the 
analysis is to see how well the model works at sorting company 
stocks by their strategic importance using a number of criteria that 
often conflict with each other. There are four parts to this section. 
Subsection 4.1 describes the data sources and how they were 
chosen. Section 4.2 lists the criteria for evaluation, which include 
economic, environmental, and technical factors. Subsection 4.3 
describes the alternatives that must be assessed by the proposed 
approach. Subsection 4.4 describes the parameter settings, such 
as thresholds, weights, and confidence intervals, that were used 
to show uncertainty and expert judgment.

4.1. Data Sources and Collection
Data used in this study were compiled from publicly available 
international databases and company reports between the 2018 and 
2024 period. The focus was on firms and projects operating in the 
renewable-energy and energy-intensive sectors, comprehensively 
capturing the heterogeneity of investment conditions in the global 
energy transition.

The International Energy Agency (IEA) and the International 
Renewable Energy Agency (IRENA) provide macro-level data 

points, including ranges of capital costs, capacity factors, and 
technology-specific learning curves for solar photovoltaic, onshore 
wind, offshore wind, and bioenergy projects (International Energy 
Agency, 2024; International Renewable Energy Agency, 2024). 
These data are complemented by firm-level financial and operating 
information from the Refinitiv Eikon and Bloomberg New Energy 
Finance (BNEF) databases, such as CAPEX and OPEX at the 
project level, return on investment (ROI), and payback periods for 
more than 200 publicly listed energy companies. Environmental-
performance data, including lifecycle greenhouse-gas emissions 
and land-use intensity, can be obtained from the International 
Energy Agency’s Energy Technology Perspectives (ETP) database 
and CDP (Carbon Disclosure Project) sustainability reports. 
Regionally, Eurostat’s Energy Balance and Environmental 
Accounts and the US Energy Information Administration (EIA) 
provide similar statistics on energy efficiency and emissions 
intensity in the European and North American regions (Eurostat, 
2024; U.S. Energy Information Administration [EIA], 2024).

Missing values were addressed via mean-interval imputation at 
technology category levels, as with uncertainty treatment in the 
HI-INTERCLASS-nB framework.

4.2. Definition of Criteria
Selection of criteria for the purpose of this study was done 
through extensive literature review, expert consultation, and data 
accessibility across global databases. The framework consists of 
three main dimensions: economic, environmental, and technical 
criteria, each consisting of specific, measurable indicators that 
cumulatively reflect the sustainability and viability of energy 
investments.

4.2.1. Economic criteria
Economic performance remains the main driver in energy-
investment evaluation. Following the criteria generally used 
in MCDA-based financial analysis (Sahoo et al., 2025), four 
indicators were defined:
• Capital expenditure (CAPEX) – total up-front cost of

investment (USD per MW).
• Operational expenditure (OPEX) – mean annual operating

and maintenance costs (USD per MWh).
• Return on investment (ROI) – ratio of net benefits against

total cost, which determines profitability.
• Payback period (PP) – the period to recover initial capital

investment.

Each of these measures was converted to 2023 U.S. dollars and 
normalized so that lower values indicate improved economic 
performance (for CAPEX, OPEX, and PP), and higher is better for 
ROI. Both short-term financial efficiency and long-term project 
viability are captured in these variables, consistent with international 
investment measurement standards (International Energy Agency, 
2024; International Renewable Energy Agency, 2024).

4.2.2. Environmental criteria
Environmental sustainability is at the center of today’s energy 
policy and investment alternatives. Following the frameworks of 
the Intergovernmental Panel on Climate Change (IPCC) and the 



Robles, et al.: Multi-Criteria Ordinal Hierarchical Classification to Improve Energy Investment Decisions

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026748

International Energy Agency, five environmental indicators have 
been incorporated:
• Lifecycle greenhouse gas emissions (GHG) – total CO2-

equivalent emissions per kilowatt-hour of electricity generated
(gCO2/kWh).

• Energy efficiency (EFF) – output to input energy ratio.
• Land-use intensity (LUI) – area per installed unit capacity

(m²/MW).
• Water consumption (WTR) – cubic metres of water used per

MWh generated.
• Resource recyclability index (RCI) – proportion of resources

able to be recycled or recovered at project end-of-life.

These metrics are derived from the IEA’s Energy Technology 
Perspectives database, IRENA’s Renewable Power Generation 
Costs reports, and corporate climate disclosures submitted to 
International Renewable Energy Agency, 2024. Lower values are 
best for GHG, LUI, and WTR but higher values are best for EFF and 
RCI. These criteria overall represent the environmental footprint 
and contribution to the circular economy of every investment.

4.2.3. Technical criteria
Technical performance determines whether an energy project 
can operate in a reliable and smooth manner and be compatible 
with the overall energy system. According to studies by Sahoo et 
al., 2025a; Sahoo et al., 2025b and the U.S. Energy Information 
Administration (2024), three metrics were defined:
• Technology readiness level (TRL) – qualitative metric (1-9)

of the maturity of a technology.
• Capacity factor (CF) – ratio of actual energy produced to

maximum theoretical output (%).
• Grid integration capability (GIC) – qualitative indicator (1-5)

for measuring ease of interconnection, storage compatibility,
and dispatchability.

