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ABSTRACT

Transitioning towards sustainable energy needs decision models able to integrate economic, environmental, and technological factors in conditions of
uncertainty. This paper introduces an innovative multicriteria ordinal classification approach based on the so-called HI-INTERCLASS-nB method to support
strategic investment decisions in the energy sector. The approach can consider evaluation criteria organized in a hierarchical structure, and capture interactions
among financial, environmental, and operational indicators. Unlike traditional approaches, the proposal allows the use of both precise and interval-based
data, which improves robustness when the information is incomplete or imprecise. A computational experiment was conducted using data from energy-
producing and energy-intensive companies, which are listed in major global markets. The results demonstrate that the proposed approach can effectively
determine high-performance investment alternatives, providing stable and interpretable classifications across multiple scenarios. The results also confirm
that HI-INTERCLASS-nB can be a valuable decision-support tool for policymakers and investors to promote efficient and sustainable energy strategies.
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1. INTRODUCTION

The global energy sector is undoubtedly changing due to
decarbonization commitments, new technologies, and increased
market volatility. Decision-makers, both public and private, make
decisions in complex contexts, where investment opportunities
include renewable energy generation projects and grid flexibility
investments, on the one hand, and energy-intensive industrial
retrofits, on the other. Each has implications such as financial
returns, emissions savings, regulatory risk, and social acceptance.
In such a situation, tools that can manage diverse types of data,
manage uncertainty, and offer ranked options rather than a single
optimal option are very useful.

Multi-criteria decision analysis (MCDA) methods offer structured
approaches to combining multiple competing measures (e.g.,
economic, environmental, operational, and social factors) into
energy investment scenarios (Siksnelyte-Butkiene et al., 2020).
Reviews of MCDA in the energy sector identify the so-called
outranking-based methods, such as ELECTRE and PROMETHEE,
as predominant where transparency is crucial and also where
stakeholder issues are highlighted (Diaz et al., 2022; Sahoo
etal., 2025; Siksnelyte-Butkiene et al., 2020; Solares et al., 2025;
Solares et al., 2022). Particularly, MCDA'’s ordinal categorization
techniques are best suited to address a type of classification problem
called sorting, where each of a set of alternatives or decision
objects must be assigned to an element of a set of classes that are
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preferentially ordered; for example, categorizing firms or projects
into strategic levels (e.g., “High Priority”, “Medium”, “Deferred”,
etc.), which benefits both policymakers and portfolio managers.
Despite these advances, two major methodological weaknesses
persist in the field of energy investment: (1) Most MCDA models
assume exact numerical values and linear weighting, which fails
to account for the imprecise and interval-based nature of real-
world data (e.g., projected savings, technology readiness levels,
policy risk ranges), and (2) criterion hierarchies (e.g., reducing
emissions risk is complex and it requires the decision-maker
to consider subfactors) are often overlooked (Fernandez et al.,
2022; Fernandez et al., 2023). Failure to model these situations
may result in a classification that lacks sufficient robustness and
interpretability to provide useful practical strategic guidance.

To address these shortcomings, this work suggests a very recent
sorting method from the MCDA literature, the HI-INTERCLASS-
nB method (Fernandez et al., 2022) for improving energy
investment decisions. This hierarchical interval and ordinal
classification method allows for the incorporation of interval-valued
criterion scores, hierarchical structuring of criteria, and explicit
facilitation of interactions between criteria (Fernandez et al., 2022).

Within the energy investment paradigm, HI-INTERCLASS-nB

offers several advantages:

e [t supports interval data, allowing for more realistic
modeling of uncertain projections, technology cost ranges,
implementation timelines, and regulatory risk bands.

e It preserves the hierarchical nature of energy projects; for
example, the highest-level dimensions could be Economic,
Environmental, and Operational, each broken down into
sub-criteria (CAPEX/OPEX, emissions/local pollutants,
flexibility/availability).

e The model’s interaction considers that improving one criterion
(e.g., operational flexibility) can affect another (e.g., emissions
risk reduction), which, in turn, can affect financial stability
and investment categorization.

