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ABSTRACT

This study examines energy production forecasting in Turkey through advanced time series methodologies. The analysis, conducted on annual data
spanning the period 1970-2024, encompassed not only aggregate electricity generation but also disaggregated production from coal, natural gas,
hydro, and renewable sources, including waste. The modeling framework integrated both conventional and machine learning-based techniques,
specifically ARIMA, single-layer and three-layer LSTM architectures, and Holt’s linear method optimized via particle swarm optimization (PSO).
Model performance was assessed using widely recognized error metrics, namely mean absolute percentage error (MAPE), mean squared error (MSE),
and root mean squared error (RMSE). The empirical results demonstrated that the three-layer LSTM model achieved the lowest error values for total,
coal, and hydro-based generation, whereas the single-layer LSTM exhibited superior accuracy for natural gas. In contrast, the traditional ARIMA model
yielded the most precise forecasts for renewable and waste-based energy. These outcomes underscore that while deep learning models such as LSTM
are capable of capturing intricate temporal dynamics when appropriately tuned, conventional models like ARIMA continue to demonstrate robust
predictive capability for specific datasets. Overall, the findings confirm that all four approaches provide an acceptable level of forecasting accuracy.

Keywords: Turkey Electric Production Forecast, Long Short-Term Memory, Autoregressive Integrated Moving Average, Holt Method, Particle
Swarm Optimization, Time Series Forecasting
JEL Classifications: Q47, C45, C53, C61

1. INTRODUCTION

Electricity production is a key driver of economic growth, energy
security, and environmental sustainability. For rapidly developing
countries like Turkey, expanding investments in electricity
generation is essential to meet rising energy demands while
fulfilling ecological commitments. As the electricity generation
sector plays a central role in achieving net-zero carbon targets, it
is critical to support the investment toward sustainable, reliable,
and efficient energy systems (Ren et al., 2024). Furthermore,
prioritizing renewable and environmentally friendly energy
technologies not only enhances economic resilience but also
preserves environmental integrity.

Turkey’s growing population and expanding economy have
accelerated electricity demand, making strategic generation
planning a priority to support economic development. Electricity
production is not only a fundamental production factor but also
crucial for energy security and environmental sustainability (Lucia
and Grisolia, 2017). Increasing global warming and ecological
pollution pressures have further emphasized the importance
of renewable energy investments. The long-term relationship
between renewable energy production and economic performance
highlights the decisive role of energy efficiency in national
development (Inglesi-Lotz, 2016). In economies where fossil
fuels remain dominant, such as Turkey, implementing renewable
energy technologies is indispensable for meeting growing energy
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demand while mitigating environmental pollution (Paul and
Uhomoibhi, 2012).

Countries with high solar irradiation, like Turkey, benefit from
promoting renewable energy to enhance energy security, generate
employment, and support sustainable growth. However, the
intermittent nature of renewable sources such as solar and wind
causes variability that can challenge grid stability and reliability,
making accurate electricity production forecasting essential
(Notton et al., 2018). Accurate forecasting enables improved
planning and management, reducing energy losses and enhancing
operational efficiency (Voloshko et al., 2019). Governments
investing in forecasting capabilities can more effectively meet
rising energy demand while adhering to global emission reduction
commitments (Owusu and Asumadu-Sarkodie, 2016).

Forecasting electricity production in Turkey is critical due to the
need for sustainable development policies, effective management
of rising energy demand, and integration of renewable energy into
the grid (Y1lmaz, 2023). Increasing electricity demand, combined
with insufficient installed capacity, creates a significant supply-
demand imbalance, which poses economic, environmental, and
strategic risks, especially for a country dependent on energy
imports (Kiran et al., 2012). Accurate forecasts are essential
for energy policy and capacity planning, supporting transitions
to renewable energy, reducing greenhouse gas emissions, and
enhancing energy independence (Kurt et al., 2022). Due to limited
electricity storage, production must match consumption, requiring
precise forecasting models to minimize economic losses from
over- or under-production (Oscar, 2021).

In light of the increasing importance of reliable energy forecasting
for policy and planning, this study aims to develop a comprehensive
modeling framework for Turkey’s electricity generation covering
the period 1970-2024. The analysis incorporates both aggregate
electricity production and disaggregated outputs from coal,
natural gas, hydro, and renewable and waste sources. To this end,
a comparative approach is employed that combines traditional
time series techniques (ARIMA), machine learning methods
(single- and three-layer LSTM), and an optimization-based
exponential smoothing model (Holt’s linear method optimized
with Particle Swarm Optimization). By evaluating the models
through multiple performance metrics (MAPE, MSE, RMSE), the
study seeks to identify the most effective forecasting strategies for
different energy sources. The findings contribute to the literature by
demonstrating the complementary strengths of classical and deep
learning-based approaches in capturing the dynamics of Turkey’s
energy sector. Moreover, this comprehensive approach aims to
generate more reliable and robust forecasts, which are essential
for ensuring energy supply security and accelerating the transition
toward renewable resources.

2. LITERATURE REVIEW

The increasing importance of electrical energy has led to a
corresponding rise in studies concerning the Turkish electricity
sector. The existing literature contains numerous forecasting
models that analyze critical factors such as demand predictions,

future scenarios for renewable energy production, and the impact
of pricing and policy. A review of previous work reveals a recent
surge in studies that employ machine learning and artificial
intelligence methods, driven by the growing complexity of
electricity generation and consumption, the inherent difficulties
of forecasting within the electricity market, and the diversification
of statistical, machine learning, and Al methodologies developed
to address these challenges. Another fundamental reason for this
increase is the ever-growing significance of electrical energy,
which is critical for national security and aligns with countries’
social and economic development strategies. Accurate forecasting
of electricity production is paramount, as energy storage is a
complex and costly process.

The literature on energy production forecasting in Tiirkiye
is characterized by a blend of statistical, computational, and
economic methods aimed at understanding and predicting
the country’s energy demand dynamics. Various studies have
utilized advanced forecasting techniques to provide insights into
electricity production trends within Tiirkiye’s rapidly evolving
energy landscape.

Among traditional statistical methods, Haliloglu and Tutu (2018)
successfully employed the SARIMA (seasonal autoregressive
mtegrated moving average) model to forecast daily electricity
demand in Tiirkiye, achieving a remarkably low error rate of
approximately 1% (Haliloglu and Tutu, 2018). Other studies
have combined seasonal analysis with Artificial Neural Networks
(ANN) to forecast monthly sectoral electricity consumption. Akay
and Atak (2007) developed a model using the Grey Prediction
method, integrated with a rolling mechanism, to forecast total
and industrial electricity consumption (Akay and Atak, 2007).
Hamzagebi (2007) applied ANNs for sectoral net consumption
forecasting and noted their high success rate with non-linear data,
highlighting their suitability for such tasks (Hamzagebi, 2007).
Similarly, the Seasonal ANN model, explored by Hamzagebi et al.
(2019), was found to be highly accurate for monthly predictions
(Hamzagebi et al., 2019). Using data from 1986 to 2013 for 21
regional distribution companies in Turkey, the study employs
ARIMA-based time series, panel, and spatial panel data models
to forecast electricity demand, finding that the pooled panel
model provides the best performance according to RMSE and
highlighting the importance of regional interactions and spatial
dependencies in energy planning and policy (Akarsu, 2017).

