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ABSTRACT

This study examines energy production forecasting in Turkey through advanced time series methodologies. The analysis, conducted on annual data 
spanning the period 1970-2024, encompassed not only aggregate electricity generation but also disaggregated production from coal, natural gas, 
hydro, and renewable sources, including waste. The modeling framework integrated both conventional and machine learning-based techniques, 
specifically ARIMA, single-layer and three-layer LSTM architectures, and Holt’s linear method optimized via particle swarm optimization (PSO). 
Model performance was assessed using widely recognized error metrics, namely mean absolute percentage error (MAPE), mean squared error (MSE), 
and root mean squared error (RMSE). The empirical results demonstrated that the three-layer LSTM model achieved the lowest error values for total, 
coal, and hydro-based generation, whereas the single-layer LSTM exhibited superior accuracy for natural gas. In contrast, the traditional ARIMA model 
yielded the most precise forecasts for renewable and waste-based energy. These outcomes underscore that while deep learning models such as LSTM 
are capable of capturing intricate temporal dynamics when appropriately tuned, conventional models like ARIMA continue to demonstrate robust 
predictive capability for specific datasets. Overall, the findings confirm that all four approaches provide an acceptable level of forecasting accuracy.

Keywords: Turkey Electric Production Forecast, Long Short-Term Memory, Autoregressive Integrated Moving Average, Holt Method, Particle 
Swarm Optimization, Time Series Forecasting 
JEL Classifications: Q47, C45, C53, C61

1. INTRODUCTION

Electricity production is a key driver of economic growth, energy 
security, and environmental sustainability. For rapidly developing 
countries like Turkey, expanding investments in electricity 
generation is essential to meet rising energy demands while 
fulfilling ecological commitments. As the electricity generation 
sector plays a central role in achieving net-zero carbon targets, it 
is critical to support the investment toward sustainable, reliable, 
and efficient energy systems (Ren et al., 2024). Furthermore, 
prioritizing renewable and environmentally friendly energy 
technologies not only enhances economic resilience but also 
preserves environmental integrity.

Turkey’s growing population and expanding economy have 
accelerated electricity demand, making strategic generation 
planning a priority to support economic development. Electricity 
production is not only a fundamental production factor but also 
crucial for energy security and environmental sustainability (Lucia 
and Grisolia, 2017). Increasing global warming and ecological 
pollution pressures have further emphasized the importance 
of renewable energy investments. The long-term relationship 
between renewable energy production and economic performance 
highlights the decisive role of energy efficiency in national 
development (Inglesi-Lotz, 2016). In economies where fossil 
fuels remain dominant, such as Turkey, implementing renewable 
energy technologies is indispensable for meeting growing energy 
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demand while mitigating environmental pollution (Paul and 
Uhomoibhi, 2012).

Countries with high solar irradiation, like Turkey, benefit from 
promoting renewable energy to enhance energy security, generate 
employment, and support sustainable growth. However, the 
intermittent nature of renewable sources such as solar and wind 
causes variability that can challenge grid stability and reliability, 
making accurate electricity production forecasting essential 
(Notton et al., 2018). Accurate forecasting enables improved 
planning and management, reducing energy losses and enhancing 
operational efficiency (Voloshko et al., 2019). Governments 
investing in forecasting capabilities can more effectively meet 
rising energy demand while adhering to global emission reduction 
commitments (Owusu and Asumadu-Sarkodie, 2016).

Forecasting electricity production in Turkey is critical due to the 
need for sustainable development policies, effective management 
of rising energy demand, and integration of renewable energy into 
the grid (Yılmaz, 2023). Increasing electricity demand, combined 
with insufficient installed capacity, creates a significant supply-
demand imbalance, which poses economic, environmental, and 
strategic risks, especially for a country dependent on energy 
imports (Kıran et al., 2012). Accurate forecasts are essential 
for energy policy and capacity planning, supporting transitions 
to renewable energy, reducing greenhouse gas emissions, and 
enhancing energy independence (Kurt et al., 2022). Due to limited 
electricity storage, production must match consumption, requiring 
precise forecasting models to minimize economic losses from 
over- or under-production (Oscar, 2021).

In light of the increasing importance of reliable energy forecasting 
for policy and planning, this study aims to develop a comprehensive 
modeling framework for Turkey’s electricity generation covering 
the period 1970-2024. The analysis incorporates both aggregate 
electricity production and disaggregated outputs from coal, 
natural gas, hydro, and renewable and waste sources. To this end, 
a comparative approach is employed that combines traditional 
time series techniques (ARIMA), machine learning methods 
(single-  and three-layer LSTM), and an optimization-based 
exponential smoothing model (Holt’s linear method optimized 
with Particle Swarm Optimization). By evaluating the models 
through multiple performance metrics (MAPE, MSE, RMSE), the 
study seeks to identify the most effective forecasting strategies for 
different energy sources. The findings contribute to the literature by 
demonstrating the complementary strengths of classical and deep 
learning-based approaches in capturing the dynamics of Turkey’s 
energy sector. Moreover, this comprehensive approach aims to 
generate more reliable and robust forecasts, which are essential 
for ensuring energy supply security and accelerating the transition 
toward renewable resources.

2. LITERATURE REVIEW

The increasing importance of electrical energy has led to a 
corresponding rise in studies concerning the Turkish electricity 
sector. The existing literature contains numerous forecasting 
models that analyze critical factors such as demand predictions, 

future scenarios for renewable energy production, and the impact 
of pricing and policy. A review of previous work reveals a recent 
surge in studies that employ machine learning and artificial 
intelligence methods, driven by the growing complexity of 
electricity generation and consumption, the inherent difficulties 
of forecasting within the electricity market, and the diversification 
of statistical, machine learning, and AI methodologies developed 
to address these challenges. Another fundamental reason for this 
increase is the ever-growing significance of electrical energy, 
which is critical for national security and aligns with countries’ 
social and economic development strategies. Accurate forecasting 
of electricity production is paramount, as energy storage is a 
complex and costly process.

The literature on energy production forecasting in Türkiye 
is characterized by a blend of statistical, computational, and 
economic methods aimed at understanding and predicting 
the country’s energy demand dynamics. Various studies have 
utilized advanced forecasting techniques to provide insights into 
electricity production trends within Türkiye’s rapidly evolving 
energy landscape.

Among traditional statistical methods, Haliloğlu and Tutu (2018) 
successfully employed the SARIMA (seasonal autoregressive 
ıntegrated moving average) model to forecast daily electricity 
demand in Türkiye, achieving a remarkably low error rate of 
approximately 1% (Haliloğlu and Tutu, 2018). Other studies 
have combined seasonal analysis with Artificial Neural Networks 
(ANN) to forecast monthly sectoral electricity consumption. Akay 
and Atak (2007) developed a model using the Grey Prediction 
method, integrated with a rolling mechanism, to forecast total 
and industrial electricity consumption (Akay and Atak, 2007). 
Hamzaçebi (2007) applied ANNs for sectoral net consumption 
forecasting and noted their high success rate with non-linear data, 
highlighting their suitability for such tasks (Hamzaçebi, 2007). 
Similarly, the Seasonal ANN model, explored by Hamzaçebi et al. 
(2019), was found to be highly accurate for monthly predictions 
(Hamzaçebi et al., 2019). Using data from 1986 to 2013 for 21 
regional distribution companies in Turkey, the study employs 
ARIMA-based time series, panel, and spatial panel data models 
to forecast electricity demand, finding that the pooled panel 
model provides the best performance according to RMSE and 
highlighting the importance of regional interactions and spatial 
dependencies in energy planning and policy (Akarsu, 2017).

Acar et al. (2021) utilized Seasonal ARIMA for monthly 
forecasts, providing a critical solution for mid-term planning 
(Acar et al., 2021). In his 2016 study, Günay used an ANN model 
with socio-economic and climatic variables as inputs to predict 
that Türkiye’s annual total electricity demand would double by 
2028 (Günay, 2016). Kankal and Uzlu (2017) demonstrated that 
an ANN model enhanced with the Teaching-Learning-Based 
Optimization (TLBO) algorithm significantly outperformed other 
ANN structures by reducing error rates. This work provided an 
effective method for long-term electricity demand forecasting 
using historical consumption data and socio-economic indicators 
(Kankal and Uzlu, 2017). More recently, Saglam et al. (2023) used 
Medium-Scale Neural Networks (MNN) to forecast Türkiye’s 
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electricity needs up to 2040 (Saglam et al., 2023). Other advanced 
techniques include the hybrid model developed by Kaytez (2020), 
which combined ARIMA and least squares support vector machine 
(LSSVM) methods for net electricity consumption forecasting 
(Kaytez, 2020). Additionally, specific studies, such as the one by 
Özbay and Dalcalı (2021), have focused on unique periods like 
the COVID-19 pandemic, where they developed an ANN model 
for short-term forecasting of electricity consumption in Türkiye 
(Özbay and Dalcali, 2021).