Therefore, in this work, HI-INTERCLASS-nB is used to classify
energy investment alternatives into strategic priority classes (e.g.,
high, medium, low) based on empirical evidence from energy
producing and using companies. The objective is to demonstrate
that the proposal can generate transparent and stable rankings
suitable for strategy formulation and policy advice, and that
they are better than or comparable to conventional outranking
methods in terms of robustness and transparency. Our contribution
is therefore threefold: (1) We extend the research on interval
outranking to the energy investment domain by proposing a new
methodology exploiting the HI-INTERCLASS-nB method; (2) we
perform an empirical demonstration on realistic energy investment
data with uncertainty, hierarchy, and interactions; and (3) we
generate practical implications for energy policy.

2. LITERATURE REVIEW

2.1. MCDA in Energy and Investment
The changes in paradigms to low-carbon and energy-resilient
systems have created the necessity for analytical tools that can

manage multiple, often conflicting, criteria in policy design and
investment decision-making. Energy choices (e.g., the selection
of generation technologies, infrastructure development, efficiency
improvements and energy market investments) involve obvious
trade-offs between costs, feasibility, environmental impact,
and social acceptability (Wieckowski and Satabun, 2023). As a
result, MCDA has emerged as an interesting methodology for
integrating heterogeneous data sources, expert judgment, and
policy preferences into transparent and replicable decision-making
(Leyva et al., 2023; Navarro et al., 2023; Sahoo et al., 2025).

MCDA consists of a set of techniques that can be used to evaluate
and rank alternatives under conditions of uncertainty. These
methods are used in the technological assessment of energy
systems, energy mix optimization, renewable energy site selection,
and the evaluation of energy efficiency plans (Sahoo et al., 2025;
Sahoo et al., 2025). Ranking-based methods such as the Analytic
Hierarchy Process (AHP) and the Technique for Ordering by
Similarity to Ideal Solution (TOPSIS) are often used to compare
renewable energy technologies or investment portfolios (Ayuketah
et al., 2025). These methods allow decision-makers to integrate
quantitative and qualitative criteria and assess trade-offs across
various dimensions.

However, as energy systems become more complex, outranking-
based methods such as ELECTRE and PROMETHEE have gained
increasing interest from the academic filed as well as practitioners,
since the methods can express preferences and encompass non-
trade-off relations between criteria (Diaz et al., 2024; Fernandez
et al., 2022; Siksnelyte-Butkiene et al., 2020). Different from
additive models, outranking methods allow for the identification
of veto criteria that avoid that good performances, such as
appealing economic performance, are allowed even in presence
of unacceptable performances, such as improper emissions,
making these methods particularly suitable for policy applications
focused on sustainability (Wieckowski and Satabun, 2023).
Recent empirical applications in electricity system investment and
renewable energy planning indicate that outranking techniques
are more resilient than additive models, providing results that are
less sensitive to extreme values and subjective weights (Sahoo
etal., 2025).

2.2. Sorting and Ordinal Classification Methods in
MCDA

For multicriteria decision analysis, traditional techniques mainly
refer to ranking or scoring options, but for more sophisticated
choice situations, sorting or ordinal classification is increasingly
a valuable task. Sorting refers to a decision problem where
alternatives must be assigned (classified) into groups (classes or
categories) ordered by some sort of preference that reflects the
general performance of the groups. Instead of creating a continuous
ranking, sorting methods separate alternatives into classes such as
“High Priority”, “Moderate Priority”, and “Low Priority”, which
is typically more relevant to policy or investment planning (Ben
Amor et al., 2023).

Sorting methods, or multi-criteria sorting or classification
models, have been widely suggested in the outranking family
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of MCDA methods. Some of the best known among them are
ELECTRE TRI, ELECTRE TRI-C, and ELECTRE TRI-nC,
which classify alternatives into pre-specified ordered categories
on the basis of concordance, discordance, and credibility indices
and characteristic reference profiles (Almeida-Dias et al., 2010).
These methods have been found to work well in various disciplines
such as environmental risk assessment, project choice, and policy
evaluation. Their value in energy decision-making lies in the fact
that they can be interpreted and are in accordance with real policy-
making processes, where decision-makers typically must classify
projects to funding or implementation levels rather than give a
simple ranking (Baseer et al., 2023; Espin-Andrade et al., 2015;
Solares et al., 2022). Recently, (Fernandez et al., 2022) presented
anew variation of this type of methods called ELECTRE TRI-nB
that can work with reference profiles that are on the boundaries
between classes. This method has not been proved in the context
of environmental risk assessment and project choice.

