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ABSTRACT

This study investigates the evolving interdependencies and risk transmission mechanisms between energy and financial markets, focusing on gold, 
West Texas Intermediate (WTI) crude oil, the S&P 500 Index (SP500), and the Shanghai Stock Exchange Composite Index (SSE) from January 2019 
to August 2025. Employing daily return data, the analysis integrates multivariate linear regression, Dynamic Conditional Correlation-GARCH (DCC-
GARCH) models, and dynamic conditional R2 decomposition to capture time-varying connectedness and explanatory power. Grounded in the Diebold 
and Yılmaz (2012; 2014) framework, augmented by R2 decomposition, the findings evince heightened systemic risk during major global disruptions, 
notably the COVID-19 pandemic and the Russia Ukraine conflict. WTI crude oil emerges as a principal conduit of volatility spillovers, underscoring 
its pivotal role in the energy-finance nexus. Five portfolio strategies Minimum Variance, Minimum Correlation, Minimum Connectedness, Minimum 
R2, and Minimum Decomposed R2 are constructed and evaluated under systemic stress. While the Minimum Variance Portfolio delivers robust risk-
adjusted returns, strategies based on connectedness metrics demonstrate superior resilience during crises. These insights offer valuable implications 
for policymakers, investors, and scholars concerned with energy market stability, financial contagion, and adaptive portfolio design.

Keywords: Energy Finance Linkages, Oil and Gold Markets, Dynamic Connectedness, Volatility Spillovers, DCC-GARCH Models, Systemic Risk 
Management 
JEL Classifications: C58, G11, G15, Q43

1. INTRODUCTION

Energy and financial markets have become increasingly 
interconnected, facilitating the rapid transmission of economic, 
financial, and geopolitical shocks across commodities, financial 
instruments, and regions. Within this network, certain assets hold 
critical influence over systemic risk. West Texas Intermediate 
(WTI) crude oil is a key energy commodity that reflects broader 
macroeconomic trends and geopolitical tensions, serving as a 
major conduit for volatility spillovers (Nerurkar and Jickling, 
2012; Toyoshima and Hamori, 2018; Wen et al., 2022; Filippidis 
et al., 2023; Belkhir et al., 2025). In contrast, gold is frequently 
viewed as a safe-haven asset amid uncertainty (Fang et al., 2018; 
Shahzad et al., 2020; Shankar, 2025). Equity markets such as the 

S&P 500 in the United States and the Shanghai Stock Exchange 
Composite Index in China act as important indicators of economic 
health in both developed and emerging markets (Xu et al., 2023; 
Li et al., 2024). An integrated study of these assets is thus vital 
for understanding systemic risk dynamics and their implications 
for global financial stability and energy policy.

Previous research has extensively analyzed volatility and 
interconnectedness among financial assets. Markowitz’s (1952) 
foundational work provides evidence of the benefits of diversification, 
but later studies evince that correlations tend to increase during 
crises, weakening diversification benefits when most needed (Wen 
et al., 2022; Ghorbel et al., 2022; Leong, 2025; Enow, 2025). 
In commodities, oil delves into a significant role in transmitting 
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macro-financial shocks (Kilian and Park, 2009; Broadstock and 
Filis, 2014), with sensitivity to economic and geopolitical events 
well documented (Hu et al., 2020; Le et al., 2023; Bouzguenda 
and Jarboui, 2025). Gold’s role as a hedge and safe haven varies 
depending on crisis conditions (Baur and Lucey, 2010; Baur and 
McDermott, 2010; Reboredo, 2013; Chkili, 2016). Studies on equity 
market connections (Diebold and Yılmaz, 2012; 2014) give proof 
that linkages intensify under stress, increasing contagion risk.

However, two key gaps remain. Most research examines commodity 
and equity markets separately, overlooking their interdependence 
(Filippidis et al., 2023; Guidi et al., 2025). Moreover, portfolio 
management often relies on static variance–covariance matrices, 
which do not capture evolving systemic risk and volatility 
spillovers. Addressing these limitations requires dynamic models 
that incorporate systemic risk into portfolio construction.

This study fills these gaps by jointly analyzing gold, WTI crude 
oil, the S&P 500, and the Shanghai Stock Exchange Composite 
Index over 2019-2025, encompassing shocks like the COVID-19 
pandemic and the Russia Ukraine war. It employs the DCC-
GARCH model (Engle, 2002), along with dynamic conditional 
R2 measures and decomposed connectedness indices (Diebold 
and Yılmaz, 2012; 2014), to quantify volatility interactions 
and systemic risk. The study also tests five portfolio strategies 
incorporating connectedness metrics.

The main contribution aims to highlight the integration of systemic 
risk assessment with portfolio management, using conditional 
volatility and connectedness measures in a cohesive framework. 
Empirically, it provides evidence of the distinct roles of gold, oil, 
and equity markets in shock transmission. Practically, it proposes 
dynamic portfolio strategies that show greater resilience during 
crises. The paper proceeds as follows: Section 2 reviews literature; 
Section 3 details methods and data; Section 4 reports findings; and 
Section 5 concludes with implications for stakeholders.

2. LITERATURE REVIEW

Over the past decades, increasing instability in financial linkages 
has drawn wide scholarly interest. Multiple crises revealed the 
shortcomings of traditional diversification, as correlations and 
volatility spillovers tend to escalate during turbulent times, 
reducing diversification benefits when they are most crucial 
(Ghorbel et al., 2022; Frikha et al., 2023; Pandey et al., 2023). 
To better capture systemic risk and market interdependencies, 
researchers have shifted towards dynamic methodologies, 
resulting in extensive empirical contributions (Wang et al., 
2022a; Yousaf et al., 2023). Within this context, commodities 
such as oil and gold have been central topics (Hu et al., 2020; 
Zhang and Wu, 2024; Bouzguenda and Jarboui, 2025). Oil 
remains a critical component in the global economy, acting as a 
transmitter of macroeconomic and financial shocks. Its volatility 
is influenced by supply-demand fundamentals, inventory changes 
(Bai, 2014; Le et al., 2023), and financial indicators including the 
U.S. dollar index and VIX (Hu et al., 2020; Bhagat et al., 2022). 
Geopolitical risks and policy uncertainty further intensify oil’s 
volatility and its role in cross-market contagion (Zhao, 2022; 

Filippidis et al., 2023). Gold is widely recognized as a safe-haven 
asset during market distress. Evidence supports its tendency to 
decouple from risky assets during crises, though effectiveness 
varies with shock type and intensity (Baur and Lucey, 2010; Baur 
and McDermott, 2010; Reboredo, 2013; Chkili, 2016; Ghorbel 
et al., 2022; Widjaja et al., 2023). Its volatility is sensitive to 
macroeconomic uncertainty, interest rate changes, and investor 
sentiment, reinforcing its defensive qualities (Fang et al., 2018; 
Hu et al., 2020; Gupta et al., 2023). Equity markets also contribute 
significantly to systemic risk analysis. The connectedness 
framework proposed by Diebold and Yılmaz (2012; 2014) offers 
a robust measure of contagion through forecast error variance 
decomposition. Their studies demonstrate that market linkages 
strengthen in crises, heightening systemic stress. This method has 
since been expanded to analyze equities, bonds, and commodities, 
revealing systemic risk fluctuations in response to macro-financial 
conditions (Wang et al., 2022b; Xu et al., 2023).

There is broad agreement that financial interconnections lack 
stability and depend heavily on context. Global events such 
as economic downturns, pandemics, and geopolitical conflicts 
reshuffle asset correlations and increase systemic risk transmission 
(Wen et al., 2022; Frikha et al., 2023). These dynamics challenge 
risk management and limit the effectiveness of conventional 
diversification during adverse periods.

