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ABSTRACT

This study investigates the evolving interdependencies and risk transmission mechanisms between energy and financial markets, focusing on gold,
West Texas Intermediate (WTI) crude oil, the S&P 500 Index (SP500), and the Shanghai Stock Exchange Composite Index (SSE) from January 2019
to August 2025. Employing daily return data, the analysis integrates multivariate linear regression, Dynamic Conditional Correlation-GARCH (DCC-
GARCH) models, and dynamic conditional R? decomposition to capture time-varying connectedness and explanatory power. Grounded in the Diebold
and Yilmaz (2012; 2014) framework, augmented by R’ decomposition, the findings evince heightened systemic risk during major global disruptions,
notably the COVID-19 pandemic and the Russia Ukraine conflict. WTI crude oil emerges as a principal conduit of volatility spillovers, underscoring
its pivotal role in the energy-finance nexus. Five portfolio strategies Minimum Variance, Minimum Correlation, Minimum Connectedness, Minimum
R?, and Minimum Decomposed R’ are constructed and evaluated under systemic stress. While the Minimum Variance Portfolio delivers robust risk-
adjusted returns, strategies based on connectedness metrics demonstrate superior resilience during crises. These insights offer valuable implications
for policymakers, investors, and scholars concerned with energy market stability, financial contagion, and adaptive portfolio design.

Keywords: Energy Finance Linkages, Oil and Gold Markets, Dynamic Connectedness, Volatility Spillovers, DCC-GARCH Models, Systemic Risk

Management
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1. INTRODUCTION

Energy and financial markets have become increasingly
interconnected, facilitating the rapid transmission of economic,
financial, and geopolitical shocks across commodities, financial
instruments, and regions. Within this network, certain assets hold
critical influence over systemic risk. West Texas Intermediate
(WTTI) crude oil is a key energy commodity that reflects broader
macroeconomic trends and geopolitical tensions, serving as a
major conduit for volatility spillovers (Nerurkar and Jickling,
2012; Toyoshima and Hamori, 2018; Wen et al., 2022; Filippidis
et al., 2023; Belkhir et al., 2025). In contrast, gold is frequently
viewed as a safe-haven asset amid uncertainty (Fang et al., 2018;
Shahzad et al., 2020; Shankar, 2025). Equity markets such as the

S&P 500 in the United States and the Shanghai Stock Exchange
Composite Index in China act as important indicators of economic
health in both developed and emerging markets (Xu et al., 2023;
Li et al., 2024). An integrated study of these assets is thus vital
for understanding systemic risk dynamics and their implications
for global financial stability and energy policy.

Previous research has extensively analyzed volatility and
interconnectedness among financial assets. Markowitz’s (1952)
foundational work provides evidence of the benefits of diversification,
but later studies evince that correlations tend to increase during
crises, weakening diversification benefits when most needed (Wen
et al., 2022; Ghorbel et al., 2022; Leong, 2025; Enow, 2025).
In commodities, oil delves into a significant role in transmitting
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macro-financial shocks (Kilian and Park, 2009; Broadstock and
Filis, 2014), with sensitivity to economic and geopolitical events
well documented (Hu et al., 2020; Le et al., 2023; Bouzguenda
and Jarboui, 2025). Gold’s role as a hedge and safe haven varies
depending on crisis conditions (Baur and Lucey, 2010; Baur and
McDermott, 2010; Reboredo, 2013; Chkili, 2016). Studies on equity
market connections (Diebold and Yilmaz, 2012; 2014) give proof
that linkages intensify under stress, increasing contagion risk.

However, two key gaps remain. Most research examines commodity
and equity markets separately, overlooking their interdependence
(Filippidis et al., 2023; Guidi et al., 2025). Moreover, portfolio
management often relies on static variance—covariance matrices,
which do not capture evolving systemic risk and volatility
spillovers. Addressing these limitations requires dynamic models
that incorporate systemic risk into portfolio construction.