One of the most significant and increasingly important areas of 
research is forecasting for renewable energy production. Utkucan 
Şahin (2020) developed an advanced fractional nonlinear grey 
bernoulli model (FANGBM) to forecast that Türkiye’s total 
renewable installed capacity and electricity production will 
continue to increase significantly until 2030, though the share 
of hydropower is expected to decline (Şahin, 2020). Soğukpınar 
et al. (2023) examined the impact of renewable energy policies on 
the entire energy system, revealing that an increase in renewable 
installed capacity has a significant negative effect on long-term 
sectoral electricity demand (Soğukpınar et al., 2023). This 
suggests that renewable energy policies promote efficiency and 
reduce overall consumption, thereby contributing to economic 
and environmental sustainability. Other specialized studies on 
renewable energy include Yıldızhan and Sivrioğlu (2015) and 
Yüzer (2023), who investigated the future of solar energy capacity 
(Yildizhan and Sivrioğlu, 2015). Ertekin (2020) proposed an 
hour-based ensemble machine learning method for solar power 
prediction, which is crucial for grid integration (Ertekin, 2020).

In terms of forecasting studies on emissions, pricing, and economic 
impact, Bakay and Ağbulut (2021) used deep learning, support 
vector machines, and ANN algorithms to predict greenhouse gas 
emissions from electricity production, finding that CO2 constitutes 
the largest share (Bakay and Ağbulut, 2021). On the market side, 
Ugurlu et al. (2018) found that the SARIMA model was the most 
effective for forecasting hourly prices in Türkiye’s Day-Ahead 
Electricity Market (Ugurlu et al., 2018). The broader economic 
interaction was explored by Akdağ and Ekici (2022), who analyzed 
the impact of energy production and consumption on Türkiye’s 
industrial index (Akdağ and Ekici, 2022).

Current research continues to push the boundaries of forecasting 
accuracy and application areas, with a growing focus on advanced 
neural network studies. Bulut (2024) utilized long short-term 
memory (LSTM) for both consumption and production forecasting 
related to hydroelectric power (Bulut, 2024). Bişkin and Çifci 
(2021) also employed LSTM, as well as more advanced deep 
learning models like gated recurrent unit (GRU) networks 
(Bişkin and Çifçi, 2021). Moreover, Bulut (2024) and others are 
increasingly focusing on multi-feature production sources, such 
as assessing the potential for energy recovery from wastewater 
treatment plants.

The body of work on electricity production and consumption 
forecasting in Türkiye is comprehensive and encompasses a wide 
range of methodologies. These studies demonstrate a clear evolution 
from traditional statistical methods to highly sophisticated artificial 

intelligence and machine learning models, which consistently 
provide superior accuracy by capturing the complex, non-linear 
dynamics of the energy system. Previous research has addressed 
a broad spectrum of needs, ranging from long-term, strategic 
forecasts that guide infrastructure investment and national energy 
policy to short-term, high-frequency predictions essential for daily 
grid stability and economic operation.

3. MATERIALS AND METHODS

Due to the inherently nonlinear and dynamic characteristics of 
electricity generation data, the selection of forecasting methods 
becomes a critical issue. When choosing an appropriate method, 
factors such as the statistical structure of the data, the amount of 
data available, the interpretability of the model, and the forecasting 
horizon are taken into consideration. While traditional models 
such as ARIMA or the Holt model can provide satisfactory results 
for simple and short-term series, deep learning-based approaches 
tend to perform better in cases that involve complex structures or 
require long-term forecasts. Traditional methods often fall short in 
capturing the complex dynamics of the data, whereas approaches 
such as long short-term memory (LSTM) networks can achieve 
higher accuracy (Zhang and Li, 2022)

In this regard, in this study, it was aimed to forecast Turkey’s 
electricity generation sources until 2030 but also to compare the 
performance of different method, ARIMA, Holt’s linear method 
optimized with particle swarm optimization (PSO), and single and 
multi-layer LSTM models in order to reveal which approaches are 
more effective in handling varying data structures. By combining 
classical statistical techniques with advanced machine learning 
models, the study provided a comprehensive framework that 
justifies the selection of these methods for analyzing Turkey’s 
electricity production dynamics.

3.1. Materials
In this study, annual data spanning the years 1970-2024 was used 
to forecast Turkey’s long-term electricity production potential. The 
accuracy and reliability of the data were of critical importance for 
the validity of the study’s findings. For this reason, the data was 
compiled from two main reliable sources:
• Annual electricity production data for the years 1970-2023

was obtained from the official database of the Turkish
Statistical Institute (Institute, 2025)

• The data for the year 2024 was obtained from the public
sources of the Turkish Republic Ministry of Energy and
Natural Resources (Resources, 2025).

The analyzed datasets were classified on an annual basis as 
electricity production data obtained from the main sources 
under the headings coal, natural gas, hydroelectric (Hydro), and 
renewable energy and wastes. Additionally, there was also data 
on the total electricity production obtained from all these sources 
on a yearly basis.

Figure 1 illustrated Turkey’s annual total electricity generation 
and its subgroups in GWh over the period 1970-2024. When 
Figure 1 is examined, it was seen that the overall trend in electricity 
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Figure 1: Electricity production of Turkey from 1970 to 2024

production began with a stable yet relatively moderate increase 
from the early 1970s to the late 1980s. This growth was most 
likely shaped by gradual capacity expansions and relatively 
limited industrial development during that period. From the late 
1990s to the mid-2010s, however, Turkey’s energy demand rose 
sharply, increasing nearly six-fold between 1970 and 2010, with 
electricity demand following a similar trajectory. In 2010, the 
total installed capacity reached 49,524 MW, generating 211,208 
GWh of electricity; this figure was four times the production 
level recorded in 1990 (Atilgan and Azapagic, 2016). After 2010, 
the upward trend became even more pronounced, reflecting 
substantial investments in electricity generation infrastructure as 
well as diversification of the energy mix. A slight deceleration and 
fluctuations observed around 2018-2020 can be associated with 
the impacts of the COVID-19 pandemic on the economy. Overall, 
from a time series perspective, the dataset exhibits a persistent 
upward trend with only short-term deviations.

Turkey’s annual electricity generation dataset was composed of 
five main subgroups: Coal, Natural Gas, Liquid Fuels, Hydro 
(Hydroelectric), and Renewable Energy and Wastes. When Figure 1 
was analyzed, it was observed that electricity generation from coal 
followed an increasing trend throughout the 1970-2024 period, 
maintaining a significant share in total electricity production. 
Despite its importance in Turkey’s electricity mix, coal is also 
one of the main sources of greenhouse gas emissions, contributing 
heavily to air pollution and global climate change. Coal-based 
electricity generation in Turkey showed a rapid increase until 2020, 
partly due to COVID-19 and environmental effects, yet it displayed 
a more moderate upward trend towards 2024.

Another key source of electricity generation for Turkey is natural 
gas. As Figure 1 indicates, electricity production from natural gas 
began in 1985. Since it is largely dependent on imports, natural 
gas generation has shown fluctuations over the years due to 
policies, pricing strategies, and the effects of external dependency. 
The highest utilization rates were reached in 2017 and 2022, but 
following the COVID-19 pandemic, the sharp increase in natural 
gas-based generation gave way to a more stable pattern.

With its vast geography, mild climate, and rich river basins, 
Turkey is also one of the countries with significant potential 

in hydroelectric generation. Electricity production from hydro 
increased rapidly with the construction of hydroelectric power 
plants. Nevertheless, hydroelectric output has been highly 
influenced by natural factors (precipitation and water regime), 
technical factors (turbine efficiency and maintenance), and 
environmental-political factors (water management and energy 
policies). Consequently, hydroelectric generation has stagnated 
after 2017.