Acar et al. (2021) utilized Seasonal ARIMA for monthly
forecasts, providing a critical solution for mid-term planning
(Acaretal., 2021). In his 2016 study, Giinay used an ANN model
with socio-economic and climatic variables as inputs to predict
that Tiirkiye’s annual total electricity demand would double by
2028 (Giinay, 2016). Kankal and Uzlu (2017) demonstrated that
an ANN model enhanced with the Teaching-Learning-Based
Optimization (TLBO) algorithm significantly outperformed other
ANN structures by reducing error rates. This work provided an
effective method for long-term electricity demand forecasting
using historical consumption data and socio-economic indicators
(Kankal and Uzlu, 2017). More recently, Saglam et al. (2023) used
Medium-Scale Neural Networks (MNN) to forecast Tiirkiye’s
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electricity needs up to 2040 (Saglam et al., 2023). Other advanced
techniques include the hybrid model developed by Kaytez (2020),
which combined ARIMA and least squares support vector machine
(LSSVM) methods for net electricity consumption forecasting
(Kaytez, 2020). Additionally, specific studies, such as the one by
Ozbay and Dalcali (2021), have focused on unique periods like
the COVID-19 pandemic, where they developed an ANN model
for short-term forecasting of electricity consumption in Tiirkiye
(Ozbay and Dalcali, 2021).

One of the most significant and increasingly important areas of
research is forecasting for renewable energy production. Utkucan
Sahin (2020) developed an advanced fractional nonlinear grey
bernoulli model (FANGBM) to forecast that Tirkiye’s total
renewable installed capacity and electricity production will
continue to increase significantly until 2030, though the share
of hydropower is expected to decline (Sahin, 2020). Sogukpinar
etal. (2023) examined the impact of renewable energy policies on
the entire energy system, revealing that an increase in renewable
installed capacity has a significant negative effect on long-term
sectoral electricity demand (Sogukpinar et al., 2023). This
suggests that renewable energy policies promote efficiency and
reduce overall consumption, thereby contributing to economic
and environmental sustainability. Other specialized studies on
renewable energy include Yildizhan and Sivrioglu (2015) and
Yiizer (2023), who investigated the future of solar energy capacity
(Yildizhan and Sivrioglu, 2015). Ertekin (2020) proposed an
hour-based ensemble machine learning method for solar power
prediction, which is crucial for grid integration (Ertekin, 2020).

In terms of forecasting studies on emissions, pricing, and economic
impact, Bakay and Agbulut (2021) used deep learning, support
vector machines, and ANN algorithms to predict greenhouse gas
emissions from electricity production, finding that CO, constitutes
the largest share (Bakay and Agbulut, 2021). On the market side,
Ugurlu et al. (2018) found that the SARIMA model was the most
effective for forecasting hourly prices in Tiirkiye’s Day-Ahead
Electricity Market (Ugurlu et al., 2018). The broader economic
interaction was explored by Akdag and Ekici (2022), who analyzed
the impact of energy production and consumption on Tiirkiye’s
industrial index (Akdag and Ekici, 2022).

Current research continues to push the boundaries of forecasting
accuracy and application areas, with a growing focus on advanced
neural network studies. Bulut (2024) utilized long short-term
memory (LSTM) for both consumption and production forecasting
related to hydroelectric power (Bulut, 2024). Bigkin and Cifci
(2021) also employed LSTM, as well as more advanced deep
learning models like gated recurrent unit (GRU) networks
(Biskin and Cifgi, 2021). Moreover, Bulut (2024) and others are
increasingly focusing on multi-feature production sources, such
as assessing the potential for energy recovery from wastewater
treatment plants.

The body of work on electricity production and consumption
forecasting in Tiirkiye is comprehensive and encompasses a wide
range of methodologies. These studies demonstrate a clear evolution
from traditional statistical methods to highly sophisticated artificial

intelligence and machine learning models, which consistently
provide superior accuracy by capturing the complex, non-linear
dynamics of the energy system. Previous research has addressed
a broad spectrum of needs, ranging from long-term, strategic
forecasts that guide infrastructure investment and national energy
policy to short-term, high-frequency predictions essential for daily
grid stability and economic operation.

3. MATERIALS AND METHODS

Due to the inherently nonlinear and dynamic characteristics of
electricity generation data, the selection of forecasting methods
becomes a critical issue. When choosing an appropriate method,
factors such as the statistical structure of the data, the amount of
data available, the interpretability of the model, and the forecasting
horizon are taken into consideration. While traditional models
such as ARIMA or the Holt model can provide satisfactory results
for simple and short-term series, deep learning-based approaches
tend to perform better in cases that involve complex structures or
require long-term forecasts. Traditional methods often fall short in
capturing the complex dynamics of the data, whereas approaches
such as long short-term memory (LSTM) networks can achieve
higher accuracy (Zhang and Li, 2022)

In this regard, in this study, it was aimed to forecast Turkey’s
electricity generation sources until 2030 but also to compare the
performance of different method, ARIMA, Holt’s linear method
optimized with particle swarm optimization (PSO), and single and
multi-layer LSTM models in order to reveal which approaches are
more effective in handling varying data structures. By combining
classical statistical techniques with advanced machine learning
models, the study provided a comprehensive framework that
justifies the selection of these methods for analyzing Turkey’s
electricity production dynamics.

3.1. Materials

In this study, annual data spanning the years 1970-2024 was used

to forecast Turkey’s long-term electricity production potential. The

accuracy and reliability of the data were of critical importance for
the validity of the study’s findings. For this reason, the data was
compiled from two main reliable sources:

e Annual electricity production data for the years 1970-2023
was obtained from the official database of the Turkish
Statistical Institute (Institute, 2025)

e The data for the year 2024 was obtained from the public
sources of the Turkish Republic Ministry of Energy and
Natural Resources (Resources, 2025).

The analyzed datasets were classified on an annual basis as
electricity production data obtained from the main sources
under the headings coal, natural gas, hydroelectric (Hydro), and
renewable energy and wastes. Additionally, there was also data
on the total electricity production obtained from all these sources
on a yearly basis.

Figure 1 illustrated Turkey’s annual total electricity generation
and its subgroups in GWh over the period 1970-2024. When
Figure 1 is examined, it was seen that the overall trend in electricity
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Figure 1: Electricity production of Turkey from 1970 to 2024
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production began with a stable yet relatively moderate increase
from the early 1970s to the late 1980s. This growth was most
likely shaped by gradual capacity expansions and relatively
limited industrial development during that period. From the late
1990s to the mid-2010s, however, Turkey’s energy demand rose
sharply, increasing nearly six-fold between 1970 and 2010, with
electricity demand following a similar trajectory. In 2010, the
total installed capacity reached 49,524 MW, generating 211,208
GWh of electricity; this figure was four times the production
level recorded in 1990 (Atilgan and Azapagic, 2016). After 2010,
the upward trend became even more pronounced, reflecting
substantial investments in electricity generation infrastructure as
well as diversification of the energy mix. A slight deceleration and
fluctuations observed around 2018-2020 can be associated with
the impacts of the COVID-19 pandemic on the economy. Overall,
from a time series perspective, the dataset exhibits a persistent
upward trend with only short-term deviations.

Turkey’s annual electricity generation dataset was composed of
five main subgroups: Coal, Natural Gas, Liquid Fuels, Hydro
(Hydroelectric), and Renewable Energy and Wastes. When Figure 1
was analyzed, it was observed that electricity generation from coal
followed an increasing trend throughout the 1970-2024 period,
maintaining a significant share in total electricity production.
Despite its importance in Turkey’s electricity mix, coal is also
one of the main sources of greenhouse gas emissions, contributing
heavily to air pollution and global climate change. Coal-based
electricity generation in Turkey showed a rapid increase until 2020,
partly due to COVID-19 and environmental effects, yet it displayed
a more moderate upward trend towards 2024.

Another key source of electricity generation for Turkey is natural
gas. As Figure 1 indicates, electricity production from natural gas
began in 1985. Since it is largely dependent on imports, natural
gas generation has shown fluctuations over the years due to
policies, pricing strategies, and the effects of external dependency.
The highest utilization rates were reached in 2017 and 2022, but
following the COVID-19 pandemic, the sharp increase in natural
gas-based generation gave way to a more stable pattern.

With its vast geography, mild climate, and rich river basins,
Turkey is also one of the countries with significant potential

in hydroelectric generation. Electricity production from hydro
increased rapidly with the construction of hydroelectric power
plants. Nevertheless, hydroelectric output has been highly
influenced by natural factors (precipitation and water regime),
technical factors (turbine efficiency and maintenance), and
environmental-political factors (water management and energy
policies). Consequently, hydroelectric generation has stagnated
after 2017.