This study fills these gaps by jointly analyzing gold, WTI crude
oil, the S&P 500, and the Shanghai Stock Exchange Composite
Index over 2019-2025, encompassing shocks like the COVID-19
pandemic and the Russia Ukraine war. It employs the DCC-
GARCH model (Engle, 2002), along with dynamic conditional
R’ measures and decomposed connectedness indices (Diebold
and Yilmaz, 2012; 2014), to quantify volatility interactions
and systemic risk. The study also tests five portfolio strategies
incorporating connectedness metrics.

The main contribution aims to highlight the integration of systemic
risk assessment with portfolio management, using conditional
volatility and connectedness measures in a cohesive framework.
Empirically, it provides evidence of the distinct roles of gold, oil,
and equity markets in shock transmission. Practically, it proposes
dynamic portfolio strategies that show greater resilience during
crises. The paper proceeds as follows: Section 2 reviews literature;
Section 3 details methods and data; Section 4 reports findings; and
Section 5 concludes with implications for stakeholders.

2. LITERATURE REVIEW

Over the past decades, increasing instability in financial linkages
has drawn wide scholarly interest. Multiple crises revealed the
shortcomings of traditional diversification, as correlations and
volatility spillovers tend to escalate during turbulent times,
reducing diversification benefits when they are most crucial
(Ghorbel et al., 2022; Frikha et al., 2023; Pandey et al., 2023).
To better capture systemic risk and market interdependencies,
researchers have shifted towards dynamic methodologies,
resulting in extensive empirical contributions (Wang et al.,
2022a; Yousaf et al., 2023). Within this context, commodities
such as oil and gold have been central topics (Hu et al., 2020;
Zhang and Wu, 2024; Bouzguenda and Jarboui, 2025). Oil
remains a critical component in the global economy, acting as a
transmitter of macroeconomic and financial shocks. Its volatility
is influenced by supply-demand fundamentals, inventory changes
(Bai, 2014; Le et al., 2023), and financial indicators including the
U.S. dollar index and VIX (Hu et al., 2020; Bhagat et al., 2022).
Geopolitical risks and policy uncertainty further intensify oil’s
volatility and its role in cross-market contagion (Zhao, 2022;

Filippidis etal., 2023). Gold is widely recognized as a safe-haven
asset during market distress. Evidence supports its tendency to
decouple from risky assets during crises, though effectiveness
varies with shock type and intensity (Baur and Lucey, 2010; Baur
and McDermott, 2010; Reboredo, 2013; Chkili, 2016; Ghorbel
et al., 2022; Widjaja et al., 2023). Its volatility is sensitive to
macroeconomic uncertainty, interest rate changes, and investor
sentiment, reinforcing its defensive qualities (Fang et al., 2018;
Huetal., 2020; Gupta et al., 2023). Equity markets also contribute
significantly to systemic risk analysis. The connectedness
framework proposed by Diebold and Yilmaz (2012; 2014) offers
a robust measure of contagion through forecast error variance
decomposition. Their studies demonstrate that market linkages
strengthen in crises, heightening systemic stress. This method has
since been expanded to analyze equities, bonds, and commodities,
revealing systemic risk fluctuations in response to macro-financial
conditions (Wang et al., 2022b; Xu et al., 2023).

There is broad agreement that financial interconnections lack
stability and depend heavily on context. Global events such
as economic downturns, pandemics, and geopolitical conflicts
reshuffle asset correlations and increase systemic risk transmission
(Wen et al., 2022; Frikha et al., 2023). These dynamics challenge
risk management and limit the effectiveness of conventional
diversification during adverse periods.