The Renewable Energy and Wastes subgroup refers to electricity 
generated from renewable sources such as solar, wind, and 
biomass, as well as from waste incineration plants. In recent years, 
this category has shown a marked upward trend. While electricity 
generation from renewables declined and nearly approached zero 
between 1970 and 1985, it started to rise again after 1985, with 
a strong acceleration particularly in the last decade. The main 
drivers behind this growth include increasing environmental 
awareness, energy diversification policies, technological progress, 
and international influences.

Finally, Liquid Fuels, which had been used for electricity 
generation in Turkey since 1970, displayed a steady downward 
trend and has significantly declined over the last decade. By 
2024, liquid fuels were no longer used for electricity generation. 
Therefore, as it was considered that this category would not 
provide a meaningful contribution to future forecasting models, 
the data on liquid fuels was excluded from the analysis.

3.2. Methods
Comparing different forecasting methods is crucial for analyzing 
the accuracy of their results. In this study, while each data series 
generally showed an increasing trend, they also exhibited distinct 
developments over the years. Therefore, it is more appropriate to 
select a suitable method for each dataset and perform the future 
forecast using that method.

Studies in the literature reveals that traditional time series 
models, such as the Box-Jenkins ARIMA method, are among 
the most widely used. In addition, Holt’s method, a type of 
exponential smoothing, has been shown to be successful with 
data that has a linear trend but no seasonality, which is the case 
with the data in this study. Deep learning-based models like 
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LSTM provide higher accuracy for data that is nonlinear and 
contains long-term dependencies (Al-hamid and Savaş, 2023). 
Because accurate analysis of total electricity production and 
its sub-components was necessary for this study, a forecasting 
analysis was conducted on all datasets using four different 
methods, as this is a forecasting problem that requires analysis 
with multiple approaches. In this study, the Box-Jenkins 
ARIMA, two different LSTM models, and the Holt linear trend 
method optimized with PSO were used.

3.2.1. ARIMA model
The development and implementation of ARIMA (autoregressive 
ıntegrated moving average) models as forecasting tools is 
commonly referred to as the Box-Jenkins methodology. This 
approach to time series analysis involves identifying an appropriate 
ARIMA(p,d,q) model that sufficiently captures the underlying 
stochastic process generating the observed data. The methodology 
consists of three fundamental stages: Model identification, 
parameter estimation and diagnostic checking, followed by 
forecasting (Dritsakis and Klazoglou, 2018).

The process begins with determining whether the time series is 
stationary. If the series exhibits non-stationarity, it is transformed 
through differencing—first-order, second-order, or higher—until 
stationarity is achieved. The degree of differencing required (d) 
is determined during this phase, supported by statistical tests for 
unit roots, such as the Augmented Dickey-Fuller (ADF) test or 
autocorrelation function (ACF). If autocorrelations start high 
and decline slowly, then series is nonstationary, and should be 
differenced (Dobre and Alexandru, 2008)

Once stationarity have been addressed, the next step is to 
identify the appropriate order of the autoregressive (p) and 
moving average (p) components. This is typically achieved by 
analyzing the patterns in the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) of the series. The sample 
autocorrelation plot and the sample partial autocorrelation plot 
are compared to the theoretical behaviour of these plots when the 
order is known (Hanke and Winchern, 2014:400). After identifying 
the model, the parameters for the AR terms and the MA terms are 
estimated. Box-Jenkins models are typically estimated using either 
the least squares method or maximum likelihood (MLE) method 
(Dobre and Alexandru, 2008).

The ARIMA model is expressed as the following mathematical 
formula 1 (Buhan et al., 2022).

Zt = δ + ϕ1 Zt-1 + ϕ2 Zt-2+⋯+ϕp Zp-1 + ϵt−θ1 ϵt-1 −θ2 ϵt-2 −…−θq ϵt-q	
(1)

Where Zt denotes the forecasted value at the time t and Zt-

1,…,Zt-p represent the observed values from previous times, with 
p indicating the order of the AR component of the model. The 
term δ is a constant that is defined by the AR coefficients. The 
parameters ϕ1,…,ϕp are the AR coefficients, while θ1.,θq, are the 
MA coefficients. The terms ϵt,…ϵt-q correspond to the residuals 
with q denoting the order of the MA components.

Finally, the diagnostic checking stage involves assessing whether 
the residuals of the estimated model behave as white noise, 
confirming that the model adequately captures the structure of 
the time series. In this case, the residuals should not exhibit 
autocorrelation. If the model fails diagnostic tests, modifications 
are made, and the previous steps are repeated to identify a more 
suitable model (Dritsakis and Klazoglou, 2018).

To assess whether the residuals from the fitted ARIMA model 
exhibit white noise behavior, the Ljung-Box Q-test is commonly 
employed. This diagnostic test evaluates whether a group of 
autocorrelations in the residuals significantly deviates from zero. 
A  low P-value associated with the Q statistic (e.g., P < 0.05) 
suggests that the model fails to adequately capture the underlying 
structure of the data. In such cases, the analyst should consider 
specifying a new or modified model and continue the modeling 
process until a satisfactory fit is achieved (Meyr, 2014).

3.2.2. The lstm (long short-term memory) methods
The LSTM (long short-term memory) method is a specialized 
type of RNN (recurrent neural network) model. While LSTM 
networks share a similar architecture with recurrent neural 
networks, they represent a unique class of artificial neural networks 
that offer significant advantages. Standard RNNs, which use the 
output from a previous step as the input for the next, progress in 
sequential steps and are limited by their short-term memory. This 
characteristic makes them effective for addressing sequential data 
problems like natural language processing and time series analysis. 
However, due to their limitations in learning and retaining long-
term dependencies, crucial information can often be lost early in 
the network’s processing.

The LSTM architecture is specifically designed to overcome 
these challenging loss scenarios found in traditional RNNs. The 
design of LSTM cells incorporates “gates” that regulate and 
control the flow of information. Within this structure, the forget 
gate determines which information within the cell state should 
be retained or discarded, while the input gate decides how much 
of the new information will be added to the cell. The cell state is 
then updated based on these decisions, ensuring that information 
is stored in long-term memory. Finally, the output gate generates 
the hidden state (ht) based on the updated cell state, and this state 
is passed as input to the next step.

The dynamic state of a long short-term memory (LSTM) cell is 
defined by four fundamental components: The input gate (it), the 
forget gate (ft), the output gate (ot), and the cell state (ct). These 
gates are formulated using the sigmoid (σ) and hyperbolic tangent 
(tanh) activation functions, incorporating the previous hidden 
state (ht−1) and the current input vector (xt) (Ran et al., 2019). The 
parameters are represented by the matrices and vectors W and 
b. These relationships are expressed by the following formulas:

it = σ (Wi ht-1, xt ] + bi� (2)

ct = tanh (Wc [ht-1, xt] + bc)� (3)

ft = σ (Wf [ht-1, xt] + bf)� (4)
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c c if
t t 1 t tt
� � � �� c (5)

ot = σ (Wo [ht-1, xt] + bo)� (6)

ht = ot⨀tanh⁡(ct)� (7)

3.2.3. The PSO optimised Holt linear trend method
The Holt’s method, developed by Charles Holt in the 1950s, is a 
variation of the exponential smoothing method that considers both 
the level and the trend. This method is particularly effective for 
time series where the underlying data show a consistent upward or 
downward movement over time (Holt, 2004). Unlike the ARIMA 
method, the Holt Linear Trend method does not require the data 
to be stationary (Tak et al., 2021). Furthermore, the Holt Linear 
Trend method inplace of Holt Winters method was used in this 
study because the data were annual, showed an overall increasing 
trend over the years, and seasonal analysis could not be performed 
on annual data. The formulas (8), (9), (10) for the forecast, level, 
and trend for the Holt’s linear trend method are as follows:

t h \ t t ty hxˆ m+ = + � (8)

mt = αyt + (1–α) (mt-1 + zt-1)� (9)

bt = β (mt–mt-1) + (1–β) (zt-1)� (10)

The forecast for the series at time t is denoted by \ˆt h ty + . The level 
of the series at time t is represented by mt, while its trend is bt. The 
parameter α is the level smoothing parameter, and β is the trend 
smoothing parameter, both of which have values between 0 and 
1 (Yapar et al., 2018).