The Renewable Energy and Wastes subgroup refers to electricity
generated from renewable sources such as solar, wind, and
biomass, as well as from waste incineration plants. In recent years,
this category has shown a marked upward trend. While electricity
generation from renewables declined and nearly approached zero
between 1970 and 1985, it started to rise again after 1985, with
a strong acceleration particularly in the last decade. The main
drivers behind this growth include increasing environmental
awareness, energy diversification policies, technological progress,
and international influences.

Finally, Liquid Fuels, which had been used for electricity
generation in Turkey since 1970, displayed a steady downward
trend and has significantly declined over the last decade. By
2024, liquid fuels were no longer used for electricity generation.
Therefore, as it was considered that this category would not
provide a meaningful contribution to future forecasting models,
the data on liquid fuels was excluded from the analysis.

3.2. Methods

Comparing different forecasting methods is crucial for analyzing
the accuracy of their results. In this study, while each data series
generally showed an increasing trend, they also exhibited distinct
developments over the years. Therefore, it is more appropriate to
select a suitable method for each dataset and perform the future
forecast using that method.

Studies in the literature reveals that traditional time series
models, such as the Box-Jenkins ARIMA method, are among
the most widely used. In addition, Holt’s method, a type of
exponential smoothing, has been shown to be successful with
data that has a linear trend but no seasonality, which is the case
with the data in this study. Deep learning-based models like
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LSTM provide higher accuracy for data that is nonlinear and
contains long-term dependencies (Al-hamid and Savas, 2023).
Because accurate analysis of total electricity production and
its sub-components was necessary for this study, a forecasting
analysis was conducted on all datasets using four different
methods, as this is a forecasting problem that requires analysis
with multiple approaches. In this study, the Box-Jenkins
ARIMA, two different LSTM models, and the Holt linear trend
method optimized with PSO were used.

3.2.1. ARIMA model

The development and implementation of ARIMA (autoregressive
integrated moving average) models as forecasting tools is
commonly referred to as the Box-Jenkins methodology. This
approach to time series analysis involves identifying an appropriate
ARIMA(p,d,q) model that sufficiently captures the underlying
stochastic process generating the observed data. The methodology
consists of three fundamental stages: Model identification,
parameter estimation and diagnostic checking, followed by
forecasting (Dritsakis and Klazoglou, 2018).

The process begins with determining whether the time series is
stationary. If the series exhibits non-stationarity, it is transformed
through differencing—first-order, second-order, or higher—until
stationarity is achieved. The degree of differencing required (d)
is determined during this phase, supported by statistical tests for
unit roots, such as the Augmented Dickey-Fuller (ADF) test or
autocorrelation function (ACF). If autocorrelations start high
and decline slowly, then series is nonstationary, and should be
differenced (Dobre and Alexandru, 2008)

Once stationarity have been addressed, the next step is to
identify the appropriate order of the autoregressive (p) and
moving average (p) components. This is typically achieved by
analyzing the patterns in the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the series. The sample
autocorrelation plot and the sample partial autocorrelation plot
are compared to the theoretical behaviour of these plots when the
order is known (Hanke and Winchern, 2014:400). After identifying
the model, the parameters for the AR terms and the MA terms are
estimated. Box-Jenkins models are typically estimated using either
the least squares method or maximum likelihood (MLE) method
(Dobre and Alexandru, 2008).

The ARIMA model is expressed as the following mathematical
formula 1 (Buhan et al., 2022).

Z=3+¢,Z,+9, Zt-2+'"+¢p Zp-l +te0,¢,70,¢,—. '7eq €

()
Where Z denotes the forecasted value at the time ¢ and Z_
- L, TEpresent the observed values from previous times, with
p indicating the order of the AR component of the model. The
term ¢ is a constant that is defined by the AR coefficients. The
parameters ¢ .. .,¢p are the AR coefficients, while 61.,6q, are the
MA coefficients. The terms €,,...€_ correspond to the residuals
with ¢ denoting the order of the MA components.

Finally, the diagnostic checking stage involves assessing whether
the residuals of the estimated model behave as white noise,
confirming that the model adequately captures the structure of
the time series. In this case, the residuals should not exhibit
autocorrelation. If the model fails diagnostic tests, modifications
are made, and the previous steps are repeated to identify a more
suitable model (Dritsakis and Klazoglou, 2018).

To assess whether the residuals from the fitted ARIMA model
exhibit white noise behavior, the Ljung-Box Q-test is commonly
employed. This diagnostic test evaluates whether a group of
autocorrelations in the residuals significantly deviates from zero.
A low P-value associated with the Q statistic (e.g., P < 0.05)
suggests that the model fails to adequately capture the underlying
structure of the data. In such cases, the analyst should consider
specifying a new or modified model and continue the modeling
process until a satisfactory fit is achieved (Meyr, 2014).

3.2.2. The Istm (long short-term memory) methods

The LSTM (long short-term memory) method is a specialized
type of RNN (recurrent neural network) model. While LSTM
networks share a similar architecture with recurrent neural
networks, they represent a unique class of artificial neural networks
that offer significant advantages. Standard RNNs, which use the
output from a previous step as the input for the next, progress in
sequential steps and are limited by their short-term memory. This
characteristic makes them effective for addressing sequential data
problems like natural language processing and time series analysis.
However, due to their limitations in learning and retaining long-
term dependencies, crucial information can often be lost early in
the network’s processing.

The LSTM architecture is specifically designed to overcome
these challenging loss scenarios found in traditional RNNs. The
design of LSTM cells incorporates “gates” that regulate and
control the flow of information. Within this structure, the forget
gate determines which information within the cell state should
be retained or discarded, while the input gate decides how much
of the new information will be added to the cell. The cell state is
then updated based on these decisions, ensuring that information
is stored in long-term memory. Finally, the output gate generates
the hidden state (ht) based on the updated cell state, and this state
is passed as input to the next step.

The dynamic state of a long short-term memory (LSTM) cell is
defined by four fundamental components: The input gate (i), the
forget gate (f), the output gate (o), and the cell state (c ). These
gates are formulated using the sigmoid (6) and hyperbolic tangent
(tanh) activation functions, incorporating the previous hidden
state (h _,) and the current input vector (x,) (Ran et al., 2019). The
parameters are represented by the matrices and vectors W and
b. These relationships are expressed by the following formulas:

i=0(Wh_,x1+b, )
¢, =tanh (W [h _,x]+Db) 3)
f=0(W,[h,x]+b) “4)
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Ct = ft * thl + it * Et (5)
Ol =0 (Wo [ht-l’ Xt] * bo) (6)
h, = o, ®tanh/i(c) (7)

3.2.3. The PSO optimised Holt linear trend method

The Holt’s method, developed by Charles Holt in the 1950s, is a
variation of the exponential smoothing method that considers both
the level and the trend. This method is particularly effective for
time series where the underlying data show a consistent upward or
downward movement over time (Holt, 2004). Unlike the ARIMA
method, the Holt Linear Trend method does not require the data
to be stationary (Tak et al., 2021). Furthermore, the Holt Linear
Trend method inplace of Holt Winters method was used in this
study because the data were annual, showed an overall increasing
trend over the years, and seasonal analysis could not be performed
on annual data. The formulas (8), (9), (10) for the forecast, level,
and trend for the Holt’s linear trend method are as follows:

Yien =My +hx, 3
m, = oy, + (1-a) (m_, + 7)) ©)
b, =B (m-m )+ (1-P) (z.) (10)

The forecast for the series at time 7 is denoted by p,_,,, . The level
of the series at time ¢ is represented by m, while its trend is b.. The
parameter o is the level smoothing parameter, and {3 is the trend
smoothing parameter, both of which have values between 0 and
1 (Yapar et al., 2018).