Many previous studies have examined the connections between
various assets using different methods, often revealing diverse and
sometimes contradictory results. Anand and Paul (2021) employ a
TVP-SVAR model to reveal that Brent oil demand shocks impact
returns and volatility in the Bombay stock exchange. Likewise,
Mensi et al. (2022), using a bivariate FIAPARCH approach,
identify shifting correlations between gold, oil, and U.S. equities
during the COVID-19 pandemic, highlighting the complexity of
market interactions in turbulent times. During the invasion crisis,
Alam et al. (2022) find that gold and silver primarily transmitted
shocks, while crude oil, platinum, and natural gas mainly absorbed
them. In China, Dai et al. (2022) report that WTI oil and gold mostly
received shocks, with certain stock sectors acting as transmitters;
this pattern is echoed by Li et al. (2024), who point to copper as
a key shock transmitter. Moreover, Chen et al. (2024) show that
uncertainty measures like the EPU, VIX, and GPR strengthen
return connectedness among assets. Recently, Bouzguenda and
Jarboui (2025) use quantile connectedness to demonstrate that
relationships between BRICS assets and alternative investments
were quite unstable and sensitive to crises from 2016 to 2023.

Despite these advances, critical gaps persist. Most literature analyzes
commodities and equities separately, lacking a comprehensive
unified framework. Additionally, portfolio management often
depends on static variance-covariance models that fail to represent
systemic risk dynamics. Although connectedness-based metrics
have been suggested to improve portfolio robustness during crises,
their practical use remains limited.

In sum, three main themes emerge from the literature:
e Asset correlations are time-varying and tend to intensify in
crisis periods
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e (il and gold play distinct but complementary roles within
global financial dynamics

e Advances in connectedness models and dynamic volatility
frameworks have enhanced systemic risk insight, yet their
integration into portfolio management is still underdeveloped.

3. DATAAND METHODOLOGY

3.1. Data

This study examines daily closing prices for Gold, West Texas
Intermediate (WTI) crude oil, the Shanghai Stock Exchange
Composite Index (SSE), and the SandP 500 Index (SP500) during
the period from January 03, 2019 to August 01, 2025. All data were
collected from reliable financial databases, including Bloomberg,
Refinitiv, and Yahoo Finance, and are expressed in U.S. dollars to
ensure consistency. Daily returns were calculated using continuously
compounded log-returns. The descriptive statistics reported in
Table 1 show that the mean daily returns are close to zero for each
asset, with gold and the SP 500 displaying weak but statistically
significant positive means, while WTT and the SSE present means
not significantly different from zero. Variance is lowest for gold and
the SP 500 and highest for WTI, indicating greater return volatility
in the oil market. All series exhibit pronounced non-normality: gold,
WTI, the SP 500, and the SSE have negative skewness, which is
particularly extreme for WTI, and all display high excess kurtosis,
once more most striking for WTI. The Jarque—Bera test confirms
significant departures from normality for every market. Unit-root
testing with the Elliott—Rothenberg—Stock (ERS) statistic rejects
the null of a unit root for all return series, proving stationarity. The
Ljung—Box Q test on raw returns detects no autocorrelation for
gold but significant serial dependence for WTI, the SP 500, and
the SSE. The Q? test on squared returns reveals strong conditional
heteroskedasticity amid all markets, consistent with time-varying
volatility. Kendall’s rank correlations highlight globally low but
significant dependence between assets. Gold’s correlations with
WTI, the SP 500, and the SSE are weak, though positive. WTT shows
modest positive associations with the SP 500 and SSE, and the SP
500 and SSE share the highest cross-market dependence among
the pairs. Whole, these results portray gold as the least connected
asset, WTI as the most volatile, and all markets as non-normally
distributed with evidence of conditional heteroskedasticity.

3.2. Methodology

Following Cocca et al. (2024), this study adopts a comprehensive,
multi-step methodology to examine evolving interdependencies
and translate them into actionable portfolio strategies. It begins
by revisiting the multivariate linear regression (MLR) model to
estimate coefficients and assess model fit, then extends the analysis
through the DCC-GARCH framework (Engle, 2002) to capture
time-varying correlations and covariance dynamics. Subsequently,
the dynamic conditional R? and its decomposition (Genizi,
1993) are employed to evaluate the shifting explanatory power
of key variables. These results are embedded within a dynamic
connectedness framework to identify systemic transmission
channels among assets. Finally, the insights are leveraged to
develop advanced portfolio strategies, namely connectedness-
driven and multivariate hedging portfolios, benchmarked against
traditional models to evaluate performance and risk efficiency.