Many previous studies have examined the connections between 
various assets using different methods, often revealing diverse and 
sometimes contradictory results. Anand and Paul (2021) employ a 
TVP-SVAR model to reveal that Brent oil demand shocks impact 
returns and volatility in the Bombay stock exchange. Likewise, 
Mensi et al. (2022), using a bivariate FIAPARCH approach, 
identify shifting correlations between gold, oil, and U.S. equities 
during the COVID-19 pandemic, highlighting the complexity of 
market interactions in turbulent times. During the invasion crisis, 
Alam et al. (2022) find that gold and silver primarily transmitted 
shocks, while crude oil, platinum, and natural gas mainly absorbed 
them. In China, Dai et al. (2022) report that WTI oil and gold mostly 
received shocks, with certain stock sectors acting as transmitters; 
this pattern is echoed by Li et al. (2024), who point to copper as 
a key shock transmitter. Moreover, Chen et al. (2024) show that 
uncertainty measures like the EPU, VIX, and GPR strengthen 
return connectedness among assets. Recently, Bouzguenda and 
Jarboui (2025) use quantile connectedness to demonstrate that 
relationships between BRICS assets and alternative investments 
were quite unstable and sensitive to crises from 2016 to 2023.

Despite these advances, critical gaps persist. Most literature analyzes 
commodities and equities separately, lacking a comprehensive 
unified framework. Additionally, portfolio management often 
depends on static variance-covariance models that fail to represent 
systemic risk dynamics. Although connectedness-based metrics 
have been suggested to improve portfolio robustness during crises, 
their practical use remains limited.

In sum, three main themes emerge from the literature:
• Asset correlations are time-varying and tend to intensify in

crisis periods
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• Oil and gold play distinct but complementary roles within
global financial dynamics

• Advances in connectedness models and dynamic volatility
frameworks have enhanced systemic risk insight, yet their
integration into portfolio management is still underdeveloped.

3. DATA AND METHODOLOGY

3.1. Data
This study examines daily closing prices for Gold, West Texas 
Intermediate (WTI) crude oil, the Shanghai Stock Exchange 
Composite Index (SSE), and the SandP 500 Index (SP500) during 
the period from January 03, 2019 to August 01, 2025. All data were 
collected from reliable financial databases, including Bloomberg, 
Refinitiv, and Yahoo Finance, and are expressed in U.S. dollars to 
ensure consistency. Daily returns were calculated using continuously 
compounded log-returns. The descriptive statistics reported in 
Table 1 show that the mean daily returns are close to zero for each 
asset, with gold and the SP 500 displaying weak but statistically 
significant positive means, while WTI and the SSE present means 
not significantly different from zero. Variance is lowest for gold and 
the SP 500 and highest for WTI, indicating greater return volatility 
in the oil market. All series exhibit pronounced non-normality: gold, 
WTI, the SP 500, and the SSE have negative skewness, which is 
particularly extreme for WTI, and all display high excess kurtosis, 
once more most striking for WTI. The Jarque–Bera test confirms 
significant departures from normality for every market. Unit-root 
testing with the Elliott–Rothenberg–Stock (ERS) statistic rejects 
the null of a unit root for all return series, proving stationarity. The 
Ljung–Box Q test on raw returns detects no autocorrelation for 
gold but significant serial dependence for WTI, the SP 500, and 
the SSE. The Q2 test on squared returns reveals strong conditional 
heteroskedasticity amid all markets, consistent with time-varying 
volatility. Kendall’s rank correlations highlight globally low but 
significant dependence between assets. Gold’s correlations with 
WTI, the SP 500, and the SSE are weak, though positive. WTI shows 
modest positive associations with the SP 500 and SSE, and the SP 
500 and SSE share the highest cross-market dependence among 
the pairs. Whole, these results portray gold as the least connected 
asset, WTI as the most volatile, and all markets as non-normally 
distributed with evidence of conditional heteroskedasticity.

3.2. Methodology
Following Cocca et al. (2024), this study adopts a comprehensive, 
multi-step methodology to examine evolving interdependencies 
and translate them into actionable portfolio strategies. It begins 
by revisiting the multivariate linear regression (MLR) model to 
estimate coefficients and assess model fit, then extends the analysis 
through the DCC-GARCH framework (Engle, 2002) to capture 
time-varying correlations and covariance dynamics. Subsequently, 
the dynamic conditional R2 and its decomposition (Genizi, 
1993) are employed to evaluate the shifting explanatory power 
of key variables. These results are embedded within a dynamic 
connectedness framework to identify systemic transmission 
channels among assets. Finally, the insights are leveraged to 
develop advanced portfolio strategies, namely connectedness-
driven and multivariate hedging portfolios, benchmarked against 
traditional models to evaluate performance and risk efficiency.

3.2.1. Multivariate linear regression (MLR) framework
This section outlines the fundamental principles of the multivariate 
linear regression (MLR) model, establishing the basis for more 
advanced approaches such as the DCC-GARCH framework. 
It focuses on the estimation of regression coefficients and the 
assessment of model adequacy using the R-squared statistic. The 
MLR model remains a foundational tool in empirical finance and 
econometric analysis, typically formulated as follows:

y = Xb + ε (1)

Where y is the dependent variable, X denotes the matrix of 
independent variables, and b is the K. ×1 dimensional vector 
of regression coefficients, and ε is the T × 1 dimensional error 
vector. All series, collectively denoted as Z = [y, X], have been 
adjusted for their mean values, thus excluding the intercept term. 
The unconditional variance–covariance matrix (H) and correlation 
matrix (R) are partitioned as follows:
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Where:
Hyy represents the variance of the dependent variable (y),
Hxx represents the variance-covariance matrix of the independent 

variables (X),
H H Hxy yx yx( )

'=  contains the covariances between the 
independent and dependent variables.

The vector of regression coefficients, b, can be estimated using 
Ordinary Least Squares (OLS), yielding the estimator b̂:

1( ' )ˆ '−= yb X X X (4)

This coefficient can be expressed directly in terms of the variance-
covariance matrix H:

1ˆ −= xx xyb H H (5)

This relationship underscores that the regression coefficients are 
solely governed by the underlying variance–covariance structure 
of the variables. The R-squared (R2) statistic captures the share 
of the dependent variable’s (y) variance that can be explained by 
the independent variables (X):

2 '1 (( Xb ) ( Xb̂) / ' )= − − −R y y y y (6)

As the regression coefficients, the R2 can also be computed 
directly from the partitioned variance-covariance matrix H or the 
correlation matrix R, as follows:

R H H H Hxy xx xy yy
2 1 1� � �

' (7)

R R R Rxy xx xy
2 1� �

' (8)
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Accordingly, both the regression coefficients and the R2 statistic can 
be derived directly from the unconditional variance–covariance 
matrix. Crucially, by substituting this static matrix HHH with its 
time-varying counterpart  Ht​ obtained from the DCC-GARCH 
framework, one obtains dynamic conditional betas and dynamic 
conditional R2 measures (Engle, 2016). This substitution enables 
a time-varying assessment of model fit and explanatory power 
across evolving market conditions.

3.2.2. DCC-GARCH model specification
Ensuing Engle (2002), the Dynamic Conditional Correlation 
GARCH model is specified follow:

1 1
1 2 2

1~ (0, ), ~ (0, ), (  ),ε ε
− −− …= =t t t t t t KttD z z N H N I D diag h h �(9)

Q a b Q a bQt t t t� � �� � � �� � �1
1 1 1

� � ' � (10)

R diag Q Q diagQt t t t�
� �

( )

1

2

1

2 (11)

Ht = Dt Rt Dt (12)

Here, zit and εt Are K + 1 × 1 dimensional return and standardized 
residual vectors, respectively. Error terms are independent and 
identically distributed (i.d.) random variables with zero mean and 
unit variance, often assumed to follow a specific distribution (e.g., 
Normal, Student’s t, Skewed Student’s t), Q, Ht and Rt are K × 1+ 
K × 1 dimensional unconditional variance, conditional variance-
covariance, and conditional correlation matrix, respectively.