According to the comprehensive bibliometric review by Ben
Amor et al. (2023), research on multi-criteria sorting and
classification gained momentum considerably over the past
decade. The study identified the energy and sustainability sectors
as main upcoming fields for these models due to the fact that they
are capable of processing mixed data types and non-compensatory
interaction among appraisal attributes. For instance, in renewable-
energy portfolio planning, a project with high conflict of land
use or social opposition can be justifiably disqualified from the
“Acceptable” class even if it performs very well in economic
terms (Sahoo et al., 2025). This is a non-compensatory logic
that is more effective in capturing public-policy priorities than
additive scoring techniques.

Further research has proved the necessity for sorting models able
to address uncertainty and partial information. Fuzzy and interval-
valued versions of ELECTRE TRI and PROMETHEE have been
formulated to capture imprecise or probabilistic performance or
threshold estimates (Wieckowski and Satabun, 2023). In addition,
hybrid models combining machine learning and MCDA have
been developed so that ordinal classification can exploit data-
driven learning while retaining decision-theoretic interpretability
(Kahraman, 2008). Such methods are more robust and transparent,
two qualities increasingly required for energy and environmental
investment analysis.

While some innovations that aim to do this exist, few energy-sector
analyses use hierarchical or interval-based sorting models
that consider interdependencies between criteria. Economic,
environmental, and technical dimensions in energy projects tend
to be interconnected (e.g., technological innovation reduces both
emissions and life-cycle costs). The lack of a modeling tool to
address these interrelations is a methodological deficiency of
the literature. Some interval-outranking models such as HI-
INTERCLASS-nB can help to bridge this; however, to the best
of our knowledge, this method has not been used this way before.
Therefore, this work uses the evolution of sorting methods and
employs a sophisticated hierarchical classification system within
the energy-investment decision context with a view to injecting
analytical richness as well as policy utility.
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2.3. Application of Ordinal Classification in Energy
Investment and Policy

Recent literature reveals growing demand for sorting and
classification techniques for renewable-energy investment,
energy-efficiency technologies, and sustainability analysis
(Belahcene et al., 2024).

A crucial field of experimentation is energy-efficiency and
building retrofitting planning, where decision makers must
prioritize interventions under high data uncertainty. (Dell’ Anna,
2023) proposed an ELECTRE TRI-B framework for the sorting
of retrofit projects at the district scale, showing how ordinal
categories can embody managerial targets and constraints on
energy savings. Similarly, (Baseer et al., 2023) developed the
probabilistic ELECTRE-Tri (pELECTRE-Tri) model, which uses
Monte Carlo simulation to propagate uncertainty through class-
assignment probabilities; their case study of housing renovation
illustrated improved transparency and stakeholder trust. (Baseer
et al., 2023) applied ELECTRE TRI to order building-energy-
efficiency projects, sorting options into ranked ranks of retrofit
priority. (Siksnelyte-Butkiene et al., 2020) applied a multi-criteria
sorting model to rank and sort renewable-energy production
technologies by environmental footprints, lifecycle cost, and
grid-integration opportunity. These studies identify that ordinal
classification models provide transparency and credibility
when decision-makers are required to justify funding or policy
prioritization decisions.

Another dominant idea is to integrate interval and fuzzy
information into ordinal sorting to handle uncertainty. Energy
investment decisions in the real world too frequently need to
be taken on the basis of incomplete or indefinite information
(e.g., carbon prices estimated, technology performance levels, or
fluctuating financial costs). Fuzzy and interval forms of ELECTRE
TRI and PROMETHEE have therefore been adopted to tackle
imprecision without compromising interpretability (Kahraman,
2008; Wieckowski and Satabun, 2023). These models allow
analysts to capture uncertainty not only in thresholds, but also in
criteria scores, to give more reliable class assignments for energy
projects of a long-term nature.

The literature thus demonstrates that

e MCDA is firmly established in energy-investment
decision support but ranking continues to dominate most
applications.

e Ordinal classification methods (sorting) are increasingly
researched but even used sparingly in energy investments.

e Elegant MCDA models addressing interval data, hierarchical
criteria, and interactions add greater robustness but are not
sufficiently exploited in the energy industry.

e There is a clear research gap for hierarchical interval-
outranking methods applied for energy strategy classification.