3.2.1. Multivariate linear regression (MLR) framework

This section outlines the fundamental principles of the multivariate
linear regression (MLR) model, establishing the basis for more
advanced approaches such as the DCC-GARCH framework.
It focuses on the estimation of regression coefficients and the
assessment of model adequacy using the R-squared statistic. The
MLR model remains a foundational tool in empirical finance and
econometric analysis, typically formulated as follows:

y=Xb+e (1)

Where y is the dependent variable, X denotes the matrix of
independent variables, and b is the K. x1 dimensional vector
of regression coefficients, and ¢ is the 7 x 1 dimensional error
vector. All series, collectively denoted as Z = [y, X/, have been
adjusted for their mean values, thus excluding the intercept term.
The unconditional variance—covariance matrix (H) and correlation
matrix (R) are partitioned as follows:

H H,
= { W ¥ :l 2)
H, H,
and
1 R,
ny Rxx
Where:

H  represents the variance of the dependent variable (y),

H__represents the variance-covariance matrix of the independent
variables (X),

H,(H, = H;,x) contains the covariances between the

independent and dependent variables.

The vector of regression coefficients, b, can be estimated using
Ordinary Least Squares (OLS), yielding the estimator b:

b=x'X)"x", @

This coefficient can be expressed directly in terms of the variance-
covariance matrix H:

b=HJH,, ()

This relationship underscores that the regression coefficients are
solely governed by the underlying variance—covariance structure
of the variables. The R-squared (R?) statistic captures the share
of the dependent variable’s (y) variance that can be explained by
the independent variables (X):

R*=1-((y-Xb") (y—Xb)/y'y) (6)

As the regression coefficients, the R? can also be computed
directly from the partitioned variance-covariance matrix H or the
correlation matrix R, as follows:

2 ' -1 -1
R*=H'\ HH H, (7)
R*=R' RJR,, (8)
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Accordingly, both the regression coefficients and the R statistic can
be derived directly from the unconditional variance—covariance
matrix. Crucially, by substituting this static matrix HHH with its
time-varying counterpart Ht obtained from the DCC-GARCH
framework, one obtains dynamic conditional betas and dynamic
conditional R’ measures (Engle, 2016). This substitution enables
a time-varying assessment of model fit and explanatory power
across evolving market conditions.

3.2.2. DCC-GARCH model specification
Ensuing Engle (2002), the Dynamic Conditional Correlation
GARCH model is specified follow:

1 1
£, =D;'z,.z, ~ N(0,H),&, ~ N(0,1), D, = diag(h,? ...h2) 9

0, =(1-a-b)0+ag,_5, +b0,_, (10)
1 1

R, = diag(Q, >0, diag 0, *) (11)

H=D,RD, (12)

Here, z_ and & Are K+ 1 x 1 dimensional return and standardized
residual vectors, respectively. Error terms are independent and
identically distributed (i.d.) random variables with zero mean and
unit variance, often assumed to follow a specific distribution (e.g.,
Normal, Student’s #, Skewed Student’s #), O, H and R, are K x 1+
K x 1 dimensional unconditional variance, conditional variance-
covariance, and conditional correlation matrix, respectively.

The estimation follows a two-step procedure: (i) univariate
GARCH models yield conditional variances D, and (ii) DCC
parameters a (shock) and b (persistence) are estimated to derive
dynamic correlations, R, and ultimately H..