Holt’s linear trend method uses two smoothing parameters, α (the 
level coefficient) and β (the trend coefficient). Selecting optimal 
values for these coefficients is of critical importance, as incorrect 
choices can lead to issues of overfitting or underfitting. These 
parameters can take on values between 0 and 1, and the infinite 
number of possible values makes the solution complex. The fact 
that there are infinite coefficient possibilities between 0 and 1, 
and finding which coefficient will yield the best result, is a type 
of optimization problem. Traditional trial-and-error methods are 
inefficient, especially with large datasets, which is why automatic 
optimization techniques are needed (Pangestu and Andayani, 
2023). For this reason, modern heuristic methods that provide 
faster and more accurate results are used today.

The studies in the literature shows that Particle Swarm 
Optimization (PSO) stands out as an effective meta-heuristic 
method for optimizing Holt’s smoothing parameters. For instance, 
Hakimah and Kurniawan (2020) combined PSO with the damped 
trend exponential smoothing method to achieve better results in 
exchange rate forecasting compared to manual parameter selection 
(Hakimah and Kurniawan, 2020). Similarly, it was demonstrated 
significant improvements in construction cost index forecasting 
by integrating PSO with the Holt-Winters smoothing method 
(Ebesek and Ebesek, 2023). These findings suggest that PSO 
offers a distinct advantage over static optimization methods for 
the dynamic improvement of parameters in time series models. In 

the context of the Holt linear trend method, PSO minimizes error 
metrics by exploring different (α, β) combinations.

Particle swarm optimization (PSO) is a computational technique 
inspired by the social behavior patterns of bird flocks or similar 
swarms, where individuals (particles) collectively explore the 
solution space. Candidate solutions are guided towards the 
best solution in high-dimensional solution spaces by being 
updated at each step according to their own best position and 
the swarm’s best position (Kennedy and Eberhart, 1995). This 
mechanism is formulated to be compatible with changes in 
the velocity and position of birds and is applied to various 
optimization problems.

Particle swarm optimization (PSO) has been widely used due 
to its simplicity, efficiency, and broad applicability (Wu et al., 
2022). The versatility and simplicity of PSO enable its application 
across various fields such as engineering optimization problems, 
machine learning, and economics (Jiang et al., 2020). The inherent 
parallelism of the algorithm allows for a robust exploration of the 
solution space, facilitating efficient convergence toward optimal 
or near-optimal solutions.

The algorithm consists of several iterative steps designed 
to improve solution accuracy. Considering a particle in an 
N-dimensional space, let the position vector be defined as Xi = (xi1,
xi2.,xi) and the velocity vector as Vi = (vi1, vi2.,viN). Initially, a
predefined number of particles are placed within the search space.
Unless otherwise constrained, these positions and velocities are
assigned randomly. Each particle represents a potential solution to 
the optimization problem. The initial positions can be determined 
according to problem constraints, while velocities are generally
set as small random values (Matrenin and Sekaev, 2015).

In the fitness evaluation step, each particle’s position is assessed 
using a fitness function, which measures how close the solution is 
to the optimization objective. The performance of each particle is 
recorded, and its best position so far is stored in memory as pBest 
(Wu et al., 2022). The local best position of a particle is expressed 
as pbesti = (pi1, pi2,……piN). For the global best determination, the 
algorithm identifies the best position among all particles, known 
as the gBest. This position serves as a guiding reference during the 
swarm’s exploration of the search space. The global best vector is 
expressed as gbesti=(pbest1, pbest2, pbestN). Finally, in the velocity 
update step, each particle’s velocity is iteratively updated based 
on its previous velocity, its distance from pBest, and its distance 
from gBest. The velocity update of a particle is defined as:

Vi(t) = w(t) Vi(t-1) + c1 r1 (X(pbest)i - Xi(t-1)) + c2r2 (X(gbest)i- Xi(t-1))	
(11)

After updating the velocity, the position update is performed. Each 
particle’s position is modified using its new velocity, enabling 
particles to explore new regions of the solution space. The position 
update of a particle is expressed as:

Xi(t)= Vi(t)+Xi(t-1)� (12)
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This equation 12 determines how the position of a particle in the 
search space changes according to its velocity and direction. Here, 
ttt denotes the iteration number. Equation ensures that a particle’s 
position in space is updated with its newly calculated velocity. 
The new velocity is determined based on the particle’s previous 
velocity, its current position, and its distances to both pBest and 
gBest (Wu et al., 2022).

In the velocity update formula 11, w(t) represents the inertia 
weight, which controls how much of the previous velocity is 
carried into the new velocity. The terms r1 and r2 are random 
numbers uniformly distributed between 0 and 1. The acceleration 
coefficients are generally set as c1=c2=2, since adopting this value 
has been shown in the literature to yield effective results. This 
formulation enables a balance between exploration (searching 
new areas) and exploitation (refining known promising areas) (Wu 
et al., 2022). Finally, in the termination phase, the search process 
is repeated until a stopping criterion is satisfied such as reaching 
the maximum number of iterations, achieving a satisfactory fitness 
level, or observing no significant improvement over a certain 
number of iterations (Wu et al., 2022).

3.2.4. Error evaluation metrics
The mean absolute percentage error (MAPE), mean square 
error (MSE), and root mean square error (RMSE) are crucial 
metrics for evaluating the effectiveness of forecasting models. 
Each of these metrics serves as an indicator of the accuracy and 
reliability of predictions, guiding researchers in model selection 
and improvement. The mean absolute percentage error (MAPE) 
is a scale-independent error metric commonly used to evaluate the 
performance of forecasting models. It calculates the average of 
the absolute errors between actual values and forecasts, expressed 
as a percentage of the actual values. Since MAPE is presented in 
percentage terms, it is considered one of the most intuitive and 
easy-to-understand forecasting error measures. Generally, a MAPE 
value of <10% is regarded as indicating excellent forecasting 
accuracy, while values between 10% and 20% are considered 
to represent moderate forecasting accuracy (Chairunnisa and 
Fauzan, 2023).

The formula for MAPE is expressed as follows:

MAPE  1 n�
�

��% / *00
1

y y
y
i i

i
i

n  (13)

• yi: The actual (observed) value at time t,
• yi : The forecasted value at time t,
• n: The number of observations,

The mean squared error (MSE) is a fundamental metric used to 
quantitatively evaluate the performance of forecasting models 
by calculating the average of the squared prediction errors. By 
squaring the errors, MSE places greater emphasis on larger errors 
compared to smaller ones, thereby encouraging the reduction of 
large deviations during the model development process. Due to 
its straightforward interpretation and mathematical properties, 
MSE serves as a critical evaluation criterion in the context of 

regression analysis and machine learning model performance 
assessment. MSE values vary depending on the context and 
application. Lower MSE values indicate that predictions are closer 
to the actual observations, making them generally more desirable 
(Nguyen et al., 2019).

The formula for MSE is expressed as follows:

n 2
i ii 1

ˆ1MSE  (y y )
n =

= −∑ (14)

• yt: The actual (observed) value at time t,
• ˆiy : The forecasted value at time t,
• n: The number of observations,

The root mean squared error (RMSE), similar to MSE, is a 
widely used error measurement method for evaluating how well 
predicted values align with actual observations. As a fundamental 
tool in fields such as machine learning, forecasting, and statistical 
analysis, RMSE is calculated by taking the square root of the 
mean of the squared errors. Since it is expressed in the same 
units as the modeled data, RMSE is straightforward to interpret 
and easy to understand. Although RMSE does not penalize large 
errors as strongly as MSE, it still reflects the model’s sensitivity to 
prediction errors while maintaining interpretability due to its unit 
consistency with the data. This makes RMSE particularly useful 
for performance evaluations and model comparisons. In practice, 
RMSE is often used alongside other metrics, such as MSE, to 
provide a more comprehensive assessment of model performance 
(Abdelkader et al., 2023).

The formula for RMSE is expressed as follows:
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i 1
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n

=
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= ∑ (15)

• yt: The actual (observed) value at time t,
• ˆty : The forecasted value at time t,
• n: The number of observations,

4. RESULTS AND DISCUSSION

In this section, the electricity production forecasting results obtained 
using four different methods (ARIMA, the PSO-Optimized Holt’s 
Method, and two types of long short-term memory [LSTM] neural 
networks) were presented and comparatively evaluated. The analysis 
covered Turkey’s total electricity generation as well as production 
from coal, natural gas, hydroelectric, and renewable energy sources. 
For each type of electricity production and for the total generation 
values, the forecasting models’ performances were assessed using 
the MAPE, MSE, and RMSE metrics, and the strengths and 
weaknesses of the methods were comparatively discussed.