Higher values in all three indicators represent better technical 
performance. These requirements ensure that the categorization 
takes into account both the maturity of innovation and operational 
stability, two of the most significant drivers of investor trust and 
system resilience (Ayuketah et al., 2025; International Renewable 
Energy Agency, 2024).

4.3. Alternatives to be Evaluated
Table 1 shows a sample of the normalized scores according to 
preference direction (benefit or cost type) for a few energy-sector 
firms. These data represent illustrative samples extracted and 
aggregated from recent 2023-2024 reports. The criteria match those 
defined in Section 4.2 and will later be used for demonstration in 
Section 5 (Results and discussion). Grid integration scores (1-5) 

were elicited from expert panels following the method in Figueira 
et al., 2005 multiple.

4.4. Parameter Settings
Proper parameter setting is crucial to guarantee that the proposal 
captures realistic decision-maker preferences and provides reliable 
classification results. This subsection describes how preference, 
indifference, and veto thresholds, as well as weight intervals can 
be set and calibrated for empirical use to energy-investment data.

4.4.1. Preference, indifference, and veto thresholds
Thresholds regulate the interpretation of performance differences 
between alternatives. Three types were set for each criterion gj:
• Indifference threshold (qj): the largest difference between two

performances that is judged negligible.
• Preference threshold (pi): the smallest difference to be a clear

preference.
• Veto threshold (vj): the difference beyond which a deficiency

on a criterion vetoes the global outranking relation.

Following typical ELECTRE-type modeling practices (Almeida-
Dias et al., 2010; Roy, 1991), the thresholds were defined 
as absolute proportions of each criterion’s observed range. 
Specifically, qj = 0.05 × rangej, pj = 0.10 × rangej and vj = 0.25 
× rangej, where rangej is the range of criteria scores in criterion 
gj. In energy-specific attributes such as ROI and GHG emissions, 
expert judgment altered these defaults to presume higher tolerance 
to uncertainty in financial data (up to 15%) and lower tolerance in 
environmental attributes (below 8%). Thresholds were defined as 
ranges to reflect uncertainty in expert estimates (Fernández et al., 
2022). For example, the ROI preference threshold ranged from 
[0.08, 0.12] while for GHG emissions it ranged from [0.04, 0.06].

4.4.2. Criteria weights and intervals
Weights measure the relative importance of criteria in the hierarchy 
and were derived by a hybrid elicitation method combining expert 
scoring and consistency analysis. The hierarchical weighting 
structure established in Section 4.3 was made operational in terms 
of weight intervals to express uncertainty and disagreement among 
experts. For instance, the economic dimension was given a worldwide 
weight interval of [0.35, 0.45], environmental dimension [0.30, 
0.40], and technical dimension [0.20, 0.30]. Sub-criteria weights 
were distributed proportionally within each branch and normalized 
such that the local weights added up to one at each hierarchic level. 
This practice is in accordance with recommendations by Figueira 
et al., 2005 multiple, who advocate for interval weights in MCDA 
for reduced cognitive bias and transparency of decisions. Interval-
weight modeling also offers greater robustness against uncertain or 
absent information (Wieckowski and Sałabun, 2023).

Table 1: Normalized criteria scores for selected energy firms
Firm/project CAPEX OPEX ROI Payback GHG Efficiency Land 

Use
Water 

Use
Circularity TRL Capacity 

Factor
Grid 

integration
NextEra Energy 0.90 0.92 0.95 0.88 0.78 0.32 0.85 0.90 0.86 1.00 0.35 0.80
Ørsted 0.35 0.45 0.75 0.55 0.95 0.80 0.95 0.85 0.95 1.00 0.90 1.00
Iberdrola 0.82 0.78 0.88 0.80 0.87 0.68 0.90 0.87 0.90 1.00 0.70 0.80
Enel Green Power 0.60 0.88 0.70 0.45 0.98 1.00 1.00 0.75 1.00 1.00 1.00 1.00
ACWA Power 0.20 0.30 0.60 0.35 0.83 0.50 0.87 0.80 0.82 0.89 0.85 0.60
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4.4.3. Credibility level (δ) and outranking thresholds
The credibility threshold (δ) determines the minimum level of 
global concordance required for an alternative to outrank another. 
Consistent with past applications of hierarchical outranking 
models, δ was set to 0.70, founded on typical ranges of 0.65-0.75 
used in robust ELECTRE-type sorting studies (Belahcène et al., 
2024; Fernández et al., 2022).

5. RESULTS AND DISCUSSION

The results show how the model can merge heterogeneous 
conditions, manage uncertainty, and provide comprehensible 
classifications in accordance with policy and expert needs.