Our work bridges this gap through the application of
HI-INTERCLASS-nB to energy-investment choices, marrying
interval data, hierarchy of attributes, and attribute interactions, and
providing explainable class outcomes to guide strategic energy-
policy and investment decisions.
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3. METHODOLOGY

The proposed methodology integrates the principles of MCDA
and recent advances in hierarchical and interval-valued
outranking theory. The methodology is structured into three
parts. Subsection 3.1 places the theoretical foundations of the
multi-criteria sorting method. Then, Subsection 3.2 describes
the instantiation of the model into the energy-investment
setting, detailing how criteria hierarchy, interaction structure,
and uncertainty representation are established for practical use.
Subsection 3.3 then describes the proposed data normalization
procedure.

3.1. The HI-INTERCLASS-nB Method

The theoretical foundation of HILINTERCLASS-nB (Hierarchical
INTERCLASS-nB) lies in the outranking relation by (Roy,
1991) and subsequently extended in the ELECTRE-TRI family
(Almeida-Dias et al., 2010). Outranking models compare pairs
of alternatives using two complementary indices: A concordance
index, representing the extent of majority agreement (from
the view of criteria scores) that one alternative is at least as
good as the other, and a discordance (veto) index, representing
level of opposition for any criterion. Whenever concordance
predominates over discordance beyond a threshold of credibility
(8), one alternative is said to be “at least as good” as the other.
Ordinal classification approaches such as HI-INTERCLASS-
nB exploit this logic by comparing each alternative with the
reference profiles that delimit ordered classes (Ben Amor et al.,
2023). Each alternative is assigned into the class whose profile it
most plausibly dominates depending on descending or ascending
assignment rules.

HI-INTERCLASS-nB introduced three significant improvements:

e Interval representation of criteria, such that performance
values, thresholds, and weights may be expressed as intervals
rather than single numbers;

e Hierarchical structuring of criteria, so that several aggregation
levels (e.g., at economic level that should be assessed
by measuring, e.g., CAPEX and OPEX indicators; or at
environmental level that should be assessed by measuring,
e.g., CO, emissions and land use}).

e Inter-criteria modeling for redundancy or synergy relations
between criteria.

These extensions reduce cognitive effort required for parameter
elicitation and increase model robustness under uncertainty, both
of which are crucial for advanced investment analysis.

The main components of HIFINTERCLASS-nB are the following:

e Asetof alternatives A = {a ,a,,...,a, } that is evaluated over
a hierarchical set of criteria G = {g,,g,,....g,}-

e Each criterion gmay itself comprise sub-criteria, whose
performances are aggregated using outranking-based rules
at each node of the hierarchy (Fernandez et al., 2022).

e Decision parameters include indifference, preference, and
veto thresholds (g;,p;,v)), all potentially defined as intervals.

e A credibility index S(a,b) that measures the strength of the
statement “alternative a outranks b.”

Alternatives are compared to profiles B, that define the boundaries

between ordered classes C,C,,...,C, (where C|is the best class).

The model applies two assignment rules:

1. Descending rule: Assign a to the highest class C, for which
S(a,B,)>9;

2. Ascending rule: assign a to the lowest class C, for which
S(B,,a)<é.

The intersection of both rules yields the final class. Because HI-
INTERCLASS-nB integrates hierarchical aggregation and interval
computations, it provides both interpretability and robustness
when applied to uncertain, multi-layered systems such as energy-
investment portfolios.

3.2. Application of HI-INTERCLASS-nB to the
Energy Investment Context

The efficacy of a multicriteria decision model depends on its
contextualization; that is, how its structure, parameters, and criteria
are adjusted to the nature of the decision domain. In energy-
investment planning, alternatives must be evaluated by decision-
makers not only with financial performance but also varying
technological maturity, environmental externalities, and policy
goal congruence. The proposed approach is therefore developed
to accommodate the hierarchical, fuzzy, and interdependent nature
of these criteria.