4.1. Results of ARIMA Models
As stated in pirivious section, the first step in determining the 
most appropriate ARIMA model for the series is to examine its 
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stationarity. For this purpose, an initial assessment is conducted 
using visual methods; the time series plot, together with the 
autocorrelation function (ACF) and partial autocorrelation function 
(PACF) plots, provides a preliminary indication of stationarity.

The time series plot of total energy generation data, presented in 
Figure 1, reveals a clear trend pattern. In addition, the ACF and 
PACF plots shown in Figure 2 further support the presence of a 
trend in the series. In particular, the ACF plot indicates that the 
autocorrelation values for the first few lags are relatively large 
and decline gradually, which clearly demonstrates that the series 
is non-stationary and exhibits trend behavior.

However, to obtain more reliable results, the visual inspection 
is supported by the Augmented Dickey-Fuller (ADF) unit root 
test. The null hypothesis (H0) states that the series contains a unit 
root, i.e., it is non-stationary, while the alternative hypothesis (H1) 
indicates that the series is stationary. The results of the test are 
summarized in Table 1.

Based on the results reported in Table 1, differencing was applied 
to the series in order to achieve stationarity. Stationarity was 
achieved after applying second-order differencing to the series. 
The corresponding ADF test results for the differenced series are 
reported in Table 2, and time series plot with ACF and PACF plots 
were given in Figure 3.

Considering the ACF and PACF plots in Figure 4 together with 
the theoretical autocorrelation patterns, the ARIMA (3,2,0) model 
was identified as the most suitable. The parameter estimates of 
this model are provided in Table 3.

As shown in Table 3, the estimated parameters of the proposed 
model are statistically significant, with all P-values being <0.05. 
As the next step, it is necessary to conduct diagnostic checks to 
assess whether the residuals from the fitted ARIMA model exhibit 
white noise behavior. For this purpose, the Ljung-Box Q-test is 
employed, and the corresponding results are reported in Table 4. 
The test statistic, with a P ≥ 0.05, indicates that the model is 
appropriate for forecasting Total Electricity Generation.

For the other four series (coal, natural gas, hydroelectric, 
and renewable and waste-to-energy), the same Box-Jenkins 
procedure was applied. To avoid redundancy, only the final model 
specifications and diagnostic results are reported in Table 5.

The coal, natural gas, hydroelectric, and renewable and waste-to-energy 
electricity generation series all required second-order differencing to 
achieve stationarity. As summarized in Table 5, the most appropriate 
ARIMA specifications were identified as ARIMA(0,2,1) for coal, 
ARIMA(2,2,1) for natural gas, ARIMA(0,2,1) for hydroelectric, 
and ARIMA(0,2,3) for renewable and waste-to-energy. Diagnostic 
checks further confirmed the adequacy of these models (Table 5), 
with the residuals exhibiting no significant autocorrelation and thus 
approximating a white-noise process.

4.2. Results of LSTM Model
Two LSTM models were proposed for this study, both developed 
in the Python programming language. The models were trained 
and predictions were generated on a computer with a 64-bit 
operating system, equipped with an Intel Core i5-7200U processor 
at 2.50 GHz and 8 GB of RAM. Using the PyTorch deep learning 
library, these two LSTM models were developed to create separate 
forecasting models for total and four different electricity energy 
sources: Total, Coal, Natural Gas, Hydro, and Renewables and 
Waste. The models used annual electricity production data from 
1970 to 2024 to generate future forecasts for 2025-2030, aiming 
for the lowest possible MAPE, MSE, and RMSE values. For 
input preparation, the data was partitioned by setting aside the 
last 3 years as a test set. MinMaxScaler was used to scale the data 
between 0 and 1.

Figure 2: Time series plot of total energy generation

Table 2: ADF unit root test results for the differenced total 
electricity generation series
Test 
statistic

Critical 
value (5%)

P‑value Decision Recommendation

−4,217 −2.930 0.001 Reject H0 Data appears to 
be stationary, not 
supporting differencing

Table 1: ADF unit root test for the total electricity 
generation series
Test 
statistic

Critical 
value (5%)

P‑value Decision Recommendation

−0.789 −2.930 0.822 Fail to 
reject H0

Differencing is 
required to achieve 
stationarity

Table 3: Parameter estimates of the ARIMA (3,2,0) model
Type Coefficient Standard error t‑value P‑value
AR (1) −0.833 0.127 −6.54 0.000
AR (2) −0.887 0.135 −6.59 0.000
AR (3) −0.542 0.158 −3.42 0.001

Table 4: Results of the modified box‑pierce (Ljung‑Box) 
Chi‑square test
Lag Chi‑square Degrees of freedom (DF) P‑value
12 10.62 9 0.303
24 21.81 21 0.411
36 23.43 33 0.891
48 24.21 45 0.995
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Figure 3: Autocorrelation function, and partial autocorrelation function plots for total energy generation

Figure 4: Time series, autocorrelation function and partial autocorrelation function plots for differenced total energy generation

Table 5: ARIMA model specifications and diagnostic results for all electricity generation sources
Series Model Stationarity (ADF) Ljung‑Box P-values
Coal ARIMA (0,2,1) Stationary after 2nd diff. (P=0.000) 0.398; 0.689; 0.823; 0.985 (model adequate)
Natural gas ARIMA (2,2,1) Stationary after 2nd diff. (P=0.000) 0.723; 0.923; 0.993; 1.000 (model adequate)
Hydroelectric ARIMA (0,2,1) Stationary after 2nd diff. (P=0.000) 0.093; 0.513; 0.717; 0.970 (model adequate)
Renewable and waste ARIMA (0,2,3) Stationary after 2nd diff. (P=0.000) 0.947; 1.000; 1.000; 1.000 (model adequate)

The single-layer LSTM model architecture consists of a single 
LSTM layer with 50 hidden units, followed by a linear output 
layer. This model takes the input data, passes it directly through 
the LSTM layer to learn sequential dependencies, and then sends 
its output to a linear layer to generate a prediction.

The three-layer LSTM model architecture passes the input data 
sequentially through three different LSTM layers, each containing 
50 hidden units. Each layer takes the output of the previous layer 
as its input. The first layer learns fundamental patterns in the time 
series, such as trend and seasonality. The second layer uses the 
output of the first layer to learn more complex, abstract, and hidden 

patterns. The third layer learns the most complex and long-term 
dependencies to prepare the final output.

Both models were trained with the same data preparation 
and training parameters: MinMaxScaler, MSE loss, Adam 
optimization, and different epoch number (500, 1000, 1500, 2000, 
2500, 3000, 3500, and 4000). Model performance was evaluated 
by comparing the predictions on the test set with the actual values, 
using MAPE, RMSE, and MSE as evaluation metrics.

Future predictions (2025-2030) were made using a recursive 
process where the last known data point (2024) was used as the 
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input, and the model’s output for one step became the input for the 
next. All results were supported by visualization tools, with graphs 
presenting historical data, test predictions, and future forecasts.

Table 6 presents the results obtained from LSTM models with 
varying numbers of layers and epochs. Due to their inherent 
nature, LSTM models produce somewhat random results in each 
run. However, the success of the resulting solutions is significantly 
influenced by the dataset’s structure and the number of epochs. 
For the total energy production dataset, both LSTM models 
performed exceptionally well. The 3-layer LSTM, in particular, 
delivered a superior solution with a near-zero error rate at a higher 
epoch count. Regarding the coal dataset, which exhibits minor 
fluctuations over the years, the 1-layer LSTM model generally 
struggled to capture these details. In contrast, increasing the 
number of layers enabled the model to effectively capture these 
fluctuations, even at low epoch values. The 3-layer LSTM provided 
an excellent forecast with a very low, almost zero, error rate. The 
natural gas data presented a challenge for the LSTM model due 
to the limited number of data points. Nevertheless, an acceptable 
forecasting model was achieved with a MAPE error rate of 14%.