5.1. Results of Classification
The proposal assigned each of the five examined firms/projects 
(NextEra Energy, Ørsted, Iberdrola, Enel Green Power, and ACWA 
Power) into one of the pre-specified four classes:
	 C1: Strategic Priority, C2: Conditional Investment, C3: 

Marginal Investment, and C4: Non-Viable Investment.

The classification results are shown in Table 2.

The model discerns the projects suitably not only on their financial 
parameters but also on environmental and technical robustness, 
yielding categories that correspond to real investment appeal. 
The offshore wind investment by Ørsted and the hydropower 
investment by Enel emerged as strategic priority projects (C1), 
based on the technology readiness maturity, grid connectivity, 
and strong environmental performance. In contrast, ACWA 
Power’s CSP project, albeit with favorable environmental effects, 
was assessed as marginal (C3) due to high investment costs and 
complexity of operation (which is consistent with recent market 
assumptions (International Renewable Energy Agency, 2024).

5.2. Comparative and Sensitivity Analysis
To compare value added by the HI-INTERCLASS-nB model, the 
same data were applied to ELECTRE TRI-nC and TOPSIS. While 
the two alternative models provided consistent relative ranking, 
they were less sensitive and more discriminating relative to input 
uncertainty.

Under ELECTRE TRI-nC, Ørsted, Enel, and Iberdrola were 
also ranked as top-level projects, but the model generated 
overlapping credibility scores between NextEra Energy and 

Iberdrola, rendering their differentiation uncertain. TOPSIS, as 
a compensatory approach, placed ACWA Power’s CSP project 
unrealistically higher (3rd  position) owing to its high green 
performance offsetting weak economics, a shortcoming that 
HI-INTERCLASS-nB circumvents with its non-compensatory 
framework (Almeida-Dias et al., 2010; Fernández et al., 2022).

Sensitivity analysis demonstrated that assignments within 
classes were insensitive to medium-sized changes in weights 
and thresholds. When indifference and preference thresholds 
were increased by 10%, the average change in the probability 
of assignment within a class was below 6%. Also, when weight 
ranges were halved, the international ranking between projects 
did not shift.

6. CONCLUSION AND FUTURE WORK

This study introduced and applied the HI-INTERCLASS-nB 
model, a cutting-edge hierarchical, interval-based outranking 
approach, on ordinal energy-investment project classification. The 
model integrates key aspects of multicriteria decision analysis, 
namely non-compensatory reasoning, hierarchical organization, 
and uncertainty handling, into a clear and policy-relevant decision-
support framework for planning sustainable energy.

Empirical results demonstrated the model to yield robust 
and interpretable classifications that are in line with experts’ 
expectations and real investment rationale. Among the five 
companies examined, Ørsted and Enel Green Power emerged 
as strategic priority investments, while Iberdrola and NextEra 
Energy were considered conditional investments. ACWA Power’s 
concentrated solar power facility was rated marginal, owing to 
its cost-intensive profile and average performance. Hierarchical 
model structure and interval handling of data improved 
interpretability and resistance to parameter uncertainty. Relative 
to traditional MCDA techniques such as ELECTRE TRI-nC or 
TOPSIS, HI-INTERCLASS-nB performed better in handling 
imprecise information and preventing overcompensation effects, 
which are two primary concerns in multifaceted sustainability 
assessments (Fernández et al., 2022).

The results have practical implications for policymakers and 
investors. The model enables:
1. Ranked resource allocation, ensuring that funding goes to

strategic priority initiatives;

Table 2: Results of the ordinal classification performed by the proposed approach
Firm/project Assigned 

class
Interpretation

Ørsted – Offshore Wind 
(UK)

C1 Excellent overall balance of environmental and technical performance; high 
reliability and grid integration.

Enel Green Power – 
Hydropower (Italy)

C₁ Very strong efficiency and emissions performance; limited scalability but robust 
sustainability profile.

Iberdrola – Onshore Wind 
(Spain)

C2 Competitive economic returns; moderate emissions; slight uncertainty in policy 
dependence.

NextEra Energy – Solar 
PV (USA)

C2 Strong ROI and low emissions; moderate payback period and limited capacity 
factor reduce ranking to C2.

ACWA Power – CSP 
(Morocco)

C3 High CAPEX and OPEX; environmental performance acceptable but financial 
viability remains marginal.
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2. Policy-based incentive design, identifying condition
investments worthy of support by policymakers; and

3. Risk-aware planning, by stochastic representation of
uncertainty and measures of robustness.

While the proposal has sound theoretical and practical value, there 
are several extensions that can broaden its use:
• Dynamic assessment: Adding temporal data to track the

evolution of project classifications over time with learning
and policy changes.

• Fuzzy and probabilistic integration: Combining interval
analysis with fuzzy logic or Bayesian updating to better
capture expert subjective uncertainty.

• Hybrid AI–MCDA systems: Subsuming HI-INTERCLASS-
nB into machine learning frameworks to take advantage
of automated parameter tuning and predictive strength,
as envisioned by recent advances in decision intelligence
(Ayuketah et al., 2025).
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