The estimation follows a two-step procedure: (i) univariate 
GARCH models yield conditional variances Dt and (ii) DCC 
parameters a (shock) and b (persistence) are estimated to derive 
dynamic correlations, Rt and ultimately Ht.

The full log-likelihood is decomposed into variance and correlation 
components:

L L Lv C� � �, ,�� � � � � � �� � (13)

L h
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(15)

The log-likelihood function is divided into two parts: volatility. 
Lv (θ) and correlation LC (θ, ∅). In step one, θ refers to univariate 
GARCH parameters; in step two, ∅, who represents DCC 
parameters. These steps can be estimated separately.1 Following 
Antonakakis et al. (2021), we use their selection criterion to 

1	 In simple terms, Antonakakis et al. (2021) introduce a univariate GARCH 
selection criterion, which is essentially an adjusted Bayesian Information 
Criterion (BIC). This criterion not only penalizes based on the total number 
of parameters but also considers the number of statistically insignificant 
parameters. Moreover, it incorporates knock-out criteria derived from 
significant misspecification test statistics such as VaR, CVaR, VaR Duration, 
Sign Bias, and Q2(20) test statistics. For more details, interested readers are 
directed to Antonakakis et al. (2021).

estimate the univariate GARCH (1,1) model from the flexible 
class proposed by Hentschel (1995) and discussed by Hansen 
and Lunde (2005).

/2 2 2
1 11 1)( ( )δω α γ β

λ λ
λ

− −− −= + −η − − ζ +t t tt th h z z h (16)

To allow greater flexibility, we follow Antonakakis et al. (2023) 
by estimating multiple bivariate DCC-GARCH models, permitting 
correlation dynamics a (shock) and b (persistence) to differ 
across asset pairs. This contrasts with a single multivariate DCC 
specification that imposes uniform correlation dynamics. Engle 
and Sheppard’s (2001) DCC test is then employed to distinguish 
between constant and dynamic correlations.

3.3. Dynamic Conditional R2 and R2 Decomposed 
Measures
The dynamic conditional R2 is obtained by replacing the 
components of H in Equation (6) by the dynamic components of 
Ht. Thus, dynamic conditional R2 goodness-of-fit measures are 
obtained as follows,

R R R Rt xy t xx t xy t
2 1� �

'
, , ,

(17)

This time-varying Rt
2  captures the explanatory power of the model 

in a dynamic context, providing insights into hedging effectiveness 
and portfolio dependencies.

Since the sum of bivariate Rt
2  values typically differ from 

multivariate Rt
2  (due to correlations among regressors), Genizi 

(1993) proposed a decomposition method based on PCA of the 
correlation matrix. The procedure transforms correlated regressors 
into orthogonal latent factors ft, that preserve total variance. Using 
eigenvalue decomposition of Rxx,t, the decomposed Rt

2  is derived:

R V E V R Rxx t t t t xf t xf t, , ,
'= =2 (18)

R V E Vxf t t t t,
'= (19)

R R R Rt xf t xy t xy t
2 2 1

2
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(20)

Where R R Rfy t xf t xy t, , ,
� �1

2 2 2
, , =t xf t fy tR R R (21)

This decomposition attributes the overall explanatory power to 
each explanatory variable, clarifying their relative contributions 
over time.

3.4. Dynamic Connectedness Measures
To analyze systemic risk, we extend the Diebold andYılmaz (2012; 
2014) framework by replacing the standard forecast-error variance 
decomposition with the decomposed Rt

2  matrix, yielding:

R R R Rt
d

t it Kt
2

1

2 2 2� � ��
�

�
�, , , ,
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From this, directional connectedness is computed:
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(22)
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NET TO FROMi t i t i t, , ,� � (24)

Positive (negative) net values indicate whether a variable is a net 
transmitter (receiver) of shocks. Bilateral spillovers are captured 
through the net pairwise directional connectedness (NPDC):

NPDC R Rij t ij t
d

ji t
d

, , ,
� �2 2 (25)

The Total Connectedness Index (TCI) summarizes systemic risk 
as the average conditional Rt

2 :

TCI
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K
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As Rt
2

0 1∈[ , ] , the TCI is naturally normalized, rising sharply 
during crises when assets move more synchronously. Pairwise 
connectedness indices (PCI) are also employed:
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3.5. Multivariate Portfolio Analysis
This section develops both bivariate and multivariate portfolio 
strategies, emphasizing dynamic rebalancing under shifting market 
conditions. Following Kroner and Sultan (1993), the bivariate 
hedge ratio is:

hr
H
Hij t
ij t

jj t
,

,

,
= (29)

Where Hij,t and Hjj,t stand for the conditional covariance between 
asset i and j and the conditional variance of asset j.

3.5.1. Multivariate hedging portfolios
Using Engle’s (2016) dynamic beta framework:

�t xx t xy tH H� �
, ,

1 (30)

A long position in yt can be hedged by shorting βt in other assets. 
This strategy benefits from higher predictive accuracy during 
periods of strong correlations.

3.5.2. Optimal bivariate portfolio weights
Kroner and Ng (1998) define the optimal portfolio weight

�ij t
jj t ij t

ii t ij t jjt

H H
H H H,

, ,

, , ,

�
�

� �2
(31)

Weights are constrained between 0 and 1 to satisfy the no-short 
selling assumption:

,
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3.5.3. Global minimum risk portfolios
Extending Markowitz (1952), Christoffersen et al. (2014), and 
Broadstock et al. (2022), the optimization problem is:

argmin P s tt t t t t t� � � � �' ' , '. . � � �1 0 1

Here, Pt may be based on variance–covariance (), correlations 
(RtRtRt), or PCI measures. Minimizing PCI-based risk often yields 
superior performance in reducing systemic exposures.

3.5.4. Portfolio performance
Performance is evaluated using the Sharpe Ratio (SR) (Sharpe, 
1994) and Hedging Effectiveness (HE) (Ederington, 1979).

SR
x

VAR x
p

p
=

( )

(33)

These metrics assess both risk-adjusted returns and the 
effectiveness of hedge strategies.

4. EMPIRICAL RESULTS

This section is structured as follows. Primary, we present the 
estimation results of the DCC-GARCH model and the selection 
process for univariate GARCH models, including misspecification 
tests. Following, we examine the dynamic conditional R2 and 
its decomposed measures to assess time-varying relationships. 
We then discuss the outcomes of our connectedness analysis, 
starting with an overview of return spillovers using averaged 
connectedness measures. This is followed by an in-depth 
exploration of dynamic connectedness plots to capture temporal 
variations. Finally, we compare bivariate and multivariate portfolio 
strategies, evaluating their performance using various portfolio 
statistics to assess hedging effectiveness and risk diversification.

4.1. DCC-GARCH Estimation
Table 2 reports the diagnostic results for the best-fit univariate 
GARCH models among the four-return series. Overall, these 
diagnostics show that the chosen univariate GARCH models 
capture the conditional volatility dynamics effectively, with no 
evidence of misspecification or residual ARCH effects for any of 
the examined assets.