For the hydroelectric data, where minimal year-over-year variation 
was observed, the error rate increased as both the number of epochs 
and layers were raised. This outcome indicates that the models 
were overfitting, or memorizing the data rather than learning its 
underlying patterns. Consequently, for this specific dataset, a low 
number of layers and approximately 1,000 epochs were found to 
be most suitable. The data for renewable energy and waste initially 
showed a declining trend over the years, followed by a period of 
rapid growth. The 1-layer LSTM model was able to capture this 
volatile structure with a very low error rate at a high epoch count 
of 4,000. It’s important to note that the mean absolute percentage 
error (MAPE) could not be calculated for this dataset due to the 
presence of zero values. Furthermore, an examination of Table 6 
reveals that the solution time for LSTM models significantly 
increases with both the number of layers and the number of epochs. 
While a higher epoch count can be advantageous for capturing 
intricate details in datasets, it can also lead to overfitting when 
applied to datasets with fewer details or less complexity. This 
causes the algorithm to memorize the training data rather than 
generalize effectively to new data.

An analysis of Figure  5 indicates that the number of layers, 
the number of epochs, and the characteristics of the dataset all 
significantly influence the training time and performance of the 

model. The figure clearly demonstrates that for each dataset, 
increasing the number of LSTM layers leads to longer training 
and solution times. Furthermore, a linear increase between the 
number of epochs and the solution time is clearly observed for 
both the 1- and 3-layer LSTM models. The performance of the 
LSTM models varies depending on the structure of the dataset. 
It was observed that increasing the number of epochs and layers 
did not consistently improve the model’s performance. Therefore, 
accurately determining the optimal number of epochs and layers 
is crucial for achieving the best results. When examining the 
time-series data for total energy production, the 1-layer LSTM 
model yielded near-perfect results at 1,500 epochs, while the 
3-layer LSTM model performed best at 2,500 epochs. However,
it is understood that the slightly superior performance of the
3-layer LSTM model at this epoch count suggests a potential for
overfitting beyond this point.

In the case of electricity production data from coal, the 
performance of the 1-layer LSTM model progressively worsened 
as the number of epochs increased. In contrast, the 3-layer model 
occasionally found good results due to randomness and showed 
its best performance at 1,500 epochs, producing highly successful 
results with a near-zero MAPE value. However, the 1-layer model 
exhibited a strong overfitting tendency at 2,000 and higher epochs. 
While significant improvement was recorded at 1,000 and 1,500 
epochs, a sharp deterioration in RMSE and MAPE values occurred 
after 2,000 epochs.

For models developed to predict electricity production from 
natural gas, the best performance was achieved with the 3-layer 
model at 3,000 epochs (RMSE: 9293.28, MAPE: 14.09%). 
However, both models showed a tendency towards overfitting 
after 3,000 epochs. It is thus clear that using a higher number of 
epochs beyond 3,000 does not provide any advantage in terms of 
prediction performance.

When analyzing hydroelectric data, the 1-layer LSTM model 
was found to be more successful at capturing the dataset’s 
characteristics. It performed best at 1,000 epochs, with an RMSE 
of 1086.99 and a MAPE of 1.45%. However, it was observed that 
as the number of epochs increased, the 1-layer model shifted from 
learning to memorizing the data, leading to overfitting after 1,500 
epochs. Although the 3-layer model showed some improvement 
as the number of epochs increased, the 1-layer model’s success 
in capturing the dataset’s trend was more notable.

Table 6: LSTM models, epoch numbers, exectution time and the best RMSE and best MAPE
Energy source Model architecture Best epoch number Training time (s) Best RMSE Best MAPE (%)
Total 1‑Layer LSTM 1500 152.45 3,427.55 0.98

3‑Layer LSTM 2500 492.19 215.56 0.06
Coal 1‑Layer LSTM 500 46.79 28,720.66 23.39

3‑Layer LSTM 1500 288.70 168.06 0.14
Natural gas 1‑Layer LSTM 3500 320.47 17,904.90 27.15

3‑Layer LSTM 3000 559.81 9,293.28 14.09
Hydro 1‑Layer LSTM 1000 91.40 1,086.99 1.45

3‑Layer LSTM 3500 655.73 8,886.68 11.85
Renewable energy 1‑Layer LSTM 4000 366.41 1,900.35 ‑

3‑Layer LSTM 1000 185.08 22,775.49 ‑
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Figure 5: Analysis of long short-term memory model performance with epoch number, time and root mean squared error

A different situation was observed with the electricity production 
data from renewable energy and waste. The 1-layer model achieved 
its best result at 4,000 epochs (RMSE: 1900.35, MAPE: 2.23%). 
This is a rare occurrence, as the increased number of epochs 
unexpectedly led to better performance in this specific case.

Due to the relatively small size of the datasets, the LSTM 
model shows significant overfitting at large epoch values. The 
performance of the 3-layer LSTM was initially low, remained 
unstable during training, and resulted in high error rates. This 
highlights that a higher number of layers is not always suitable 
and that determining the appropriate number of layers and epochs 
based on the specific dataset is crucial. For the total energy, coal, 
and natural gas datasets, the optimal training point was found at 
relatively low epoch values, after which the model’s performance 
declined. During the LSTM training process, validation metrics 
were carefully monitored, and an appropriate stopping point was 
determined to prevent overfitting.

Table 7 presents the results obtained from LSTM models with 
varying numbers of layers and epochs. Due to their inherent 
nature, LSTM models produce somewhat random results in each 
run. However, the success of the resulting solutions is significantly 
influenced by the dataset’s structure and the number of epochs. 
For the total energy production dataset, both LSTM models 
performed exceptionally well. The 3-layer LSTM, in particular, 
delivered a superior solution with a near-zero error rate at a higher 
epoch count. Regarding the coal dataset, which exhibits minor 
fluctuations over the years, the 1-layer LSTM model generally 
struggled to capture these details. In contrast, increasing the 
number of layers enabled the model to effectively capture these 
fluctuations, even at low epoch values. The 3-layer LSTM provided 
an excellent forecast with a very low, almost zero, error rate. The 

natural gas data presented a challenge for the LSTM model due 
to the limited number of data points. Nevertheless, an acceptable 
forecasting model was achieved with a MAPE error rate of 14%.

For the hydroelectric data, where minimal year-over-year variation 
was observed, the error rate increased as both the number of epochs 
and layers were raised. This outcome indicates that the models 
were overfitting, or memorizing the data rather than learning its 
underlying patterns. Consequently, for this specific dataset, a low 
number of layers and approximately 1,000 epochs were found to 
be most suitable.

The data for renewable energy and waste initially showed a declining 
trend over the years, followed by a period of rapid growth. The 
1-layer LSTM model was able to capture this volatile structure with
a very low error rate at a high epoch count of 4,000. It’s important
to note that the mean absolute percentage error (MAPE) could not
be calculated for this dataset due to the presence of zero values.
Furthermore, an examination of Table 7 reveals that the solution
time for LSTM models significantly increases with both the number
of layers and the number of epochs. While a higher epoch count can 
be advantageous for capturing intricate details in datasets, it can also 
lead to overfitting when applied to datasets with fewer details or
less complexity. This causes the algorithm to memorize the training 
data rather than generalize effectively to new data.

4.3. Results of PSO-Optimized Holt’s Model
In this study, the Holt forecasting method was used to predict the 
future values of the data. However, the most critical point for this 
method is determining the correct α and β coefficients. To find 
the lowest possible MAPE, MSE, and RMSE values, the PSO 
algorithm, which has been shown to yield successful results in 
the literature, was used.
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The model was developed in Python. Model training and 
forecasting were carried out on a 64-bit operating system with 
an Intel Core i5-7200U processor running at 2.50 GHz and 8 GB 
of RAM. Using annual electricity production data from 1970 
to 2024, forecasting models were developed for five different 
energy sources for the future: Total, Coal, Natural Gas, Hydro, 
and Renewable Energy and Waste. The goal of the model is to 
produce future forecasts for the years 2025-2030 with the lowest 
MAPE, MSE, and RMSE values.

w,c1 and c2 parameters are crucial and the parameter values 
are w=0.7, c1=2.0, c2=2.0 which are standard choices in PSO 
literature and generally provide good performance across a wide 
range of optimization problems, which is why they were selected 
for this implementation in this study. The steps of particle swarm 
optimization (PSO) was used to optimize the parameters of the 
Holt forecasting model are shown below:
• Step 1. Initialization
• Step 2. Load dataset (Total, Coal, Hydro, Natural Gas,

Renewable&Waste.).
• Step 3. Initialize PSO (particles:100, 200, 300, 400, 500),

iterations:10, 100, 1000 α, β).
• Step 4. Evaluate fitness (MSE) for each particle.
• Step 5. Update pbest and gbest.
• Step 6. Iterate until stopping criterion.
• Step 7. Return optimal α, β.
• Step 8. Apply Holt forecasting with optimal parameters.
• Step 9. Compute error metrics (MSE, RMSE, MAPE).
• Step 10. Forecast future values (until 2030).
• Step 11. Save and visualize results.