Holt’s linear trend method uses two smoothing parameters, o (the
level coefficient) and B (the trend coefficient). Selecting optimal
values for these coefficients is of critical importance, as incorrect
choices can lead to issues of overfitting or underfitting. These
parameters can take on values between 0 and 1, and the infinite
number of possible values makes the solution complex. The fact
that there are infinite coefficient possibilities between 0 and 1,
and finding which coefficient will yield the best result, is a type
of optimization problem. Traditional trial-and-error methods are
inefficient, especially with large datasets, which is why automatic
optimization techniques are needed (Pangestu and Andayani,
2023). For this reason, modern heuristic methods that provide
faster and more accurate results are used today.

The studies in the literature shows that Particle Swarm
Optimization (PSO) stands out as an effective meta-heuristic
method for optimizing Holt’s smoothing parameters. For instance,
Hakimah and Kurniawan (2020) combined PSO with the damped
trend exponential smoothing method to achieve better results in
exchange rate forecasting compared to manual parameter selection
(Hakimah and Kurniawan, 2020). Similarly, it was demonstrated
significant improvements in construction cost index forecasting
by integrating PSO with the Holt-Winters smoothing method
(Ebesek and Ebesek, 2023). These findings suggest that PSO
offers a distinct advantage over static optimization methods for
the dynamic improvement of parameters in time series models. In

the context of the Holt linear trend method, PSO minimizes error
metrics by exploring different (o, §) combinations.

Particle swarm optimization (PSO) is a computational technique
inspired by the social behavior patterns of bird flocks or similar
swarms, where individuals (particles) collectively explore the
solution space. Candidate solutions are guided towards the
best solution in high-dimensional solution spaces by being
updated at each step according to their own best position and
the swarm’s best position (Kennedy and Eberhart, 1995). This
mechanism is formulated to be compatible with changes in
the velocity and position of birds and is applied to various
optimization problems.

Particle swarm optimization (PSO) has been widely used due
to its simplicity, efficiency, and broad applicability (Wu et al.,
2022). The versatility and simplicity of PSO enable its application
across various fields such as engineering optimization problems,
machine learning, and economics (Jiang et al., 2020). The inherent
parallelism of the algorithm allows for a robust exploration of the
solution space, facilitating efficient convergence toward optimal
or near-optimal solutions.

The algorithm consists of several iterative steps designed
to improve solution accuracy. Considering a particle in an
N-dimensional space, let the position vector be defined as X, = (x;;
X, X;) and the velocity vector as Vi = (vil, vi2.,viN). Initially, a
predefined number of particles are placed within the search space.
Unless otherwise constrained, these positions and velocities are
assigned randomly. Each particle represents a potential solution to
the optimization problem. The initial positions can be determined
according to problem constraints, while velocities are generally
set as small random values (Matrenin and Sekaev, 2015).

In the fitness evaluation step, each particle’s position is assessed
using a fitness function, which measures how close the solution is
to the optimization objective. The performance of each particle is
recorded, and its best position so far is stored in memory as pBest
(Wuetal., 2022). The local best position of a particle is expressed
as pbest, = (p,, P, ---P,)- For the global best determination, the
algorithm identifies the best position among all particles, known
as the gBest. This position serves as a guiding reference during the
swarm’s exploration of the search space. The global best vector is
expressed as gbest=(pbest,, pbest,, pbest, ). Finally, in the velocity
update step, each particle’s velocity is iteratively updated based
on its previous velocity, its distance from pBest, and its distance
from gBest. The velocity update of a particle is defined as:

+c, 1, (X(pbest), - X

Vi =W, V, ) +c,r, (X(gbest)- X

i(t) i(t-1) i(t-1 ))

(11

i(t-1)

After updating the velocity, the position update is performed. Each
particle’s position is modified using its new velocity, enabling
particles to explore new regions of the solution space. The position
update of a particle is expressed as:

X =V +X (12)

i Vi N
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This equation 12 determines how the position of a particle in the
search space changes according to its velocity and direction. Here,
ttt denotes the iteration number. Equation ensures that a particle’s
position in space is updated with its newly calculated velocity.
The new velocity is determined based on the particle’s previous
velocity, its current position, and its distances to both pBest and
gBest (Wu et al., 2022).

In the velocity update formula 11, w represents the inertia
weight, which controls how much of the previous velocity is
carried into the new velocity. The terms r, and r, are random
numbers uniformly distributed between 0 and 1. The acceleration
coefficients are generally set as c1=c2=2, since adopting this value
has been shown in the literature to yield effective results. This
formulation enables a balance between exploration (searching
new areas) and exploitation (refining known promising areas) (Wu
et al., 2022). Finally, in the termination phase, the search process
is repeated until a stopping criterion is satisfied such as reaching
the maximum number of iterations, achieving a satisfactory fitness
level, or observing no significant improvement over a certain
number of iterations (Wu et al., 2022).

3.2.4. Error evaluation metrics

The mean absolute percentage error (MAPE), mean square
error (MSE), and root mean square error (RMSE) are crucial
metrics for evaluating the effectiveness of forecasting models.
Each of these metrics serves as an indicator of the accuracy and
reliability of predictions, guiding researchers in model selection
and improvement. The mean absolute percentage error (MAPE)
is a scale-independent error metric commonly used to evaluate the
performance of forecasting models. It calculates the average of
the absolute errors between actual values and forecasts, expressed
as a percentage of the actual values. Since MAPE is presented in
percentage terms, it is considered one of the most intuitive and
easy-to-understand forecasting error measures. Generally,a MAPE
value of <10% is regarded as indicating excellent forecasting
accuracy, while values between 10% and 20% are considered
to represent moderate forecasting accuracy (Chairunnisa and
Fauzan, 2023).

The formula for MAPE is expressed as follows:

Vi— Vi

Vi

(13)

i=

MAPE = %100/n*2"

y,: The actual (observed) value at time t,
¥, : The forecasted value at time t,
e n: The number of observations,

The mean squared error (MSE) is a fundamental metric used to
quantitatively evaluate the performance of forecasting models
by calculating the average of the squared prediction errors. By
squaring the errors, MSE places greater emphasis on larger errors
compared to smaller ones, thereby encouraging the reduction of
large deviations during the model development process. Due to
its straightforward interpretation and mathematical properties,
MSE serves as a critical evaluation criterion in the context of

regression analysis and machine learning model performance
assessment. MSE values vary depending on the context and
application. Lower MSE values indicate that predictions are closer
to the actual observations, making them generally more desirable
(Nguyen et al., 2019).

The formula for MSE is expressed as follows:
1 n A N2
MSE=—3 " (=) (14)

y,: The actual (observed) value at time t,
¥, The forecasted value at time t,
e n: The number of observations,

The root mean squared error (RMSE), similar to MSE, is a
widely used error measurement method for evaluating how well
predicted values align with actual observations. As a fundamental
tool in fields such as machine learning, forecasting, and statistical
analysis, RMSE is calculated by taking the square root of the
mean of the squared errors. Since it is expressed in the same
units as the modeled data, RMSE is straightforward to interpret
and easy to understand. Although RMSE does not penalize large
errors as strongly as MSE, it still reflects the model’s sensitivity to
prediction errors while maintaining interpretability due to its unit
consistency with the data. This makes RMSE particularly useful
for performance evaluations and model comparisons. In practice,
RMSE is often used alongside other metrics, such as MSE, to
provide a more comprehensive assessment of model performance
(Abdelkader et al., 2023).

The formula for RMSE is expressed as follows:

RMSE = (15)

ey The actual (observed) value at time t,
7, : The forecasted value at time t,
n: The number of observations,

4. RESULTS AND DISCUSSION

In this section, the electricity production forecasting results obtained
using four different methods (ARIMA, the PSO-Optimized Holt’s
Method, and two types of long short-term memory [LSTM] neural
networks) were presented and comparatively evaluated. The analysis
covered Turkey’s total electricity generation as well as production
from coal, natural gas, hydroelectric, and renewable energy sources.
For each type of electricity production and for the total generation
values, the forecasting models’ performances were assessed using
the MAPE, MSE, and RMSE metrics, and the strengths and
weaknesses of the methods were comparatively discussed.