The energy-investment choice problem is developed as a multi-

level criteria tree that decomposes the universal objective

(i.e. sustainable energy investment) into primary and secondary

criteria (Subsection 4.2). Three macro-dimensions are set at the

first level:

e Economic dimension, determining financial viability in terms
of sub-criteria such as capital expenditure (CAPEX), operating
expenditure (OPEX), and expected return on investment (ROI).

e Environmental dimension, measuring ecological performance
based on carbon-emission reduction capability, resource use
efficiency, and land-use contribution.

e  Technical and operational dimension, which reflects reliability,
technology maturity level, scalability, and integration with
current energy infrastructure.

This structure takes precedent from previous MCDA applications
in sustainable energy planning, when balanced evaluation from
economic, environmental, and technical columns is in the center
of attention (Sahoo et al., 2025; Sahoo et al., 2025). Additional
sub-criteria can be incorporated to depict social or governance
considerations, i.e., job creation or regulatory adherence,
depending on stakeholder priority (Ayuketah et al., 2025).

On the other hand, investments in energy are inherently risky due
to rapidly changing market prices, rates of technological change,
and schemes of regulation. Traditional crisp scoring will therefore
result in erroneous conclusions. HILINTERCLASS-nB addresses
this restriction through the use of interval-valued data, which
allows every performance measure, allowing each performance
measure gj(a) for an alternative a to be expressed as a range
[x_;-"i",x;"“x]rather than a single point. This approach is in
accordance with the latest developments in energy-decision
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modeling, under which inclusion of fuzzy or imprecise data to
represent uncertainty in forecasting is highlighted (Fernandez
et al., 2022). Interval thresholds are similarly defined for
preference, indifference, and veto parameters (pj,qj,vj), permitting
flexible representation of tolerance levels. For example, in the
ROI criterion, the decision-maker may consider two investment
options equivalent if their expected returns differ by <3-5%, while
in carbon reduction, the indifference range may depend on data
accuracy or measurement uncertainty.

3.3. Data Preprocessing and Normalization

Before analysis, all quantitative criteria are normalized to make
them dimensionless and comparable. For a criterion g with values
x; for each alternative a, normalization to the interval [0,1] is
performed according to its preference direction.

For benefit-type criteria (where higher values are better):

x; —min(x;)

max(x;)—min(x;)

g;(a)=

For cost-type criteria (where lower values are preferred):

max(x;) —x;

&(a) max(x;) —min(x;)

When input data are interval-valued, each bound is normalized
separately, preserving the uncertainty range (Fernandez et al.,
2022). Qualitative indicators (e.g., policy alignment or social
acceptance) are converted into ordinal scales through expert
elicitation, as recommended by Figueira et al., 2005 multiple. All

normalized values are stored as intervals [ g;“in (a,),87" (g )} to
be used in the outranking computation.

4. DATA AND EXPERIMENTAL DESIGN

This section describes the data sources, structure, and experimental
methods used to assess the proposed approach. The goal of the
analysis is to see how well the model works at sorting company
stocks by their strategic importance using a number of criteria that
often conflict with each other. There are four parts to this section.
Subsection 4.1 describes the data sources and how they were
chosen. Section 4.2 lists the criteria for evaluation, which include
economic, environmental, and technical factors. Subsection 4.3
describes the alternatives that must be assessed by the proposed
approach. Subsection 4.4 describes the parameter settings, such
as thresholds, weights, and confidence intervals, that were used
to show uncertainty and expert judgment.

4.1. Data Sources and Collection

Data used in this study were compiled from publicly available
international databases and company reports between the 2018 and
2024 period. The focus was on firms and projects operating in the
renewable-energy and energy-intensive sectors, comprehensively
capturing the heterogeneity of investment conditions in the global
energy transition.

The International Energy Agency (IEA) and the International
Renewable Energy Agency (IRENA) provide macro-level data
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points, including ranges of capital costs, capacity factors, and
technology-specific learning curves for solar photovoltaic, onshore
wind, offshore wind, and bioenergy projects (International Energy
Agency, 2024; International Renewable Energy Agency, 2024).
These data are complemented by firm-level financial and operating
information from the Refinitiv Eikon and Bloomberg New Energy
Finance (BNEF) databases, such as CAPEX and OPEX at the
project level, return on investment (ROI), and payback periods for
more than 200 publicly listed energy companies. Environmental-
performance data, including lifecycle greenhouse-gas emissions
and land-use intensity, can be obtained from the International
Energy Agency’s Energy Technology Perspectives (ETP) database
and CDP (Carbon Disclosure Project) sustainability reports.
Regionally, Eurostat’s Energy Balance and Environmental
Accounts and the US Energy Information Administration (EIA)
provide similar statistics on energy efficiency and emissions
intensity in the European and North American regions (Eurostat,
2024; U.S. Energy Information Administration [EIA], 2024).