The sign-bias test statistics range from about 0.25 to 1.21 with 
P-values greater than 10%, indicating no significant leverage or
asymmetry effects. The WARCH(20) statistics (8.45-14.93) also
have non-significant P-values (0.68-0.12), indicating no remaining
ARCH effects after fitting the GARCH specification. Value-at-Risk
(VaR) backtests show non-significant statistics between 0.006 and
0.42, confirming adequate VaR coverage.
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Table 2: Evaluation of univariate GARCH performance
Measure 
Type

SignBias WARCH 
(20)

VaR CVaR VaR 
duration

Statistics 0.2522450 8.4533406 0.0065327 −463.6548 1.0086207
P‑values 0.8008741 0.6762910 0.9355809 0.4220 0.5953409
Statistics 0.7772550 13.1708005 0.1329486 −472.6075 1.0344828
P‑values 0.4370877 0.2203258 0.7153943 0.1990 0.3161116
Statistics 1.2139154 14.9294435 0.4175507 −481.4844 1.0603448
P values 0.2249037 0.1244114 0.5181617 0.7860 0.7045404
Statistics 0.9570174 14.3057750 0.2438077 −445.5148 0.9568966
P‑values 0.3386583 0.1535730 0.6214694 0.1130 0.1656837

Table 1: Summary statistics
Statistic / 
Asset

Gold WTI SP500 SSE

Mean 0.000** 0.000 0.000** 0.000
(0.032) (0.647) (0.047) (0.976)

Variance 0 0.001 0 0
Skewness −0.296*** −2.961*** −0.868*** −0.515***

(0.000) (0.000) (0.000) (0.000)
Ex.Kurtosis 3.059*** 76.340*** 17.287*** 7.936***

(0.000) (0.000) (0.000) (0.000)
JB 939.604*** 567480.808*** 29216.525*** 6198.567***

(0.000) (0.000) (0.000) (0.000)
ERS −7.047 −9.799 −21.852 −21.608

(0.000) (0.000) (0.000) (0.000)
Q (20) 9.315 69.370*** 214.865*** 43.510***

(0.581) (0.000) (0.000) (0.000)
Q2 (20) 183.969*** 436.982*** 2662.423*** 284.912***

(0.000) (0.000) (0.000) (0.000)
Kendall Gold WTI SP500 SSE
Gold 1.000*** 0.063*** 0.013 0.046***
WTI 0.063*** 1.000*** 0.122*** 0.068***
SP500 0.013 0.122*** 1.000*** 0.073***
SSE 0.046*** 0.068*** 0.073*** 1.000***
Significance levels are indicated by ***, **, and * for 1%, 5%, and 10%, respectively, 
with P-values shown in parentheses. Skewness is assessed via the D’Agostino (1970) 
test, kurtosis via Anscombe and Glynn (1983), and normality via the Jarque‑Bera (1980) 
test. Unit‑root properties are evaluated using Elliott et al. (1996), while the Q² (20) 
statistic represents the weighted Portmanteau test of Fisher and Gallagher (2012)

Conditional Value-at-Risk (CVaR) statistics are large and negative, 
but their P-values (0.42-0.11) again fail to reject model adequacy. 
Lastly, VaR duration tests yield statistics close to 1.0 and P-values 
from 0.70 to 0.17, indicating correct independence and clustering 
of VaR exceedances.

4.1.1. Dynamic conditional variance-covariance
Figure 1 depicts the dynamic variance–covariance based on the 
time-varying volatility and interdependencies across SP500, SSE, 
Gold, and WTI.

Empirical results show that WTI exhibits the most pronounced 
variance shifts, with sharp spikes particularly during the 
COVID-19 crisis in 2020 and the subsequent energy market 
shocks, reflecting the commodity’s vulnerability to global 
demand–supply disruptions and geopolitical tensions. The SSE 
also records substantial variance increases, especially in early 
2020 and during later episodes of domestic growth uncertainty, 
underscoring the sensitivity of Chinese equities to both pandemic-
related disruptions and structural policy risks. By contrast, 
the SP500 displays more moderate variance fluctuations, with 
values rising from near-zero levels in tranquil periods to peaks 

around 0.006 during 2020, highlighting the surge in U.S. market 
uncertainty under systemic stress. Gold shows the lowest variance 
among the assets, with temporary increases in 2020 and again 
in 2022, consistent with its conventional role as a hedge during 
inflationary pressures and heightened risk aversion. The covariance 
structures also reveal significant time variation. For instance, the 
co-movement between SP500 and WTI intensified during 2020, 
indicating their joint exposure to systemic shocks, which reduced 
their diversification potential. Conversely, Gold’s covariance 
with both equities and commodities weakened in stress periods, 
reflecting its safe-haven properties and its capacity to mitigate 
portfolio risk when traditional assets became more correlated. 
These dynamics, confirmed by the covariance structures, imply 
that investors should integrate gold as a strategic hedge and closely 
monitor oil spillovers, while policymakers need to strengthen 
macroprudential coordination to limit the amplification of systemic 
risks.

4.1.2. Dynamic conditional betas
Figure 2 displays the dynamic conditional betas derived from the 
DCC-GARCH framework exhibit substantial time variation across
Gold, WTI, the SP500, and the SSE, emphasizing the importance
of capturing conditional dynamics rather than relying on static
OLS estimates.

The results indicate that exposures among these assets are far from 
constant, with the most pronounced deviations occurring during 
episodes of systemic stress. For the SP500, conditional betas 
with Gold, WTI, and the SSE remain close to zero for most of the 
period but display notable spikes during crisis episodes, such as 
the COVID-19 outbreak in 2020 and the subsequent inflationary 
and monetary tightening shocks of 2022-2023. This highlights the 
vulnerability of U.S. equities to global disturbances, where cross-
asset linkages intensify under stress. WTI demonstrates the highest 
volatility in conditional betas, particularly against the SP500 
and Gold. These elevated and fluctuating values underscore oil’s 
sensitivity to macro-financial turbulence, where global demand 
shocks, supply disruptions, and geopolitical risks sharply alter 
its co-movements with other assets. Gold, by contrast, shows 
relatively moderate conditional betas, often hovering near zero 
but rising intermittently during stress episodes. These dynamics 
reflect gold’s dual role as both a safe-haven and a risk-sensitive 
asset, with its hedging capacity being episodic and dependent on 
prevailing macroeconomic and financial conditions. The SSE, 
meanwhile, exhibits largely muted conditional betas across the 
sample, pointing to a relatively weak transmission of Chinese 
market shocks to other assets. Nevertheless, occasional upward 
movements are observed during periods of heightened uncertainty, 
suggesting that Chinese equities can act as a marginal source of 
global spillovers in times of systemic stress.

4.1.3. Dynamic conditional correlations
Figure  3 displays the dynamic conditional correlations among 
Gold, WTI, the SP500, and the SSE, capturing how their co-
movements evolve across time.

The results reveal important differences in diversification and 
hedging potential across assets. For the SP500, correlations with 
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Figure 1: Dynamic conditional variance-covariance

The dynamic conditional variances and covariances are estimated using the DCC-GARCH framework (Engle, 2002) combined with mixed 
univariate GARCH models (Antonakakis et al., 2021)

Figure 2: Dynamic conditional betas

The dynamic conditional betas are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models 
(Antonakakis et al., 2021)

both WTI and Gold exhibit pronounced spikes during systemic 
stress, such as the COVID-19 shock in 2020 and the monetary 
tightening episodes of 2022-2023. These increases, often exceeding 
0.4, indicate that U.S. equities became more synchronized with 
commodity and safe-haven assets during crises, thereby reducing 
the scope for diversification precisely when it is most needed. 
WTI shows the highest degree of correlation variability, with 
correlations against Gold and the SP500 fluctuating sharply during 
periods of heightened market uncertainty. These patterns highlight 
oil’s sensitivity to macro-financial turbulence and underscore its 

dual role as both a driver and recipient of global risk spillovers. 
Gold, by contrast, maintains correlations that are generally close 
to zero and occasionally negative, particularly during episodes 
of heightened stress. This reinforces its long-established role 
as a hedge and safe-haven asset, capable of decoupling from 
risk-on assets when systemic uncertainty intensifies. Finally, the 
SSE exhibits the lowest and most stable correlations across the 
sample, rarely exceeding 0.2. This suggests that Chinese equities 
provide modest but steady diversification benefits, with limited 
transmission of domestic shocks to global markets.
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Figure 3: Dynamic conditional correlations

The dynamic conditional correlations are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models 
(Antonakakis et al., 2021)

Figure 4: Dynamic conditional R2 decomposed measures

The dynamic conditional R2 decomposed goodness-of-fit measures are based on the DCC-GARCH framework (Engle, 2002) with mixed univariate 
GARCH models (Antonakakis et al., 2021) and the R2 decomposition approach of Genizi (1993)

4.1.4. Dynamic conditional R2 and R2 decomposed measures
Figure  4 illustrates the dynamic conditional R2 decomposed 
measures derived from the DCC-GARCH framework, capturing 
the evolving explanatory power among the studied assets. The 
figure highlights substantial fluctuations in the R2 values across 
time, suggesting that the strength of the relationships between 
assets is highly time-dependent and sensitive to market conditions.