4.1. Results of ARIMA Models
As stated in pirivious section, the first step in determining the
most appropriate ARIMA model for the series is to examine its
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stationarity. For this purpose, an initial assessment is conducted
using visual methods; the time series plot, together with the
autocorrelation function (ACF) and partial autocorrelation function
(PACF) plots, provides a preliminary indication of stationarity.

The time series plot of total energy generation data, presented in
Figure 1, reveals a clear trend pattern. In addition, the ACF and
PACEF plots shown in Figure 2 further support the presence of a
trend in the series. In particular, the ACF plot indicates that the
autocorrelation values for the first few lags are relatively large
and decline gradually, which clearly demonstrates that the series
is non-stationary and exhibits trend behavior.

However, to obtain more reliable results, the visual inspection
is supported by the Augmented Dickey-Fuller (ADF) unit root
test. The null hypothesis (H) states that the series contains a unit
root, i.€., it is non-stationary, while the alternative hypothesis (H,)
indicates that the series is stationary. The results of the test are
summarized in Table 1.

Based on the results reported in Table 1, differencing was applied
to the series in order to achieve stationarity. Stationarity was
achieved after applying second-order differencing to the series.
The corresponding ADF test results for the differenced series are
reported in Table 2, and time series plot with ACF and PACF plots
were given in Figure 3.

Figure 2: Time series plot of total energy generation
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Table 1: ADF unit root test for the total electricity
generation series

—2.930 0.822  Failto Differencing is
reject H, required to achieve
stationarity

—0.789

Table 2: ADF unit root test results for the differenced total
electricity generation series

—4,217 —2.930 0.001  RejectH, Data appears to

be stationary, not
supporting differencing

Considering the ACF and PACF plots in Figure 4 together with
the theoretical autocorrelation patterns, the ARIMA (3,2,0) model
was identified as the most suitable. The parameter estimates of
this model are provided in Table 3.

As shown in Table 3, the estimated parameters of the proposed
model are statistically significant, with all P-values being <0.05.
As the next step, it is necessary to conduct diagnostic checks to
assess whether the residuals from the fitted ARIMA model exhibit
white noise behavior. For this purpose, the Ljung-Box Q-test is
employed, and the corresponding results are reported in Table 4.
The test statistic, with a P > 0.05, indicates that the model is
appropriate for forecasting Total Electricity Generation.

For the other four series (coal, natural gas, hydroelectric,
and renewable and waste-to-energy), the same Box-Jenkins
procedure was applied. To avoid redundancy, only the final model
specifications and diagnostic results are reported in Table 5.

The coal, natural gas, hydroelectric, and renewable and waste-to-energy
electricity generation series all required second-order differencing to
achieve stationarity. As summarized in Table 5, the most appropriate
ARIMA specifications were identified as ARIMA(0,2,1) for coal,
ARIMA(2,2,1) for natural gas, ARIMA(0,2,1) for hydroelectric,
and ARIMA(0,2,3) for renewable and waste-to-energy. Diagnostic
checks further confirmed the adequacy of these models (Table 5),
with the residuals exhibiting no significant autocorrelation and thus
approximating a white-noise process.

4.2. Results of LSTM Model

Two LSTM models were proposed for this study, both developed
in the Python programming language. The models were trained
and predictions were generated on a computer with a 64-bit
operating system, equipped with an Intel Core i5-7200U processor
at 2.50 GHz and 8 GB of RAM. Using the PyTorch deep learning
library, these two LSTM models were developed to create separate
forecasting models for total and four different electricity energy
sources: Total, Coal, Natural Gas, Hydro, and Renewables and
Waste. The models used annual electricity production data from
1970 to 2024 to generate future forecasts for 2025-2030, aiming
for the lowest possible MAPE, MSE, and RMSE values. For
input preparation, the data was partitioned by setting aside the
last 3 years as a test set. MinMaxScaler was used to scale the data
between 0 and 1.

Table 3: Parameter estimates of the ARIMA (3,2,0) model

AR (1) —0.833 0.127 —6.54 0.000
AR (2) —0.887 0.135 —6.59 0.000
AR (3) —0.542 0.158 —3.42 0.001

Table 4: Results of the modified box-pierce (Ljung-Box)
Chi-square test

12 10.62 9 0.303
24 21.81 21 0.411
36 23.43 33 0.891
48 24.21 45 0.995
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Figure 3: Autocorrelation function, and partial autocorrelation function plots for total energy generation
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Figure 4: Time series, autocorrelation function and partial autocorrelation function plots for differenced total energy generation
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Table 5: ARIMA model specifications and diagnostic results for all electricity generation sources

Coal ARIMA (0,2,1) Stationary after 2™ diff. (P=0.000) 0.398; 0.689; 0.823; 0.985 (model adequate)
Natural gas ARIMA (2,2,1) Stationary after 2" diff. (P=0.000) 0.723; 0.923; 0.993; 1.000 (model adequate)
Hydroelectric ARIMA (0,2,1) Stationary after 2™ diff. (P=0.000) 0.093; 0.513; 0.717; 0.970 (model adequate)

Renewable and waste ARIMA (0,2,3)

Stationary after 2™ diff. (P=0.000)

0.947; 1.000; 1.000; 1.000 (model adequate)

The single-layer LSTM model architecture consists of a single
LSTM layer with 50 hidden units, followed by a linear output
layer. This model takes the input data, passes it directly through
the LSTM layer to learn sequential dependencies, and then sends
its output to a linear layer to generate a prediction.

The three-layer LSTM model architecture passes the input data
sequentially through three different LSTM layers, each containing
50 hidden units. Each layer takes the output of the previous layer
as its input. The first layer learns fundamental patterns in the time
series, such as trend and seasonality. The second layer uses the
output of the first layer to learn more complex, abstract, and hidden
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patterns. The third layer learns the most complex and long-term
dependencies to prepare the final output.

Both models were trained with the same data preparation
and training parameters: MinMaxScaler, MSE loss, Adam
optimization, and different epoch number (500, 1000, 1500, 2000,
2500, 3000, 3500, and 4000). Model performance was evaluated
by comparing the predictions on the test set with the actual values,
using MAPE, RMSE, and MSE as evaluation metrics.

Future predictions (2025-2030) were made using a recursive
process where the last known data point (2024) was used as the
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input, and the model’s output for one step became the input for the
next. All results were supported by visualization tools, with graphs
presenting historical data, test predictions, and future forecasts.

Table 6 presents the results obtained from LSTM models with
varying numbers of layers and epochs. Due to their inherent
nature, LSTM models produce somewhat random results in each
run. However, the success of the resulting solutions is significantly
influenced by the dataset’s structure and the number of epochs.
For the total energy production dataset, both LSTM models
performed exceptionally well. The 3-layer LSTM, in particular,
delivered a superior solution with a near-zero error rate at a higher
epoch count. Regarding the coal dataset, which exhibits minor
fluctuations over the years, the 1-layer LSTM model generally
struggled to capture these details. In contrast, increasing the
number of layers enabled the model to effectively capture these
fluctuations, even at low epoch values. The 3-layer LSTM provided
an excellent forecast with a very low, almost zero, error rate. The
natural gas data presented a challenge for the LSTM model due
to the limited number of data points. Nevertheless, an acceptable
forecasting model was achieved with a MAPE error rate of 14%.