Missing values were addressed via mean-interval imputation at
technology category levels, as with uncertainty treatment in the
HI-INTERCLASS-nB framework.

4.2. Definition of Criteria

Selection of criteria for the purpose of this study was done
through extensive literature review, expert consultation, and data
accessibility across global databases. The framework consists of
three main dimensions: economic, environmental, and technical
criteria, each consisting of specific, measurable indicators that
cumulatively reflect the sustainability and viability of energy
investments.

4.2.1. Economic criteria

Economic performance remains the main driver in energy-

investment evaluation. Following the criteria generally used

in MCDA-based financial analysis (Sahoo et al., 2025), four

indicators were defined:

e C(Capital expenditure (CAPEX) — total up-front cost of
investment (USD per MW).

e Operational expenditure (OPEX) — mean annual operating
and maintenance costs (USD per MWh).

e Return on investment (ROI) — ratio of net benefits against
total cost, which determines profitability.

e Payback period (PP) — the period to recover initial capital
investment.

Each of these measures was converted to 2023 U.S. dollars and
normalized so that lower values indicate improved economic
performance (for CAPEX, OPEX, and PP), and higher is better for
ROI. Both short-term financial efficiency and long-term project
viability are captured in these variables, consistent with international
investment measurement standards (International Energy Agency,
2024; International Renewable Energy Agency, 2024).

4.2.2. Environmental criteria

Environmental sustainability is at the center of today’s energy
policy and investment alternatives. Following the frameworks of
the Intergovernmental Panel on Climate Change (IPCC) and the
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International Energy Agency, five environmental indicators have

been incorporated:

e Lifecycle greenhouse gas emissions (GHG) — total CO,-

equivalent emissions per kilowatt-hour of electricity generated

(gCO,/kWh).

Energy efficiency (EFF) — output to input energy ratio.

Land-use intensity (LUI) — area per installed unit capacity

(m*MW).

e  Water consumption (WTR) — cubic metres of water used per
MWh generated.

e Resource recyclability index (RCI) — proportion of resources
able to be recycled or recovered at project end-of-life.

These metrics are derived from the IEA’s Energy Technology
Perspectives database, IRENA’s Renewable Power Generation
Costs reports, and corporate climate disclosures submitted to
International Renewable Energy Agency, 2024. Lower values are
best for GHG, LUIL, and WTR but higher values are best for EFF and
RCI. These criteria overall represent the environmental footprint
and contribution to the circular economy of every investment.

4.2.3. Technical criteria

Technical performance determines whether an energy project

can operate in a reliable and smooth manner and be compatible

with the overall energy system. According to studies by Sahoo et

al., 2025a; Sahoo et al., 2025b and the U.S. Energy Information

Administration (2024), three metrics were defined:

e Technology readiness level (TRL) — qualitative metric (1-9)
of the maturity of a technology.

e Capacity factor (CF) — ratio of actual energy produced to
maximum theoretical output (%).

e  Grid integration capability (GIC) — qualitative indicator (1-5)
for measuring ease of interconnection, storage compatibility,
and dispatchability.

Higher values in all three indicators represent better technical
performance. These requirements ensure that the categorization
takes into account both the maturity of innovation and operational
stability, two of the most significant drivers of investor trust and
system resilience (Ayuketah et al., 2025; International Renewable
Energy Agency, 2024).

4.3. Alternatives to be Evaluated

Table 1 shows a sample of the normalized scores according to
preference direction (benefit or cost type) for a few energy-sector
firms. These data represent illustrative samples extracted and
aggregated from recent 2023-2024 reports. The criteria match those
defined in Section 4.2 and will later be used for demonstration in
Section 5 (Results and discussion). Grid integration scores (1-5)

Table 1: Normalized criteria scores for selected energy firms

were elicited from expert panels following the method in Figueira
et al., 2005 multiple.