The full log-likelihood is decomposed into variance and correlation
components:

L(6,2)=L,(0)+L-(0.9) (13)
2
L, (9)=—%Z;(log(2n)+log(hi, +Z—Z) (14)
1e(00)- 37 (Kine(2m) 1o e8] 58
(15)

The log-likelihood function is divided into two parts: volatility.
L, (0) and correlation L . (6, @). In step one, 0 refers to univariate
GARCH parameters; in step two, @, who represents DCC
parameters. These steps can be estimated separately.! Following
Antonakakis et al. (2021), we use their selection criterion to

1 In simple terms, Antonakakis et al. (2021) introduce a univariate GARCH
selection criterion, which is essentially an adjusted Bayesian Information
Criterion (BIC). This criterion not only penalizes based on the total number
of parameters but also considers the number of statistically insignificant
parameters. Moreover, it incorporates knock-out criteria derived from
significant misspecification test statistics such as VaR, CVaR, VaR Duration,
Sign Bias, and Q2(20) test statistics. For more details, interested readers are
directed to Antonakakis et al. (2021).

estimate the univariate GARCH (1,1) model from the flexible
class proposed by Hentschel (1995) and discussed by Hansen
and Lunde (2005).

A A
htM2 =0+ ahtz—l)qzz—l —Tl| - 7(Zt—1 - C)a + ﬁhtz—l (16)

To allow greater flexibility, we follow Antonakakis et al. (2023)
by estimating multiple bivariate DCC-GARCH models, permitting
correlation dynamics a (shock) and b (persistence) to differ
across asset pairs. This contrasts with a single multivariate DCC
specification that imposes uniform correlation dynamics. Engle
and Sheppard’s (2001) DCC test is then employed to distinguish
between constant and dynamic correlations.

3.3. Dynamic Conditional R’ and R’ Decomposed
Measures

The dynamic conditional R’ is obtained by replacing the
components of H in Equation (6) by the dynamic components of
Ht. Thus, dynamic conditional R? goodness-of-fit measures are
obtained as follows,

R} =R'

RR (17)

Xt Xt

This time-varying R,2 captures the explanatory power of the model

in a dynamic context, providing insights into hedging effectiveness
and portfolio dependencies.

Since the sum of bivariate R,2 values typically differ from
multivariate R,2 (due to correlations among regressors), Genizi
(1993) proposed a decomposition method based on PCA of the
correlation matrix. The procedure transforms correlated regressors
into orthogonal latent factors f, that preserve total variance. Using
eigenvalue decomposition of R, the decomposed Rf is derived:

2 '
Rxx,t = VtEt Vt = Rxf,tR xf,t (18)
Rxf,t =V,EV", (19)
2
2 2 -1
Rt = Rxf,t (ny,t ny,t) (20)

Where R, =R/ R,
R} =R} R}, 1)

This decomposition attributes the overall explanatory power to
each explanatory variable, clarifying their relative contributions
over time.

3.4. Dynamic Connectedness Measures

To analyze systemic risk, we extend the Diebold andY1ilmaz (2012;
2014) framework by replacing the standard forecast-error variance
decomposition with the decomposed R,2 matrix, yielding:

R :|:R12t,---,Ri2,,~~~aR/2<f:|
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From this, directional connectedness is computed:

FROM, Zk s RY =RY (22)
To, Zk Lk=i k” (23)
NET,, =TO,, - FROM,, (24)

Positive (negative) net values indicate whether a variable is a net
transmitter (receiver) of shocks. Bilateral spillovers are captured
through the net pairwise directional connectedness (NPDC):

_52d p2d
Ryt _lel‘

NPDCy, 25)

The Total Connectedness Index (TCI) summarizes systemic risk
as the average conditional R?:

R el 1 K 1 K 5
TCl, = EZH 10, = ;ZH FROM,, = EZH R}, (26)

As R,2 €[0,1], the TCI is naturally normalized, rising sharply

during crises when assets move more synchronously. Pairwise
connectedness indices (PCI) are also employed:

2.d 2.d
Rl.j +Rﬁ

PCIS, =2.( ) (27)
iyt 2,d 2,d 2.d 2,d
R + Rij + Rﬁ + Rjj
2.R?
PCI§, = - I;fz’ (28)

if,t

3.5. Multivariate Portfolio Analysis
This section develops both bivariate and multivariate portfolio
strategies, emphasizing dynamic rebalancing under shifting market
conditions. Following Kroner and Sultan (1993), the bivariate
hedge ratio is:

Hy,
hr; o (29)

i, t =
Jjt

Where H, and H, stand for the conditional covariance between
asset i and jand the conditional variance of asset j.