In summary, the SP500 and WTI exhibit the highest R2 values, 
indicating that their dynamics are more strongly explained by other 
market variables, particularly during turbulent periods such as the 
COVID-19 crisis (2020-2021) and the Russia–Ukraine conflict 
(2022). This suggests heightened co-movements and stronger 
interdependence when market uncertainty surges.
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In contrast, Gold and SSE display lower and more stable 
R2 levels, reflecting their more idiosyncratic behavior and 
limited exposure to systemic market fluctuations. This stability 
underscores Gold’s traditional role as a safe-haven asset, whose 
returns are less driven by the same factors affecting riskier 
markets.

Interestingly, spikes in R2 measures during crisis episodes indicate 
that periods of high uncertainty amplify the explanatory power 
of global risk factors, leading to synchronized movements across 
assets. Consequently, elevated R2 values can be interpreted as 
indicators of market stress, where diversification opportunities 
diminish and cross-market connectedness intensifies.

4.2. R2 Decomposed Connectedness Approach
We first discuss the average connectedness measures, followed 
by an analysis of the dynamic connectedness plots, which offer a 
more detailed perspective on the time-varying behavior that may 
be obscured by the averaged values. The connectedness table is 
then presented in Figure 5.

Table 3 displays the averaged connectedness measures for studied 
variables. Cross-market transmission remains moderate, as the 
total connectedness index (TCI) is about 24.41%, meaning 
roughly one quarter of each market’s forecast error variance is 
explained by shocks from other markets. The SP 500 emerges 
as the principal transmitter, sending 9.47% of shocks to others 
and receiving 9.28%, which yields the highest positive net 
connectedness of about 0.20. Gold and WTI each transmit around 
6% of shocks although receiving slightly more, about 6.4%, 
resulting in small negative net spillovers of (−0.07). The SSE is 
the least influential market, transmitting only 2.39% and receiving 
2.44%, with a nearly neutral net effect of (−0.05). “Inc.Own” 
values show that while own variance shares are included, each 
market’s total variance share slightly exceeds 100%, consistent 
with an overall connectedness of roughly 8.14% compared with 
the baseline TCI of 6.10%. Net pairwise transmission counts 
further designate that the SP 500 acts as a net transmitter to three 
markets, WTI to one, gold to two, and the SSE to none. Overall, 
the evidence highlights the SP 500 as the primary source of 
return spillovers, with WTI and gold playing secondary roles as 
mild net receivers and the SSE remaining largely insulated from 
external shocks.

4.2.1. Total connectedness index
Figure 5 illustrates the evolution of dynamic total connectedness 
(TCI), which captures the overall intensity of spillovers and 
interdependence among the studied assets over time. The 
fluctuations in TCI reflect the degree of market-wide risk 
transmission and systemic connectedness across periods of calm 
and turmoil.

Several notable peaks can be observed, corresponding to periods 
of heightened market uncertainty. The first major spike appears 
around 2018, likely linked to global financial tensions and energy 
market adjustments. A sharp rise is again evident in early 2020, 
coinciding with the outbreak of the COVID-19 pandemic, when 
uncertainty surged across global financial and commodity markets. 

Another visible increase emerges around 2022, corresponding to 
the Russo-Ukrainian conflict, which significantly disrupted energy 
markets and heightened co-movements among assets. Although 
the 2022 surge is less pronounced than the 2020 peak, it follows 
a period of relatively low connectedness observed in late 2021, 
suggesting that the markets had temporarily stabilized before the 
geopolitical shock. This pattern indicates that while systemic risk 
remains sensitive to major global events, the overall connectedness 
trend appears to moderate over time potentially reflecting stronger 
market resilience, improved diversification strategies, and greater 
integration of sustainability-focused investments such as ESG-
linked assets.

4.2.2. Net total directional connectedness
Figure 6 illustrates the net total directional connectedness among 
Gold, WTI, SP500, and SSE, highlighting which assets act as 
net transmitters or receivers of shocks over time. Overall, the 
SP500 and WTI emerge as dominant net transmitters, indicating 
their leading roles in propagating market shocks to other assets. 
In contrast, Gold and the SSE generally behave as net receivers, 
absorbing volatility rather than generating it.

Figure 5: Dynamic total connectedness

Dynamic total connectedness measures rest on the DCC-GARCH 
framework (Engle, 2002) with mixed univariate GARCH models 
(Antonakakis et al., 2021)

Table 3: Averaged connectedness measures
Asset Gold WTI SP500 SSE FROM
Gold 100.00 1.48 4.22 0.55 6.24
WTI 1.48 100.00 4.18 0.79 6.45
SP500 4.13 4.10 100.00 1.05 9.28
SSE 0.56 0.80 1.08 100.00 2.44
TO 6.17 6.38 9.47 2.39 24.41
Inc.Own 106.17 106.38 109.47 102.39 cTCI/TCI
NET −0.07 −0.07 0.20 −0.05 8.14/6.10
NPT 2.00 1.00 3.00 0.00
Averaged R2 decomposed connectedness measures are based on a DCC‑GARCH 
(Engle, 2002) with mixed univariate GARCH models (Antonakakis et al., 2021). Inc.
Own (Including Own), represents the sum of the contribution FROM (shocks received 
from other assets) plus the asset’s own shocks. In other words, it reflects the share of 
forecast error variance explained by both the asset itself and external sources. NET is 
the difference between the contribution TO (shocks transmitted to others) and FROM 
(shocks received from others). NPT measures the net bilateral shock transmission 
between assets, capturing the dominant direction of pairwise connectedness
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Gold’s persistent negative net connectedness underscores its 
defensive and safe-haven nature, especially during market turmoil 
such as the COVID-19 pandemic (2020) and the Russia–Ukraine 
conflict (2022), when it absorbed spillovers from equity and energy 
markets. Conversely, the SP500’s positive net connectedness 
during these crises reflects its strong influence on market-wide 
volatility, consistent with its status as a global risk barometer. 
WTI’s similar transmitting behavior suggests that energy price 
shocks are key drivers of cross-market risk transmission. These 
findings collectively emphasize the asymmetric shock transmission 
structure, where risk flows predominantly from equity and energy 
markets toward safe-haven assets like Gold, confirming its 
enduring role as a stabilizing asset within diversified portfolios.

4.3. Portfolio Risk Management
This section examines the performance of bivariate and multivariate 
hedging and minimum-risk portfolios. The analysis evaluates 
portfolio efficiency through hedging effectiveness (Ederington, 

1979), Sharpe ratios (Sharpe, 1994), and the information ratio 
relative to the GRE market portfolio. It begins with a review of 
individual asset performance, annualized returns, volatility, and 
risk-adjusted metrics, summarized in Table 4.