4.4. Parameter Settings

Proper parameter setting is crucial to guarantee that the proposal
captures realistic decision-maker preferences and provides reliable
classification results. This subsection describes how preference,
indifference, and veto thresholds, as well as weight intervals can
be set and calibrated for empirical use to energy-investment data.

4.4.1. Preference, indifference, and veto thresholds

Thresholds regulate the interpretation of performance differences

between alternatives. Three types were set for each criterion g

* Indifference threshold (¢): the largest difference between two
performances that is judged negligible.

e Preference threshold (p,): the smallest difference to be a clear
preference.

e Veto threshold (v): the difference beyond which a deficiency
on a criterion vetoes the global outranking relation.

Following typical ELECTRE-type modeling practices (Almeida-
Dias et al., 2010; Roy, 1991), the thresholds were defined
as absolute proportions of each criterion’s observed range.
Specifically, ¢, = 0.05 x range, p, = 0.10 x range, and v, = 0.25
X range,, where range, is the range of criteria scores in criterion
g In energy-specific attributes such as ROl and GHG emissions,
expert judgment altered these defaults to presume higher tolerance
to uncertainty in financial data (up to 15%) and lower tolerance in
environmental attributes (below 8%). Thresholds were defined as
ranges to reflect uncertainty in expert estimates (Fernandez et al.,
2022). For example, the ROI preference threshold ranged from
[0.08, 0.12] while for GHG emissions it ranged from [0.04, 0.06].

4.4.2. Criteria weights and intervals

Weights measure the relative importance of criteria in the hierarchy
and were derived by a hybrid elicitation method combining expert
scoring and consistency analysis. The hierarchical weighting
structure established in Section 4.3 was made operational in terms
of weight intervals to express uncertainty and disagreement among
experts. For instance, the economic dimension was given a worldwide
weight interval of [0.35, 0.45], environmental dimension [0.30,
0.40], and technical dimension [0.20, 0.30]. Sub-criteria weights
were distributed proportionally within each branch and normalized
such that the local weights added up to one at each hierarchic level.
This practice is in accordance with recommendations by Figueira
et al., 2005 multiple, who advocate for interval weights in MCDA
for reduced cognitive bias and transparency of decisions. Interval-
weight modeling also offers greater robustness against uncertain or
absent information (Wieckowski and Satabun, 2023).

NextEra Energy 0.90 092 095 0.88 0.78 0.32 0.85  0.90 0.86 1.00 0.35 0.80
Orsted 0.35 045 075 0.55 0.95 0.80 095 085 0.95 1.00 0.90 1.00
Iberdrola 0.82 0.78  0.88 0.80 0.87 0.68 090  0.87 0.90 1.00 0.70 0.80
Enel Green Power 0.60 0.88 0.70 0.45 0.98 1.00 1.00  0.75 1.00 1.00 1.00 1.00
ACWA Power 0.20 030  0.60 0.35 0.83 0.50 0.87  0.80 0.82 0.89 0.85 0.60
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Table 2: Results of the ordinal classification performed by the proposed approach

Orsted — Offshore Wind C,

(UK)

Enel Green Power — C

Hydropower (Italy)

Iberdrola — Onshore Wind C,

(Spain) dependence.
NextEra Energy — Solar C,

PV (USA)

ACWA Power — CSP C,

(Morocco)

Excellent overall balance of environmental and technical performance; high
reliability and grid integration.

Very strong efficiency and emissions performance; limited scalability but robust
sustainability profile.

Competitive economic returns; moderate emissions; slight uncertainty in policy

Strong ROI and low emissions; moderate payback period and limited capacity
factor reduce ranking to C2.

High CAPEX and OPEX; environmental performance acceptable but financial
viability remains marginal.

4.4.3. Credibility level (5) and outranking thresholds

The credibility threshold (3) determines the minimum level of
global concordance required for an alternative to outrank another.
Consistent with past applications of hierarchical outranking
models, d was set to 0.70, founded on typical ranges of 0.65-0.75
used in robust ELECTRE-type sorting studies (Belahcéne et al.,
2024; Fernandez et al., 2022).