Table  8 presents the optimal (α) and (β) coefficient values 
for various datasets, as determined by the Particle Swarm 
Optimization (PSO) algorithm used to optimize the Holt’s Linear 
trend model. The analysis section details the optimal α and β 
values found for specific initial population and iteration counts. 
The study investigated the effect of the initial population size 
(100, 200, 300, 400, and 500) and the number of iterations (10, 
100, and 1,000) on the quality of the solution. The quality was 
assessed by evaluating the RMSE values. The results presented 
below were obtained from three separate runs of the PSO-
optimized Holt’s Linear Trend model. Despite its stochastic 
nature, the model demonstrated a robust solution structure, 
consistently finding values that were nearly identical, with only 
negligibly small differences.

Upon examining the table, it was observed that the algorithm 
generally reached the optimal α and β values with 100 particles and 
100 iterations. Even an initial particle count of 10 was sufficient. 
Increasing the particle count up to 500 and the iteration count 
to 1,000 is unnecessary for the PSO algorithm in this specific 
problem and dataset. In fact, for the electricity generation data from 
renewable energy and waste, it was found that an initial population 
as low as 10 particles and 100 iterations was sufficient to reach 
the optimum solution. Running the algorithm beyond these values 
did not result in any change in its performance. Furthermore, the 
consistency of results across a wide range of population sizes (100-
500) indicates that the PSO is robust for this application and the
solution space likely has a well-defined global minimum of RMSE.

In Holt’s Linear Trend model, the α and β coefficients are 
smoothing parameters that control how the developed model 
responds to changes in the base level and trends in the time series 
data to provide the forecast with the lowest error. The α coefficient, 
also known as the Level Component, indicates that values closer 
to 1 mean more weight is given to the most recent observations 
in the model, resulting in greater sensitivity to rapid changes in 
the level. Conversely, values closer to 0 indicate that the model 
gives more weight to the historical average and responds more 
slowly to changes in the level. The Β (β) Coefficient determines 
how quickly the model responds to changes in the trend. Values 
closer to 1 indicate a rapid response to trend changes, while values 
closer to 0 indicate a slower response to trend changes and a more 
stable trend.

According to Table 8, the α value of 0.6 for the model predicting 
total electrical energy level shows that the model values both 
recent and past data. The model’s β value of 0.21 indicates that the 
trend component is quite stable and insensitive to sudden changes 
in the trend. For the electricity generation dataset from coal, a 
very high α value (0.9619) was found. This value indicates that 
the model is very sensitive to the most recent observations and 
that the level can change rapidly. However, the very low β value 
(0.0768) shows that the trend changes very slowly and is almost 
constant. For the natural gas energy dataset, the α value is low at 
0.1776. This indicates that the model relies more on the historical 
average. In contrast, the β value of 1.0000 means it responds 
instantly to changes in the trend. For the renewable energy and 
waste dataset, the α value is at the maximum of 1.0000, showing 
the model is based entirely on the most recent observations. The 
β value of 0.5856 indicates a rapid response to trend changes.
These parameter values show that the PSO algorithm optimized

Table 7: LSTM models, epoch numbers, exectution time and the best RMSE and best MAPE
Energy source Model architecture Best epoch number Training time (s) Best RMSE Best MAPE (%)
Total 1‑Layer LSTM 1500 152.45 3,427.55 0.98

3‑Layer LSTM 2500 492.19 215.56 0.06
Coal 1‑Layer LSTM 500 46.79 28,720.66 23.39

3‑Layer LSTM 1500 288.70 168.06 0.14
Natural gas 1‑Layer LSTM 3500 320.47 17,904.90 27.15

3‑Layer LSTM 3000 559.81 9,293.28 14.09
Hydro 1‑Layer LSTM 1000 91.40 1,086.99 1.45

3‑Layer LSTM 3500 655.73 8,886.68 11.85
Renewable energy 1‑Layer LSTM 4000 366.41 1,900.35 ‑

3‑Layer LSTM 1000 185.08 22,775.49 ‑
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Table 8: Convergence behavior and optimal parameters of the PSO algorithm for the holt linear trend model
Energy source Optimal α Optimal β Best RMSE Best 

MAPE (%)
RMSE ımprovement 
(10 vs. 100 Iter.)

Converges at 
(Iterations)

Min. effective 
Pop. size

Total 0.6010 0.2099 5,947.87 3,58 Negligible 100 100
Coal 0.9619 0.0768 4,694.86 9,01 Negligible 100 100
NaturaGas 0.1776 1.0000 12,036.9 24,20 Negligible 100 100
Hydro 0.3595 0.0708 7,888.31 19,95 Negligible 100 100
Renewable and wastes 1.0000 0.5856 1,281.28 ‑ None 10 100

Table 9: Forecasting errors for total electricity generation 
and its sources using ARIMA, PSO‑optimized holt, 
1‑Layer, and 3‑Layer LSTM methods
Electrıcıty 
source

Model MSE RMSE MAPE 
(%)

Total ARIMA (3,2,0) 34,982,567.00 5,914.60 3.12
1‑Layer LSTM 11,747,088.00 3,427.55 0.98
3‑Layer LSTM 46,463.31 215.56 0.06
PSO Opt. Holt 35,376,089.00 5,947.87 3.67

Coal ARIMA (1,2,0) 22,758,635.00 4,770.60 11.30
1‑Layer LSTM 824,957,318.00 28,720.66 23.39
3‑Layer LSTM 28,257.63 168.06 0.14
PSO Opt. Holt 22,044,703.00 4,694.86 8.92

Natural 
gas

ARIMA (2,2,1) 131,340,310.00 11,460.38 16.10
1‑Layer LSTM 320,616,181.00 17,904.90 27.15
3‑Layer LSTM 86,360,739.00 9,293.28 14.09
PSO Opt. Holt 144,886,656.00 12,036.90 24.19

Hydro ARIMA (0,2,1) 78,464,995.00 8,850.00 17.38
1‑Layer LSTM 1,181,560.00 1,086.99 1.45
3‑Layer LSTM 78,969,329.00 8,886.68 11.85
PSO Opt. Holt 62,238,981.00 7,888.31 18.47

Renewable 
and wastes

ARIMA (0,2,2) 1,308,641.00 1,143.96 –
1‑Layer LSTM 3,611,330.00 1,900.35 –
3‑Layer LSTM 518,456,657.00 22,775.49 –
PSO Opt. Holt 1,641,679.00 1,281.28 –

them according to the unique time series characteristics of each 
energy source dataset.

5. COMPARISON OF FORECASTING
MODELS

This section evaluates the forecasting performance of the 
developed models. Model comparisons were conducted based 
on MSE, RMSE and MAPE errors across five distinct electricity 
energy production datasets. In order to enhance the reliability of 
the results for LSTM and PSO Optimised Holt models, each was 
run multiple times, and the average MAPE, RMSE, and MSE 
values were reported.

Table 9 provided a comprehensive comparison of the forecasting 
performance of different time-series models ARIMA, 1-Layer 
LSTM, 3-Layer LSTM, and PSO-Optimized Holt method for 
Turkey’s total electricity generation as well as for Coal, Natural 
Gas, Hydroelectric, and Renewable and Waste energy sources. The 
performance metrics used, MSE, RMSE, and MAPE, objectively 
indicated the accuracy levels of the models. In the table, values 
highlighted in bold represented the best-performing method for 
each energy source. For the Renewable and Waste category, MAPE 
values could not be calculated due to the presence of zero values 
in the dataset.

The results indicated that the 3-Layer LSTM model demonstrated 
a clear superiority over the other methods for total electricity 
generation (MSE = 46,463.31; MAPE = 0.06). Similarly, for 
coal-based generation, the 3-Layer LSTM model stood out with 
a very low error rate. For natural gas, although the 3-Layer 
LSTM model provided the lowest MSE, the MAPE was found 
to be 14.09%, suggesting that this energy source was relatively 
more difficult to predict. In the case of hydroelectric generation, 
the 1-Layer LSTM model achieved the lowest MSE and MAPE 
(1.45%), distinguishing itself from the other methods. In contrast, 
the ARIMA model exhibited the best performance for renewable 
and waste-based energy sources.