4.3.1. Hedging portfolios
Table  4 and Table  5 presents bivariate and multivariate hedge 
ratios respectively. The hedge ratio analysis, crossways all asset 
combinations, reveals notable differences in hedging effectiveness 
and risk-adjusted performance. When gold is the hedged asset, 
hedging with WTI provides the most favorable outcome, with 
a modest mean hedge ratio of 0.039, low hedging effectiveness 
(HE = 0.021), nevertheless the highest Sharpe ratio (SR = 0.776), 
indicating a meaningful improvement in risk-adjusted returns 
despite limited risk reduction. Hedging gold with the SP 500 or SSE 
yields slightly lower SR values (0.723 and 0.714, respectively) and 
minimal HE, suggesting that WTI offers a comparatively stronger 
stabilizing effect for gold portfolios. For WTI, the combination 

Table 4: Bivariate hedging portfolios
Asset Pair Mean Standard deviation 5% 95% HE P‑value Return Standard deviation SR
Gold/WTI 0.039 0.031 −0.014 0.094 0.021 0.659 0.001 0.001 0.776
Gold/SP500 0.023 0.252 −0.406 0.416 0.034 0.398 0.001 0.001 0.723
Gold/SSE 0.069 0.038 0.012 0.140 0.006 0.000 0.001 0.001 0.714
WTI/Gold 0.283 0.271 −0.089 0.747 0.017 0.889 0.001 0.005 0.113
WTI/SP500 0.511 0.414 −0.063 1.302 0.057 0.398 0.000 0.005 −0.019
WTI/SSE 0.259 0.139 0.121 0.408 0.018 0.000 0.001 0.005 0.159
SP500/Gold 0.049 0.252 −0.314 0.474 −0.013 0.889 0.001 0.002 0.585
SP500/WTI 0.071 0.062 −0.007 0.179 0.066 0.659 0.001 0.002 0.791
SP500/SSE 0.110 0.060 0.045 0.227 0.034 0.000 0.001 0.002 0.725
SSE/Gold 0.085 0.058 0.022 0.203 0.008 0.889 0.000 0.002 −0.042
SSE/WTI 0.047 0.019 0.025 0.084 0.017 0.659 0.000 0.002 0.020
SSE/SP500 0.142 0.074 0.053 0.289 0.013 0.398 0.000 0.002 −0.071

Figure 6: Net total directional connectedness

Net total directional connectedness measures rest on the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models 
(Antonakakis et al., 2021)
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Table 5: Multivariate hedging portfolios
Asset Pair Mean Standard deviation 5% 95% HE P‑value Return Risk SR
Gold/WTI 0.037 0.028 −0.001 0.086 0.053 0.186 0.001 0.001 0.823
Gold/SP500 −0.001 0.259 −0.446 0.387
Gold/SSE 0.058 0.036 0.009 0.125
WTI/Gold 0.278 0.253 −0.007 0.705 0.077 0.054 0.000 0.005 −0.037
WTI/SP500 0.495 0.429 −0.070 1.285
WTI/SSE 0.190 0.097 0.074 0.327
SP500/Gold 0.024 0.251 −0.335 0.445 0.050 0.213 0.001 0.002 0.787
SP500/WTI 0.065 0.061 −0.010 0.167
SP500/SSE 0.089 0.050 0.035 0.186
SSE/Gold 0.076 0.060 0.013 0.179 0.029 0.477 0.000 0.002 −0.109
SSE/WTI 0.036 0.016 0.017 0.064
SSE/SP500 0.128 0.075 0.038 0.254

with the SP 500 shows the highest HE (0.057) amongst its pairs, 
though the SR is negative (−0.019), implying that while risk is 
somewhat mitigated, overall risk-adjusted returns deteriorate. 
Hedging WTI with SSE offers slightly positive SR (0.159) and low 
HE (0.018), offering a safer but moderate hedging benefit. Hedging 
WTI with gold produces low HE and poor SR, indicating limited 
effectiveness. Using the SP 500 as the hedged asset, hedging with 
WTI stands out as the most effective strategy, delivering both the 
highest HE (0.066) and the highest SR (0.791) across all asset 
pairs, highlighting its dual benefit of risk reduction and strong 
risk-adjusted performance. Hedging the SP 500 with SSE or gold 
provides moderate SR values (0.725 and 0.585, respectively) yet 
lower HE, suggesting limited risk mitigation.

Lastly, for the SSE, all hedging strategies offer limited benefit. 
Hedging with gold, WTI, or the SP 500 results in low HE values 
(0.008-0.017) and mostly negative or marginally positive SR, 
reflecting minimal improvements in portfolio performance. Generally, 
the results indicate that SP500/WTI is the most efficient hedging 
combination, offering substantial risk-adjusted benefits, gold benefits 
moderately from WTI hedging, and SSE remains largely insensitive 
to cross-asset hedging, providing minimal diversification advantages. 
Worth noting that Gold is not an effective hedge for SP500.

The comparison between bivariate and multivariate hedging 
strategies reveals that multivariate portfolios generally enhance 
hedging performance across most assets. For gold, the bivariate 
hedges show modest HE, ranging from 0.006 (Gold/SSE) to 0.034 
(Gold/SP500), with Sharpe ratios between 0.714 and 0.776, the 
highest being for Gold/WTI (0.776). When gold is hedged using 
all three other assets simultaneously, the multivariate hedge 
achieves a higher HE of 0.053 and an improved SR of 0.823. This 
demonstrates that combining WTI, SP500, and SSE provides a 
stronger risk reduction and better risk-adjusted performance than 
any single bivariate combination.

For WTI, bivariate HE ranges from 0.017 (WTI/Gold) to 0.057 
(WTI/SP500), while SR varies from −0.019 (WTI/SP500) to 
0.159 (WTI/SSE). In the multivariate portfolio, although HE 
improves to 0.077, the SR becomes slightly negative at −0.037. 
This indicates that, despite a more effective reduction in risk, 
the multivariate hedge reduces expected returns relative to risk, 
highlighting a trade-off between risk mitigation and risk-adjusted 
performance for WTI.

When SP500 is hedged, the bivariate HE ranges from −0.013 
(SP500/Gold) to 0.066 (SP500/WTI), and SR spans 0.585 to 
0.791, with SP500/WTI offering both the highest HE and SR 
among bivariate options. The multivariate hedge preserves or 
slightly enhances HE and maintains a high SR of 0.787, showing 
that combining WTI, gold, and SSE provides a robust hedge while 
sustaining strong risk-adjusted performance. For SSE, bivariate 
HE is low across all pairs (0.008-0.029), and SR is negative or 
close to zero (−0.109-0.020), indicating weak risk reduction. In 
the multivariate hedge, HE improves modestly, but SR remains 
negative at −0.109, reflecting that while risk is partially reduced, 
the combination of hedging assets does not compensate enough 
to achieve positive risk-adjusted returns. This suggests that SSE 
is difficult to hedge effectively with the selected assets and may 
require alternative strategies for meaningful risk-adjusted gains.

In summary, Gold and SP500 benefit from both higher HE 
and improved SR, whereas WTI and SSE, despite higher HE, 
experience negative SR in the multivariate portfolio, indicating 
a trade-off between risk reduction and risk-adjusted returns for 
these markets.

4.3.2. Minimum-risk portfolios
We now turn to an examination of both bivariate and multivariate 
portfolio strategies designed to minimize risk while indirectly 
enhancing the Sharpe ratio, which measures the highest return 
achievable for a given level of investment risk. Our analysis begins 
with the empirical results of Kroner and Ng (1998), who report 
optimal bivariate portfolio weights, as summarized in Table 6.