5. RESULTS AND DISCUSSION

The results show how the model can merge heterogeneous
conditions, manage uncertainty, and provide comprehensible
classifications in accordance with policy and expert needs.

5.1. Results of Classification
The proposal assigned each of the five examined firms/projects
(NextEra Energy, Orsted, Iberdrola, Enel Green Power, and ACWA
Power) into one of the pre-specified four classes:
C,: Strategic Priority, C,: Conditional Investment, C,:
Marginal Investment, and C,: Non-Viable Investment.

The classification results are shown in Table 2.

The model discerns the projects suitably not only on their financial
parameters but also on environmental and technical robustness,
yielding categories that correspond to real investment appeal.
The offshore wind investment by Orsted and the hydropower
investment by Enel emerged as strategic priority projects (C,),
based on the technology readiness maturity, grid connectivity,
and strong environmental performance. In contrast, ACWA
Power’s CSP project, albeit with favorable environmental effects,
was assessed as marginal (C,) due to high investment costs and
complexity of operation (which is consistent with recent market
assumptions (International Renewable Energy Agency, 2024).

5.2. Comparative and Sensitivity Analysis

To compare value added by the HIIINTERCLASS-nB model, the
same data were applied to ELECTRE TRI-nC and TOPSIS. While
the two alternative models provided consistent relative ranking,
they were less sensitive and more discriminating relative to input
uncertainty.

Under ELECTRE TRI-nC, Orsted, Enel, and Iberdrola were
also ranked as top-level projects, but the model generated
overlapping credibility scores between NextEra Energy and
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Iberdrola, rendering their differentiation uncertain. TOPSIS, as
a compensatory approach, placed ACWA Power’s CSP project
unrealistically higher (3™ position) owing to its high green
performance offsetting weak economics, a shortcoming that
HI-INTERCLASS-nB circumvents with its non-compensatory
framework (Almeida-Dias et al., 2010; Fernandez et al., 2022).

Sensitivity analysis demonstrated that assignments within
classes were insensitive to medium-sized changes in weights
and thresholds. When indifference and preference thresholds
were increased by 10%, the average change in the probability
of assignment within a class was below 6%. Also, when weight
ranges were halved, the international ranking between projects
did not shift.

6. CONCLUSION AND FUTURE WORK

This study introduced and applied the HI-INTERCLASS-nB
model, a cutting-edge hierarchical, interval-based outranking
approach, on ordinal energy-investment project classification. The
model integrates key aspects of multicriteria decision analysis,
namely non-compensatory reasoning, hierarchical organization,
and uncertainty handling, into a clear and policy-relevant decision-
support framework for planning sustainable energy.

Empirical results demonstrated the model to yield robust
and interpretable classifications that are in line with experts’
expectations and real investment rationale. Among the five
companies examined, Orsted and Enel Green Power emerged
as strategic priority investments, while Iberdrola and NextEra
Energy were considered conditional investments. ACWA Power’s
concentrated solar power facility was rated marginal, owing to
its cost-intensive profile and average performance. Hierarchical
model structure and interval handling of data improved
interpretability and resistance to parameter uncertainty. Relative
to traditional MCDA techniques such as ELECTRE TRI-nC or
TOPSIS, HI-INTERCLASS-nB performed better in handling
imprecise information and preventing overcompensation effects,
which are two primary concerns in multifaceted sustainability
assessments (Fernandez et al., 2022).

The results have practical implications for policymakers and

investors. The model enables:

1. Ranked resource allocation, ensuring that funding goes to
strategic priority initiatives;
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2. Policy-based incentive design, identifying condition
investments worthy of support by policymakers; and

3. Risk-aware planning, by stochastic representation of
uncertainty and measures of robustness.

While the proposal has sound theoretical and practical value, there

are several extensions that can broaden its use:

e Dynamic assessment: Adding temporal data to track the
evolution of project classifications over time with learning
and policy changes.

e Fuzzy and probabilistic integration: Combining interval
analysis with fuzzy logic or Bayesian updating to better
capture expert subjective uncertainty.

e Hybrid AI-MCDA systems: Subsuming HI-INTERCLASS-
nB into machine learning frameworks to take advantage
of automated parameter tuning and predictive strength,
as envisioned by recent advances in decision intelligence
(Ayuketah et al., 2025).
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