For the hydroelectric data, where minimal year-over-year variation
was observed, the error rate increased as both the number of epochs
and layers were raised. This outcome indicates that the models
were overfitting, or memorizing the data rather than learning its
underlying patterns. Consequently, for this specific dataset, a low
number of layers and approximately 1,000 epochs were found to
be most suitable. The data for renewable energy and waste initially
showed a declining trend over the years, followed by a period of
rapid growth. The 1-layer LSTM model was able to capture this
volatile structure with a very low error rate at a high epoch count
0f'4,000. It’s important to note that the mean absolute percentage
error (MAPE) could not be calculated for this dataset due to the
presence of zero values. Furthermore, an examination of Table 6
reveals that the solution time for LSTM models significantly
increases with both the number of layers and the number of epochs.
While a higher epoch count can be advantageous for capturing
intricate details in datasets, it can also lead to overfitting when
applied to datasets with fewer details or less complexity. This
causes the algorithm to memorize the training data rather than
generalize effectively to new data.

An analysis of Figure 5 indicates that the number of layers,
the number of epochs, and the characteristics of the dataset all
significantly influence the training time and performance of the

model. The figure clearly demonstrates that for each dataset,
increasing the number of LSTM layers leads to longer training
and solution times. Furthermore, a linear increase between the
number of epochs and the solution time is clearly observed for
both the 1- and 3-layer LSTM models. The performance of the
LSTM models varies depending on the structure of the dataset.
It was observed that increasing the number of epochs and layers
did not consistently improve the model’s performance. Therefore,
accurately determining the optimal number of epochs and layers
is crucial for achieving the best results. When examining the
time-series data for total energy production, the 1-layer LSTM
model yielded near-perfect results at 1,500 epochs, while the
3-layer LSTM model performed best at 2,500 epochs. However,
it is understood that the slightly superior performance of the
3-layer LSTM model at this epoch count suggests a potential for
overfitting beyond this point.

In the case of electricity production data from coal, the
performance of the 1-layer LSTM model progressively worsened
as the number of epochs increased. In contrast, the 3-layer model
occasionally found good results due to randomness and showed
its best performance at 1,500 epochs, producing highly successful
results with a near-zero MAPE value. However, the 1-layer model
exhibited a strong overfitting tendency at 2,000 and higher epochs.
While significant improvement was recorded at 1,000 and 1,500
epochs, a sharp deterioration in RMSE and MAPE values occurred
after 2,000 epochs.

For models developed to predict electricity production from
natural gas, the best performance was achieved with the 3-layer
model at 3,000 epochs (RMSE: 9293.28, MAPE: 14.09%).
However, both models showed a tendency towards overfitting
after 3,000 epochs. It is thus clear that using a higher number of
epochs beyond 3,000 does not provide any advantage in terms of
prediction performance.

When analyzing hydroelectric data, the 1-layer LSTM model
was found to be more successful at capturing the dataset’s
characteristics. It performed best at 1,000 epochs, with an RMSE
0f 1086.99 and a MAPE of 1.45%. However, it was observed that
as the number of epochs increased, the 1-layer model shifted from
learning to memorizing the data, leading to overfitting after 1,500
epochs. Although the 3-layer model showed some improvement
as the number of epochs increased, the 1-layer model’s success
in capturing the dataset’s trend was more notable.

Table 6: LSTM models, epoch numbers, exectution time and the best RMSE and best MAPE

Energy source Model architecture

Total 1-Layer LSTM 1500
3-Layer LSTM 2500
Coal 1-Layer LSTM 500
3-Layer LSTM 1500
Natural gas 1-Layer LSTM 3500
3-Layer LSTM 3000
Hydro 1-Layer LSTM 1000
3-Layer LSTM 3500
Renewable energy 1-Layer LSTM 4000
3-Layer LSTM 1000

Best epoch number

Training time (s) Best RMSE Best MAPE (%)
152.45 3,427.55 0.98
492.19 215.56 0.06
46.79 28,720.66 23.39
288.70 168.06 0.14
320.47 17,904.90 27.15
559.81 9,293.28 14.09
91.40 1,086.99 1.45
655.73 8,886.68 11.85
366.41 1,900.35 -
185.08 22,775.49 -
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Figure 5: Analysis of long short-term memory model performance with epoch number, time and root mean squared error
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A different situation was observed with the electricity production
data from renewable energy and waste. The 1-layer model achieved
its best result at 4,000 epochs (RMSE: 1900.35, MAPE: 2.23%)).
This is a rare occurrence, as the increased number of epochs
unexpectedly led to better performance in this specific case.

Due to the relatively small size of the datasets, the LSTM
model shows significant overfitting at large epoch values. The
performance of the 3-layer LSTM was initially low, remained
unstable during training, and resulted in high error rates. This
highlights that a higher number of layers is not always suitable
and that determining the appropriate number of layers and epochs
based on the specific dataset is crucial. For the total energy, coal,
and natural gas datasets, the optimal training point was found at
relatively low epoch values, after which the model’s performance
declined. During the LSTM training process, validation metrics
were carefully monitored, and an appropriate stopping point was
determined to prevent overfitting.

Table 7 presents the results obtained from LSTM models with
varying numbers of layers and epochs. Due to their inherent
nature, LSTM models produce somewhat random results in each
run. However, the success of the resulting solutions is significantly
influenced by the dataset’s structure and the number of epochs.
For the total energy production dataset, both LSTM models
performed exceptionally well. The 3-layer LSTM, in particular,
delivered a superior solution with a near-zero error rate at a higher
epoch count. Regarding the coal dataset, which exhibits minor
fluctuations over the years, the 1-layer LSTM model generally
struggled to capture these details. In contrast, increasing the
number of layers enabled the model to effectively capture these
fluctuations, even at low epoch values. The 3-layer LSTM provided
an excellent forecast with a very low, almost zero, error rate. The

natural gas data presented a challenge for the LSTM model due
to the limited number of data points. Nevertheless, an acceptable
forecasting model was achieved with a MAPE error rate of 14%.

For the hydroelectric data, where minimal year-over-year variation
was observed, the error rate increased as both the number of epochs
and layers were raised. This outcome indicates that the models
were overfitting, or memorizing the data rather than learning its
underlying patterns. Consequently, for this specific dataset, a low
number of layers and approximately 1,000 epochs were found to
be most suitable.

The data for renewable energy and waste initially showed a declining
trend over the years, followed by a period of rapid growth. The
1-layer LSTM model was able to capture this volatile structure with
a very low error rate at a high epoch count of 4,000. It’s important
to note that the mean absolute percentage error (MAPE) could not
be calculated for this dataset due to the presence of zero values.
Furthermore, an examination of Table 7 reveals that the solution
time for LSTM models significantly increases with both the number
oflayers and the number of epochs. While a higher epoch count can
be advantageous for capturing intricate details in datasets, it can also
lead to overfitting when applied to datasets with fewer details or
less complexity. This causes the algorithm to memorize the training
data rather than generalize effectively to new data.

4.3. Results of PSO-Optimized Holt’s Model

In this study, the Holt forecasting method was used to predict the
future values of the data. However, the most critical point for this
method is determining the correct o and P coefficients. To find
the lowest possible MAPE, MSE, and RMSE values, the PSO
algorithm, which has been shown to yield successful results in
the literature, was used.
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Table 7: LSTM models, epoch numbers, exectution time and the best RMSE and best MAPE

Energy source Model architecture

Total 1-Layer LSTM 1500
3-Layer LSTM 2500
Coal 1-Layer LSTM 500
3-Layer LSTM 1500
Natural gas 1-Layer LSTM 3500
3-Layer LSTM 3000
Hydro 1-Layer LSTM 1000
3-Layer LSTM 3500
Renewable energy 1-Layer LSTM 4000
3-Layer LSTM 1000

Best epoch number

Training time (s) Best RMSE Best MAPE (%)
152.45 3,427.55 0.98
492.19 215.56 0.06
46.79 28,720.66 23.39
288.70 168.06 0.14
320.47 17,904.90 27.15
559.81 9,293.28 14.09
91.40 1,086.99 1.45
655.73 8,886.68 11.85
366.41 1,900.35 -
185.08 22,775.49 -

The model was developed in Python. Model training and
forecasting were carried out on a 64-bit operating system with
an Intel Core 15-7200U processor running at 2.50 GHz and 8 GB
of RAM. Using annual electricity production data from 1970
to 2024, forecasting models were developed for five different
energy sources for the future: Total, Coal, Natural Gas, Hydro,
and Renewable Energy and Waste. The goal of the model is to
produce future forecasts for the years 2025-2030 with the lowest
MAPE, MSE, and RMSE values.

w,cl and c2 parameters are crucial and the parameter values

are w=0.7, ¢c1=2.0, ¢2=2.0 which are standard choices in PSO

literature and generally provide good performance across a wide

range of optimization problems, which is why they were selected

for this implementation in this study. The steps of particle swarm

optimization (PSO) was used to optimize the parameters of the

Holt forecasting model are shown below:

e Step 1. Initialization

e Step 2. Load dataset (Total, Coal, Hydro, Natural Gas,
Renewable& Waste.).

e  Step 3. Initialize PSO (particles:100, 200, 300, 400, 500),

iterations:10, 100, 1000 o, B).