The results show substantial variation in optimal weights across 
asset pairs. For instance, the Gold/WTI portfolio shows a relatively 
low hedging effectiveness (HE = 0.098) but maintains a Sharpe 
ratio of 0.653, suggesting moderate risk reduction with decent 
risk-adjusted performance. In contrast, Gold/SP500 and Gold/SSE 
provide higher HE values of 0.454 and 0.421, respectively, with 
Sharpe ratios of 1.023 and 0.504, indicating that the inclusion of 
particularly SP500 improves risk-adjusted returns for gold. Since 
the best SR is for Gold/SP500, this combination appears to be the 
most efficient in terms of risk-adjusted performance.

Interestingly, the WTI-hedged portfolios reveal that high HE 
does not always translate into improved Sharpe ratios. The WTI/
Gold portfolio achieves the highest HE (0.929) but a moderate 
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SR of 0.653. In contrast, the WTI/SSE portfolio, despite an HE 
of 0.900, results in a negative SR of −0.154. Similarly, the WTI/
SP500 portfolio has an HE of 0.867 but a SR of 0.209, reflecting 
that effective risk reduction may come at the cost of risk-adjusted 
performance. These findings underscore the importance of not 
solely relying on hedging effectiveness as a measure of portfolio 
quality. A high HE indicates effective risk reduction, but it does 
not guarantee improved risk-adjusted returns. Conversely, a 
negative Sharpe ratio suggests that the portfolio’s returns do not 
adequately compensate for the risk taken, highlighting the need 
for a balanced approach in portfolio construction that considers 
both risk reduction and return enhancement.

Portfolios involving the SP500 generally produce moderate to 
high HE, ranging from −0.035 (SP500/WTI) to 0.666 (SP500/
Gold), with SR values between 0.126 and 1.023. Gold again 
consistently contributes to higher Sharpe ratios, whereas WTI and 
SSE combinations, despite high HE, often fail to achieve strong 
risk-adjusted returns.

Finally, SSE portfolios show mixed results. SSE/Gold and SSE/
SP500 deliver moderate HE (0.612 and 0.555) with positive SR 
(0.504 and 0.126), while SSE/WTI has relatively lower HE (0.148) 
and a negative SR (−0.154), indicating limited improvement in 
risk-adjusted performance.

Overall, these results suggest that while bivariate hedging can 
reduce risk, the impact on risk-adjusted returns depends heavily 
on the chosen combination. Gold-based portfolios generally 
provide the most favorable balance between risk reduction and 
Sharpe ratio, whereas WTI and SSE hedges may lower risk but 
not always enhance risk-adjusted performance.

Next, we pay particular attention to the analyze the multivariate 
approach for the five distinct portfolios (Table 7). Primary, for the 
Minimum Variance Portfolio (MVP), the asset weights are 0.347 
for Gold, 0.018 for WTI, 0.379 for SP500, and 0.256 for SSE. 
This portfolio places the largest emphasis on SP500 and Gold, 
with a substantial allocation to SSE, while limiting exposure 
to WTI to control risk. The HE values; 0.597 for Gold, 0.968 
for WTI, 0.754 for SP500, and 0.730 for SSE, indicate varying 
levels of connectedness, where WTI’s high HE suggests it still 
plays an important role in diversification despite its low weight. 
The overall Sharpe Ratio for this portfolio is 0.624, reflecting a 

significant risk-adjusted return mainly driven by the concentration 
in equities and gold.

The Minimum Correlation Portfolio (MCP) spreads weights more 
evenly across assets, with 0.276 in Gold, 0.224 in WTI, 0.252 
in SP500, and 0.248 in SSE. This balanced allocation seeks to 
minimize correlations among assets to improve diversification. 
The HE values vary: Gold has a slightly negative HE of −0.119, 
indicating less integration, while WTI’s high HE of 0.912 points 
to a central diversification role. SP500 and SSE have positive HE 
values of 0.315 and 0.251 respectively. The portfolio’s Sharpe 
Ratio is 0.510, showing a modest but meaningful risk-adjusted 
return from this diversification approach.

For the Minimum Connectedness Portfolio (MPP), the asset 
weights are fairly balanced, with Gold at 0.250, WTI at 0.249, 
SP500 at 0.235, and SSE at 0.266. This portfolio focuses on 
minimizing systemic risk by reducing connectedness among 

Table 6: Optimal bivariate portfolio weights
Asset Pair Mean Standard deviation 5% 95% HE P‑value SR
Gold/WTI 0.881 0.075 0.733 0.987 0.098 0.013 0.653
Gold/SP500 0.491 0.217 0.171 0.879 0.454 0.000 1.023
Gold/SSE 0.547 0.159 0.324 0.847 0.421 0.000 0.504
WTI/Gold 0.119 0.075 0.013 0.267 0.929 0.000 0.653
WTI/SP500 0.109 0.119 0.000 0.360 0.867 0.000 0.209
WTI/SSE 0.158 0.116 0.036 0.400 0.900 0.000 ‑0.154
SP500/Gold 0.509 0.217 0.121 0.829 0.666 0.000 1.023
SP500/WTI 0.891 0.119 0.640 1.000 −0.035 0.407 0.209
SP500/SSE 0.561 0.226 0.166 0.895 0.593 0.000 0.126
SSE/Gold 0.453 0.159 0.153 0.676 0.612 0.000 0.504
SSE/WTI 0.842 0.116 0.600 0.964 0.148 0.000 −0.154
SSE/SP500 0.439 0.226 0.105 0.834 0.555 0.000 0.126

Table 7: Multivariate portfolio analysis
Portfolio 
/ Asset

Mean Standard 
deviation

5% 95% HE P‑value SR

Minimum variance portfolio (MVP)
Gold 0.347 0.148 0.131 0.628 0.597 0.000 0.624
WTI 0.018 0.024 0.000 0.070 0.968 0.000
SP500 0.379 0.202 0.063 0.687 0.754 0.000
SSE 0.256 0.142 0.050 0.519 0.730 0.000

Minimum correlation portfolio (MCP)
Gold 0.276 0.038 0.223 0.344 −0.119 0.007 0.510
WTI 0.224 0.040 0.152 0.277 0.912 0.000
SP500 0.252 0.038 0.194 0.319 0.315 0.000
SSE 0.248 0.035 0.184 0.299 0.251 0.000

Minimum connectedness portfolio (MPP)
Gold 0.250 0.014 0.226 0.272 −0.272 0.000 0.440
WTI 0.249 0.012 0.229 0.272 0.900 0.000
SP500 0.235 0.017 0.205 0.257 0.222 0.000
SSE 0.266 0.014 0.248 0.291 0.149 0.000

Minimum bivariate R2 portfolio (MRP)
Gold 0.251 0.015 0.226 0.275 −0.267 0.000 0.439
WTI 0.249 0.013 0.227 0.272 0.900 0.000 0.439
SP500 0.234 0.018 0.203 0.258 0.225 0.000 0.439
SSE 0.266 0.014 0.248 0.294 0.152 0.000 0.439

Minimum R2 decomposed connectedness portfolio (M2P)
Gold 0.250 0.008 0.236 0.262 −0.287 0.000 0.449
WTI 0.249 0.007 0.237 0.262 0.899 0.000 0.449
SP500 0.242 0.009 0.227 0.254 0.212 0.000 0.449
SSE 0.259 0.008 0.249 0.274 0.138 0.000 0.449
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assets within the network. The HE values reflect this risk reduction 
approach: WTI’s high positive HE of 0.900 indicates a strong 
contribution to lowering portfolio risk through connectedness 
reduction, while Gold’s negative HE of −0.272 suggests it 
contributes less to this risk mitigation. SP500 and SSE show 
moderate positive HE values of 0.222 and 0.149, respectively, 
indicating some role in risk reduction. The overall Sharpe Ratio 
of 0.440 is lower than those of the MVP and MCP, signaling more 
modest risk-adjusted returns but reflecting a more effective control 
of risk by strategically managing asset connectedness.