3.5.1. Multivariate hedging portfolios

Using Engle’s (2016) dynamic beta framework:

B, Hxx Hoy (30)
Along position in yt can be hedged by shorting 8, in other assets.

This strategy benefits from higher predictive accuracy during
periods of strong correlations.

3.5.2. Optimal bivariate portfolio weights
Kroner and Ng (1998) define the optimal portfolio weight

@y,
' H,, 2H,],+H

Weights are constrained between 0 and 1 to satisfy the no-short
selling assumption:

0if ., <0

ij,t
it = ytlf0<wyt>1 (32)
lif ; ,>1

ij,t

3.5.3. Global minimum risk portfolios
Extending Markowitz (1952), Christoffersen et al. (2014), and
Broadstock et al. (2022), the optimization problem is:

argmin,g, o', Po, sto', =1,0<0', 21

Here, P, may be based on variance—covariance (), correlations
(RtRlR[) or PCI measures. Minimizing PCI-based risk often yields
superior performance in reducing systemic exposures.

3.5.4. Portfolio performance
Performance is evaluated using the Sharpe Ratio (SR) (Sharpe,
1994) and Hedging Effectiveness (HE) (Ederington, 1979).

X
SR=—~L— (33)

[VAR(x,)

These metrics assess both risk-adjusted returns and the
effectiveness of hedge strategies.

4. EMPIRICAL RESULTS

This section is structured as follows. Primary, we present the
estimation results of the DCC-GARCH model and the selection
process for univariate GARCH models, including misspecification
tests. Following, we examine the dynamic conditional R’ and
its decomposed measures to assess time-varying relationships.
We then discuss the outcomes of our connectedness analysis,
starting with an overview of return spillovers using averaged
connectedness measures. This is followed by an in-depth
exploration of dynamic connectedness plots to capture temporal
variations. Finally, we compare bivariate and multivariate portfolio
strategies, evaluating their performance using various portfolio
statistics to assess hedging effectiveness and risk diversification.

4.1. DCC-GARCH Estimation

Table 2 reports the diagnostic results for the best-fit univariate
GARCH models among the four-return series. Overall, these
diagnostics show that the chosen univariate GARCH models
capture the conditional volatility dynamics effectively, with no
evidence of misspecification or residual ARCH effects for any of
the examined assets.

The sign-bias test statistics range from about 0.25 to 1.21 with
P-values greater than 10%, indicating no significant leverage or
asymmetry effects. The WARCH(20) statistics (8.45-14.93) also
have non-significant P-values (0.68-0.12), indicating no remaining
ARCH effects after fitting the GARCH specification. Value-at-Risk
(VaR) backtests show non-significant statistics between 0.006 and
0.42, confirming adequate VaR coverage.
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Table 1: Summary statistics