Step 4. Evaluate fitness (MSE) for each particle.

Step 5. Update pbest and gbest.

Step 6. Iterate until stopping criterion.

Step 7. Return optimal o, p.

Step 8. Apply Holt forecasting with optimal parameters.

Step 9. Compute error metrics (MSE, RMSE, MAPE).

Step 10. Forecast future values (until 2030).

Step 11. Save and visualize results.

Table 8 presents the optimal (o) and (B) coefficient values
for various datasets, as determined by the Particle Swarm
Optimization (PSO) algorithm used to optimize the Holt’s Linear
trend model. The analysis section details the optimal o and 3
values found for specific initial population and iteration counts.
The study investigated the effect of the initial population size
(100, 200, 300, 400, and 500) and the number of iterations (10,
100, and 1,000) on the quality of the solution. The quality was
assessed by evaluating the RMSE values. The results presented
below were obtained from three separate runs of the PSO-
optimized Holt’s Linear Trend model. Despite its stochastic
nature, the model demonstrated a robust solution structure,
consistently finding values that were nearly identical, with only
negligibly small differences.

Upon examining the table, it was observed that the algorithm
generally reached the optimal ot and {3 values with 100 particles and
100 iterations. Even an initial particle count of 10 was sufficient.
Increasing the particle count up to 500 and the iteration count
to 1,000 is unnecessary for the PSO algorithm in this specific
problem and dataset. In fact, for the electricity generation data from
renewable energy and waste, it was found that an initial population
as low as 10 particles and 100 iterations was sufficient to reach
the optimum solution. Running the algorithm beyond these values
did not result in any change in its performance. Furthermore, the
consistency of results across a wide range of population sizes (100-
500) indicates that the PSO is robust for this application and the
solution space likely has a well-defined global minimum of RMSE.

In Holt’s Linear Trend model, the o and B coefficients are
smoothing parameters that control how the developed model
responds to changes in the base level and trends in the time series
data to provide the forecast with the lowest error. The o coefficient,
also known as the Level Component, indicates that values closer
to 1 mean more weight is given to the most recent observations
in the model, resulting in greater sensitivity to rapid changes in
the level. Conversely, values closer to 0 indicate that the model
gives more weight to the historical average and responds more
slowly to changes in the level. The B (8) Coefficient determines
how quickly the model responds to changes in the trend. Values
closer to 1 indicate a rapid response to trend changes, while values
closer to 0 indicate a slower response to trend changes and a more
stable trend.

According to Table 8, the o value of 0.6 for the model predicting
total electrical energy level shows that the model values both
recent and past data. The model’s  value of 0.21 indicates that the
trend component is quite stable and insensitive to sudden changes
in the trend. For the electricity generation dataset from coal, a
very high a value (0.9619) was found. This value indicates that
the model is very sensitive to the most recent observations and
that the level can change rapidly. However, the very low P value
(0.0768) shows that the trend changes very slowly and is almost
constant. For the natural gas energy dataset, the o value is low at
0.1776. This indicates that the model relies more on the historical
average. In contrast, the B value of 1.0000 means it responds
instantly to changes in the trend. For the renewable energy and
waste dataset, the o value is at the maximum of 1.0000, showing
the model is based entirely on the most recent observations. The
B value of 0.5856 indicates a rapid response to trend changes.
These parameter values show that the PSO algorithm optimized
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Table 8: Convergence behavior and optimal parameters of the PSO algorithm for the holt linear trend model

Total 0.6010 0.2099 5,947.87
Coal 0.9619 0.0768 4,694.86
NaturaGas 0.1776 1.0000 12,036.9
Hydro 0.3595 0.0708 7,388.31
Renewable and wastes 1.0000 0.5856 1,281.28

3,58 Negligible 100 100
9,01 Negligible 100 100
24,20 Negligible 100 100
19,95 Negligible 100 100

- None 10 100

them according to the unique time series characteristics of each
energy source dataset.

5. COMPARISON OF FORECASTING
MODELS

This section evaluates the forecasting performance of the
developed models. Model comparisons were conducted based
on MSE, RMSE and MAPE errors across five distinct electricity
energy production datasets. In order to enhance the reliability of
the results for LSTM and PSO Optimised Holt models, each was
run multiple times, and the average MAPE, RMSE, and MSE
values were reported.

Table 9 provided a comprehensive comparison of the forecasting
performance of different time-series models ARIMA, 1-Layer
LSTM, 3-Layer LSTM, and PSO-Optimized Holt method for
Turkey’s total electricity generation as well as for Coal, Natural
Gas, Hydroelectric, and Renewable and Waste energy sources. The
performance metrics used, MSE, RMSE, and MAPE, objectively
indicated the accuracy levels of the models. In the table, values
highlighted in bold represented the best-performing method for
each energy source. For the Renewable and Waste category, MAPE
values could not be calculated due to the presence of zero values
in the dataset.

The results indicated that the 3-Layer LSTM model demonstrated
a clear superiority over the other methods for total electricity
generation (MSE = 46,463.31; MAPE = 0.06). Similarly, for
coal-based generation, the 3-Layer LSTM model stood out with
a very low error rate. For natural gas, although the 3-Layer
LSTM model provided the lowest MSE, the MAPE was found
to be 14.09%, suggesting that this energy source was relatively
more difficult to predict. In the case of hydroelectric generation,
the 1-Layer LSTM model achieved the lowest MSE and MAPE
(1.45%), distinguishing itself from the other methods. In contrast,
the ARIMA model exhibited the best performance for renewable
and waste-based energy sources.

Overall, it was observed that deep learning-based LSTM
methods demonstrated strong performance in capturing the
complex dynamics of electricity generation. At the same time,
it is noteworthy that traditional methods such as ARIMA were
still able to achieve high accuracy for certain energy types (e.g.,
renewable and waste). The fact that the MAPE values for all
methods remained below 5% confirmed that the models generally
provided acceptable and highly accurate forecasts. These findings
indicate that the choice of forecasting method in electricity

Table 9: Forecasting errors for total electricity generation
and its sources using ARIMA, PSO-optimized holt,
1-Layer, and 3-Layer LSTM methods

Total ARIMA (3,2,0) 34,982,567.00  5,914.60 3.12
1-Layer LSTM  11,747,088.00  3,427.55 0.98
3-Layer LSTM 46,463.31 215.56 0.06
PSO Opt. Holt ~ 35,376,089.00  5,947.87 3.67
Coal ARIMA (1,2,0) 22,758,635.00 4,770.60  11.30
1-Layer LSTM  824,957,318.00 28,720.66  23.39
3-Layer LSTM 28,257.63 168.06 0.14
PSO Opt. Holt ~ 22,044,703.00  4,694.86 8.92
Natural ARIMA (2,2,1) 131,340,310.00 11,460.38  16.10
gas 1-Layer LSTM  320,616,181.00 17,904.90  27.15
3-Layer LSTM  86,360,739.00  9,293.28  14.09
PSO Opt. Holt  144,886,656.00 12,036.90  24.19
Hydro ARIMA (0,2,1)  78,464,995.00 8,850.00  17.38
1-Layer LSTM  1,181,560.00  1,086.99 1.45
3-Layer LSTM  78,969,329.00 8,886.68  11.85
PSO Opt. Holt  62,238,981.00  7,888.31 18.47
Renewable ARIMA (0,2,2) 1,308,641.00  1,143.96 -
and wastes 1-Layer LSTM  3,611,330.00  1,900.35 -
3-Layer LSTM  518,456,657.00 22,775.49 -
PSO Opt. Holt ~ 1,641,679.00  1,281.28 -

generation studies may vary depending on the data structure and
the characteristics of the energy source.