In the Minimum Bivariate R2 Portfolio (MRP), the asset weights 
closely mirror those of the Minimum Connectedness Portfolio, 
with Gold at 0.251, WTI at 0.249, SP500 at 0.234, and SSE at 
0.266. The HE values show a consistent pattern where Gold 
has a negative HE of (−0.267), indicating it contributes less to 
reducing overall portfolio risk, while WTI has a high positive HE 
of 0.900, reflecting its strong role in risk mitigation. SP500 and 
SSE have moderate positive HE values, supporting some degree 
of risk reduction. The Sharpe Ratio for this portfolio is 0.439, 
closely matching the MPP, which suggests similar effectiveness 
in balancing return and risk.

The Minimum R2 Decomposed Connectedness Portfolio (M2P) 
allocates weights of 0.250 to Gold, 0.249 to WTI, 0.242 to SP500, 
and 0.259 to SSE. The HE values continue the trend of Gold having 
a negative value at −0.287, WTI maintaining a high positive HE of 
0.899, while SP500 and SSE have moderate HE values of 0.212 
and 0.138 respectively. These HE values imply that WTI remains 
the primary asset contributing to risk reduction, whereas Gold’s 
negative HE indicates a lesser role in mitigating portfolio risk. 
SP500 and SSE provide moderate benefits in risk control through 
their HE values. The Sharpe Ratio of 0.449 is slightly higher than 
that of MRP and MPP, indicating a modest improvement in risk-
adjusted returns while maintaining a balanced portfolio.

In summary, the Minimum Variance Portfolio (MVP) concentrates 
on SP500, Gold, and SSE with relatively higher risk-adjusted 
returns, as seen in its highest Sharpe Ratio of 0.624. The other 
portfolios distribute weights more evenly to reduce correlations 
among assets and enhance diversification, resulting in better 
risk control but generally lower Sharpe Ratios ranging from 
0.439 to 0.510. These findings illustrate the trade-off between a 
concentrated portfolio targeting maximum efficiency and more 
balanced portfolios focused on reducing risk through diversified 
asset allocation and interaction metrics.

4.3.3. Portfolio performance
The portfolio performance presented in Table  8 examines 
the performance of the constructed portfolios. The MVP 

has the lowest return at 0.0005519 but also the lowest standard 
deviation at 0.0008841, reflecting the portfolio’s emphasis on 
risk minimization. Its Sharpe Ratio calculated by standard 
deviation is the highest at 0.6242, indicating the best risk-
adjusted return among the portfolios when volatility is the 
measure of risk. However, MVP has not the highest Sharpe 
Ratios when assessed with Value at Risk (VaR) and have the 
lowest one when calculated by Conditional VaR (CVaR), 
scoring 5.9791 and 3.2311 respectively, which suggests it 
performs relatively less favorably when risk is evaluated with 
tail risk measures.

The MCP shows a higher return of 0.0007516 but also a 
substantially higher standard deviation of 0.0014739, indicating 
greater volatility than MVP and lower than the others. Its Sharpe 
Ratio based on standard deviation is 0.5099, lower than MVP but 
still respectable. The MCP has the highest Sharpe Ratios for both 
VaR and CVaR risk assessments, at 6.9254 each, highlighting its 
strong performance when accounting for downside risk and tail 
events.

MPC and MRP portfolios have similar returns (0.0006909 and 
0.0006889) and standard deviations (around 0.00157), with Sharpe 
Ratios based on standard deviation around 0.44. Both exhibit 
slightly lower performance on VaR and CVaR Sharpe Ratios 
compared to MCP but higher than MVP, indicating moderate 
effectiveness in risk adjustment across different risk frameworks.

The M2P offers a return of 0.0007103 and the highest standard 
deviation at 0.0015807, signaling the greatest volatility among 
the portfolios. Its Sharpe Ratio based on standard deviation is 
0.4494, slightly better than MPC and MGP but lower than MCP 
and MVP. The VaR and CVaR Sharpe Ratios of 5.5132 suggest 
moderate performance in controlling tail risk, better than MVP 
but not as strong as MCP.

In conclusion, the MVP emphasizes low volatility and achieves 
the best risk-adjusted return measured by standard deviation 
but underperforms with tail risk metrics. MCP provides higher 
returns with increased volatility but excels in managing downside 
risks shown by its superior VaR and CVaR Sharpe Ratios. MPC, 
MGP, and MRP portfolios demonstrate modest returns and risk 
profiles, balancing between volatility and tail risk performance. 
These results suggest that investors should adapt their portfolio 
choices according to their priorities: favoring the MVP for 
shortterm stability, the MCP for stronger protection against 
extreme losses, or intermediate portfolios for a balance between 
return and risk management. For policymakers and regulators, 
these findings highlight the importance of promoting dynamic 
portfolio management approaches that explicitly incorporate tail 

Table 8: Portfolio performance
Performance Measures MVP MCP MPC MRP M2P
Return 0.0005519 0.0007516 0.0006909 0.0006889 0.0007103
Standard deviation 0.0008841 0.0014739 0.0015713 0.0015684 0.0015807
Sharpe Ratio (Standard deviation) 0.6242339 0.5098996 0.4396996 0.4392650 0.4493604
Sharpe Ratio (VaR) 5.9791028 6.9254220 5.3911580 5.3915879 5.5131796
Sharpe Ratio (CVaR) 3.2311361 6.9254220 5.3911580 5.3915879 5.5131796
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risks in order to strengthen the resilience of financial markets to 
systemic shocks.

5. CONCLUSION AND POLICY
RECOMMENDATIONS

This study delves into the evolving interconnections among 
gold, WTI crude oil, the S&P 500, and the Shanghai Stock 
Exchange Composite Index from 2019 to 2025, using an advanced 
econometric framework that combines multivariate regression, 
the DCC-GARCH model, dynamic conditional R2 metrics, and 
decomposed connectedness indices. The statistically significant 
findings evince that these relationships fluctuate over time and 
strengthen during systemic stress periods, such as the COVID-19 
pandemic and the Russia–Ukraine conflict. Consistent with prior 
research (Wang et al., 2022a; Ghorbel et al., 2022; Pandey et al., 
2023; Yousaf et al., 2023; Filippidis et al., 2023; Zhang and Wu, 
2024), the results provide evidence that gold remains the least 
interconnected asset, reinforcing its longstanding role as a safe 
haven. Conversely, WTI crude oil exhibits high volatility and 
significant contagion effects. The S&P 500 is identified as the main 
channel for shock transmission, underscoring its key influence on 
global financial instability, while the SSE appears more insulated, 
offering moderate diversification benefits. By incorporating 
connectedness indicators into portfolio construction, the analysis 
demonstrates that adaptive strategies, which adjust to changing 
asset interdependencies, outperform traditional approaches based 
on variance-covariance or correlation matrices, particularly in 
terms of hedging effectiveness and risk-adjusted returns during 
crises. These findings suggest that diversification benefits are 
conditional and require flexible models that explicitly incorporate 
systemic linkages. Furthermore, empirical evidence confirms that 
dynamic connectedness-based methods evince greater resilience 
compared to static diversification frameworks (Broadstock et al., 
2022; Gupta et al., 2023; Frikha et al., 2023; Belkhir et al., 2025).

These conclusions carry important implications for both 
policymakers and investors. For regulators, rising connectedness 
during crises calls for coordinated macroprudential policies and 
targeted interventions to stabilize energy markets. For investors, 
the study highlights the limitations of fixed diversification 
techniques and advocates strategic inclusion of gold as a hedging 
asset while closely monitoring contagion effects stemming from 
oil markets. Overall, applying connectedness analysis to regulatory 
frameworks and investment strategies serves as a valuable tool to 
enhance financial stability, effectively bridging theory and practice.
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