Overall, it was observed that deep learning-based LSTM 
methods demonstrated strong performance in capturing the 
complex dynamics of electricity generation. At the same time, 
it is noteworthy that traditional methods such as ARIMA were 
still able to achieve high accuracy for certain energy types (e.g., 
renewable and waste). The fact that the MAPE values for all 
methods remained below 5% confirmed that the models generally 
provided acceptable and highly accurate forecasts. These findings 
indicate that the choice of forecasting method in electricity 

generation studies may vary depending on the data structure and 
the characteristics of the energy source.

Based on the examination of Table 10, the forecast values for the 
period between 2025 and 2030 were obtained using the method 
that produced the lowest error value. The findings provide valuable 
insights into the prospective dynamics of the national energy 
portfolio. The results indicate that total electricity generation 
is expected to follow a steady and significant upward trajectory 
throughout this period. Specifically, according to the forecasts 
obtained from the 3-Layer LSTM model, total production is 
projected to reach 369,155 GWh in 2025 and to increase to 439,104 
GWh by 2030. This upward trend can be interpreted as an indicator 
of expanding energy investments.

When analyzing the distribution of sub-energy sources, coal 
and hydroelectric power are projected to maintain a relatively 
stable trajectory over the forecast horizon. Specifically, coal-
based electricity generation is expected to decline modestly, 
from 122,214 GWh in 2025 to 118,938 GWh in 2030, suggesting 
that reliance on coal will not intensify and will likely remain at 
current levels. Hydroelectric production, while subject to minor 
fluctuations driven by climatic conditions (e.g., the temporary 
decline anticipated in 2026), is forecasted to remain broadly stable 
at around 70,000 GWh.
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In contrast, the forecast values for natural gas and renewable energy 
highlight their role as the primary drivers of the projected increase 
in total electricity generation. Natural gas output is anticipated 
to grow from 101,029 GWh in 2025 to 109,878 GWh in 2030, 
reflecting considerable growth potential. This trend underscores 
the likelihood that natural gas will function as a transitional energy 
source in the coming years, offering a comparatively cleaner fossil 
fuel alternative to coal. The projections for renewable energy 
and energy derived from waste (Table 9) reveal the most striking 
development: an exceptionally robust and sustained growth 
pattern. Total generation from these sources is expected to expand 
from 92,431 GWh in 2025 to 128,927 GWh in 2030, marking the 
fastest and most consistent increase among all electricity sources. 
These findings clearly indicate a structural shift in energy policies 
and investments toward renewable resources, pointing to a rapid 
expansion of capacity in this sector.

6. CONCLUSION

In this study, a multi-methodological approach was presented 
for forecasting Turkey’s electricity generation. By analyzing 
electricity production data from 1970 to 2024, forecasts were made 
for total electricity generation as well as for individual energy 
sources Coal, Natural Gas, Hydroelectric, Renewable, and Waste-
based energy. The main objective of the study is to compare the 
forecasting performance of traditional statistical methods such as 
the Box-Jenkins ARIMA model, optimization-based approaches 
like the PSO-optimized Holt Linear Trend method, and modern 
deep learning algorithms (1-layer and 3-layer LSTM models), 
and to comprehensively reveal Turkey’s projected electricity 
generation progress up to 2030. This research holds significant 
importance for energy policy-making, investment planning, and 
the establishment of sustainability goals.

The overall findings of the study indicate that model performance 
is highly dependent on the dataset, demonstrating that the best-
performing model varies according to the structure of the data. The 
results show that each methodology exhibits different performance 
levels depending on the unique characteristics (trend, data volume) 
of the dataset corresponding to each electricity source.

For Total Electricity Generation, Coal, and Natural Gas 
production forecasts, the 3-Layer LSTM model achieved the 
lowest error metrics (MSE, RMSE, and MAPE) due to its ability 
to capture complex and nonlinear dynamics in the data, thereby 
demonstrating the best performance. In the case of Hydroelectric 
power generation, which has a relatively simpler structure, the 
1-Layer LSTM model provided the most successful results. This
finding suggests that simpler architectures can be sufficient for
less volatile series, and that model complexity should not be

unnecessarily increased. For Renewable Energy and Waste-based 
electricity generation, the ARIMA method proved to be the most 
effective, as it best modeled the initially decreasing but later 
exponentially increasing trend observed in recent years. This 
result confirms that traditional time-series methods can still be 
effectively utilized for datasets exhibiting strong and consistent 
trends. Although the PSO-optimized Holt Linear Trend method 
did not achieve the best performance in any specific category, it 
consistently produced reliable and acceptable forecasts across 
all categories, proving to be a stable and dependable alternative 
method.

The policy and practical implications of this study were highly 
significant. Based on model-based forecasts, a steady increase in 
Turkey’s total electricity generation is projected for the 2025–2030 
period. However, to prevent this growth from lagging behind the 
rate of consumption increase projected in the National Energy 
Plan, it is essential to accelerate investments in energy production 
capacity. The sharp upward trend forecasted for renewable energy 
generation support the view that the efforts in this area were 
promising. Furthermore, the continued increase in natural gas-
based generation suggests that natural gas will maintain its role as a 
“transition fuel”, serving as a cleaner fossil fuel alternative to coal.

The main limitation of this study was that the forecasts rely solely 
on historical annual data trends. Future uncertainties such as policy 
changes, the commissioning of nuclear power plants, technological 
advancements, global economic crises, or climate events may 
affect the accuracy of these forecasts. Such external factors could 
potentially constrain the future performance of the model.

In conclusion, this study strongly emphasizes that there is 
no single universal model for energy forecasting. To achieve 
optimal forecasting performance, it is crucial to select the model 
in accordance with the historical data structure and dynamics of 
each energy source and to perform hyperparameter optimization, 
especially in deep learning models. This research provides a solid 
foundation for decision-makers and energy planners to employ 
a hybrid modeling framework capable of generating reliable 
forecasts under different scenarios. Ultimately, this study not only 
provides concrete projections for the future trajectory of Turkey’s 
electricity generation, but also makes a valuable contribution to the 
methodological discourse in the field of forecasting modeling. The 
findings reaffirm the critical importance of accurate planning in 
achieving Turkey’s energy independence and sustainability goals.

The main limitation of this study was that the forecasts rely solely 
on historical annual data trends. Future uncertainties such as policy 
changes, the commissioning of nuclear power plants, technological 
advancements, global economic crises, or climate events may 

Tablo 10: Forecasts for the energy datasets for 2025‑2030 in gwh using the method with the lowest error value
Resource (Method)\Year 2024* 2025 2026 2027 2028 2029 2030
Total (3‑Layer LSTM) 348 900 369 155 386 801 396 781 406 681 421 568 439 104
Coal (3‑Layer LSTM) 122813 122 214 120 762 119 280 118 659 118 636 118 938
Natural gas (3‑Layer LSTM) 65942 101 029 98 412 98 360 96 273 99 019 109 878
Hyro (1‑Layer LSTM) 75014 76018 68039 70368 69197 72166 74133
Renewable ENG and waste (ARIMA [0, 2, 2]) 85132 92 431 99 730 107 029 114 328 121 628 128 927
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affect the accuracy of these forecasts. Such external factors could 
potentially constrain the future performance of the model.

Future research could focus on developing a more comprehensive 
forecasting framework by integrating these models with economic, 
demographic, and climatic variables. To improve the accuracy of 
forecasts, external factors such as renewable energy investment 
levels, GDP, population growth, weather data, reservoir water 
levels, natural gas prices, and coal import/export volumes can 
be incorporated into the models. Parameter optimization of Holt 
or other time-series models could be explored using different 
metaheuristic algorithms (e.g., Genetic Algorithms, Differential 
Evolution). Utilizing high-frequency data (daily or weekly) 
would allow for a more precise capture of seasonal and cyclical 
patterns. Moreover, constructing hybrid forecasting models that 
combine the strengths of different methods could further enhance 
prediction accuracy. Investigating the performance of more 
advanced artificial intelligence-based architectures would also 
make a valuable contribution to this field.
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