Based on the examination of Table 10, the forecast values for the
period between 2025 and 2030 were obtained using the method
that produced the lowest error value. The findings provide valuable
insights into the prospective dynamics of the national energy
portfolio. The results indicate that total electricity generation
is expected to follow a steady and significant upward trajectory
throughout this period. Specifically, according to the forecasts
obtained from the 3-Layer LSTM model, total production is
projected to reach 369,155 GWh in 2025 and to increase to 439,104
GWh by 2030. This upward trend can be interpreted as an indicator
of expanding energy investments.

When analyzing the distribution of sub-energy sources, coal
and hydroelectric power are projected to maintain a relatively
stable trajectory over the forecast horizon. Specifically, coal-
based electricity generation is expected to decline modestly,
from 122,214 GWh in 2025 to 118,938 GWh in 2030, suggesting
that reliance on coal will not intensify and will likely remain at
current levels. Hydroelectric production, while subject to minor
fluctuations driven by climatic conditions (e.g., the temporary
decline anticipated in 2026), is forecasted to remain broadly stable
at around 70,000 GWh.
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Tablo 10: Forecasts for the energy datasets for 2025-2030 in gwh using the method with the lowest error value

Resource (Method)\Year 2024* 2025 2026 2027 2028 2029 2030
Total (3-Layer LSTM) 348 900 369 155 386 801 396 781 406 681 421 568 439 104
Coal (3-Layer LSTM) 122813 122214 120 762 119 280 118 659 118 636 118 938
Natural gas (3-Layer LSTM) 65942 101 029 98 412 98 360 96 273 99 019 109 878
Hyro (1-Layer LSTM) 75014 76018 68039 70368 69197 72166 74133
Renewable ENG and waste (ARIMA [0, 2, 2]) 85132 92 431 99 730 107 029 114 328 121 628 128 927

In contrast, the forecast values for natural gas and renewable energy
highlight their role as the primary drivers of the projected increase
in total electricity generation. Natural gas output is anticipated
to grow from 101,029 GWh in 2025 to 109,878 GWh in 2030,
reflecting considerable growth potential. This trend underscores
the likelihood that natural gas will function as a transitional energy
source in the coming years, offering a comparatively cleaner fossil
fuel alternative to coal. The projections for renewable energy
and energy derived from waste (Table 9) reveal the most striking
development: an exceptionally robust and sustained growth
pattern. Total generation from these sources is expected to expand
from 92,431 GWh in 2025 to 128,927 GWh in 2030, marking the
fastest and most consistent increase among all electricity sources.
These findings clearly indicate a structural shift in energy policies
and investments toward renewable resources, pointing to a rapid
expansion of capacity in this sector.

6. CONCLUSION

In this study, a multi-methodological approach was presented
for forecasting Turkey’s electricity generation. By analyzing
electricity production data from 1970 to 2024, forecasts were made
for total electricity generation as well as for individual energy
sources Coal, Natural Gas, Hydroelectric, Renewable, and Waste-
based energy. The main objective of the study is to compare the
forecasting performance of traditional statistical methods such as
the Box-Jenkins ARIMA model, optimization-based approaches
like the PSO-optimized Holt Linear Trend method, and modern
deep learning algorithms (1-layer and 3-layer LSTM models),
and to comprehensively reveal Turkey’s projected electricity
generation progress up to 2030. This research holds significant
importance for energy policy-making, investment planning, and
the establishment of sustainability goals.

The overall findings of the study indicate that model performance
is highly dependent on the dataset, demonstrating that the best-
performing model varies according to the structure of the data. The
results show that each methodology exhibits different performance
levels depending on the unique characteristics (trend, data volume)
of the dataset corresponding to each electricity source.

For Total Electricity Generation, Coal, and Natural Gas
production forecasts, the 3-Layer LSTM model achieved the
lowest error metrics (MSE, RMSE, and MAPE) due to its ability
to capture complex and nonlinear dynamics in the data, thereby
demonstrating the best performance. In the case of Hydroelectric
power generation, which has a relatively simpler structure, the
1-Layer LSTM model provided the most successful results. This
finding suggests that simpler architectures can be sufficient for
less volatile series, and that model complexity should not be

unnecessarily increased. For Renewable Energy and Waste-based
electricity generation, the ARIMA method proved to be the most
effective, as it best modeled the initially decreasing but later
exponentially increasing trend observed in recent years. This
result confirms that traditional time-series methods can still be
effectively utilized for datasets exhibiting strong and consistent
trends. Although the PSO-optimized Holt Linear Trend method
did not achieve the best performance in any specific category, it
consistently produced reliable and acceptable forecasts across
all categories, proving to be a stable and dependable alternative
method.

The policy and practical implications of this study were highly
significant. Based on model-based forecasts, a steady increase in
Turkey’s total electricity generation is projected for the 2025-2030
period. However, to prevent this growth from lagging behind the
rate of consumption increase projected in the National Energy
Plan, it is essential to accelerate investments in energy production
capacity. The sharp upward trend forecasted for renewable energy
generation support the view that the efforts in this area were
promising. Furthermore, the continued increase in natural gas-
based generation suggests that natural gas will maintain its role as a
“transition fuel”, serving as a cleaner fossil fuel alternative to coal.

The main limitation of this study was that the forecasts rely solely
on historical annual data trends. Future uncertainties such as policy
changes, the commissioning of nuclear power plants, technological
advancements, global economic crises, or climate events may
affect the accuracy of these forecasts. Such external factors could
potentially constrain the future performance of the model.

In conclusion, this study strongly emphasizes that there is
no single universal model for energy forecasting. To achieve
optimal forecasting performance, it is crucial to select the model
in accordance with the historical data structure and dynamics of
each energy source and to perform hyperparameter optimization,
especially in deep learning models. This research provides a solid
foundation for decision-makers and energy planners to employ
a hybrid modeling framework capable of generating reliable
forecasts under different scenarios. Ultimately, this study not only
provides concrete projections for the future trajectory of Turkey’s
electricity generation, but also makes a valuable contribution to the
methodological discourse in the field of forecasting modeling. The
findings reaffirm the critical importance of accurate planning in
achieving Turkey’s energy independence and sustainability goals.

The main limitation of this study was that the forecasts rely solely
on historical annual data trends. Future uncertainties such as policy
changes, the commissioning of nuclear power plants, technological
advancements, global economic crises, or climate events may
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affect the accuracy of these forecasts. Such external factors could
potentially constrain the future performance of the model.

Future research could focus on developing a more comprehensive
forecasting framework by integrating these models with economic,
demographic, and climatic variables. To improve the accuracy of
forecasts, external factors such as renewable energy investment
levels, GDP, population growth, weather data, reservoir water
levels, natural gas prices, and coal import/export volumes can
be incorporated into the models. Parameter optimization of Holt
or other time-series models could be explored using different
metaheuristic algorithms (e.g., Genetic Algorithms, Differential
Evolution). Utilizing high-frequency data (daily or weekly)
would allow for a more precise capture of seasonal and cyclical
patterns. Moreover, constructing hybrid forecasting models that
combine the strengths of different methods could further enhance
prediction accuracy. Investigating the performance of more
advanced artificial intelligence-based architectures would also
make a valuable contribution to this field.
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