Mean 0.000%** 0.000 0.000%** 0.000
(0.032) (0.647) (0.047) (0.976)
Variance 0 0.001 0 0
Skewness  —0.296%** -2 96]*** —0.868*** (). 5]5%**
(0.000) (0.000) (0.000) (0.000)
Ex.Kurtosis ~ 3.059%** 76.340%** 17.287%%*%* 7.936%**
(0.000) (0.000) (0.000) (0.000)
JB 939.604%** 567480.808*** 29216.525%** 6198.567***
(0.000) (0.000) (0.000) (0.000)
ERS =7.047 -9.799 —21.852 —21.608
(0.000) (0.000) (0.000) (0.000)
Q(20) 9.315 69.370%** 214.865%** 43 5]0%**
(0.581) (0.000) (0.000) (0.000)
Q2 (20) 183.969%**  436,982%***  2662.423%*%* 284 9]2%**
(0.000) (0.000) (0.000) (0.000)
Kendall Gold WTI SP500 SSE
Gold 1.000%** 0.063*** 0.013 0.046%***
WTI 0.063%*%** 1.000%%** 0.122%** 0.068*%**
SP500 0.013 0.122%** 1.000%*** 0.073%*%*
SSE 0.046%*** 0.068*** 0.073%** 1.000%#**

Significance levels are indicated by ***, ** and * for 1%, 5%, and 10%, respectively,
with P-values shown in parentheses. Skewness is assessed via the D’Agostino (1970)
test, kurtosis via Anscombe and Glynn (1983), and normality via the Jarque-Bera (1980)
test. Unit-root properties are evaluated using Elliott et al. (1996), while the Q> (20)
statistic represents the weighted Portmanteau test of Fisher and Gallagher (2012)

Table 2: Evaluation of univariate GARCH performance

Statistics  0.2522450  8.4533406 0.0065327 —463.6548 1.0086207
P-values  0.8008741 0.6762910 0.9355809  0.4220 0.5953409
Statistics  0.7772550 13.1708005 0.1329486 —472.6075 1.0344828
P-values  0.4370877 0.2203258 0.7153943  0.1990 0.3161116
Statistics  1.2139154  14.9294435 0.4175507 —481.4844 1.0603448
Pvalues 0.2249037 0.1244114 0.5181617 0.7860  0.7045404
Statistics  0.9570174 14.3057750 0.2438077 —445.5148 0.9568966
P-values 03386583  0.1535730 0.6214694  0.1130  0.1656837

Conditional Value-at-Risk (CVaR) statistics are large and negative,
but their P-values (0.42-0.11) again fail to reject model adequacy.
Lastly, VaR duration tests yield statistics close to 1.0 and P-values
from 0.70 to 0.17, indicating correct independence and clustering

of VaR exceedances.

4.1.1. Dynamic conditional variance-covariance

Figure 1 depicts the dynamic variance—covariance based on the
time-varying volatility and interdependencies across SP500, SSE,
Gold, and WTIL.

Empirical results show that WTI exhibits the most pronounced
variance shifts, with sharp spikes particularly during the
COVID-19 crisis in 2020 and the subsequent energy market
shocks, reflecting the commodity’s vulnerability to global
demand-supply disruptions and geopolitical tensions. The SSE
also records substantial variance increases, especially in early
2020 and during later episodes of domestic growth uncertainty,
underscoring the sensitivity of Chinese equities to both pandemic-
related disruptions and structural policy risks. By contrast,
the SP500 displays more moderate variance fluctuations, with
values rising from near-zero levels in tranquil periods to peaks

International Journal of Energy Economics and Policy | Vol 16 «

around 0.006 during 2020, highlighting the surge in U.S. market
uncertainty under systemic stress. Gold shows the lowest variance
among the assets, with temporary increases in 2020 and again
in 2022, consistent with its conventional role as a hedge during
inflationary pressures and heightened risk aversion. The covariance
structures also reveal significant time variation. For instance, the
co-movement between SP500 and WTI intensified during 2020,
indicating their joint exposure to systemic shocks, which reduced
their diversification potential. Conversely, Gold’s covariance
with both equities and commodities weakened in stress periods,
reflecting its safe-haven properties and its capacity to mitigate
portfolio risk when traditional assets became more correlated.
These dynamics, confirmed by the covariance structures, imply
that investors should integrate gold as a strategic hedge and closely
monitor oil spillovers, while policymakers need to strengthen
macroprudential coordination to limit the amplification of systemic
risks.

4.1.2. Dynamic conditional betas

Figure 2 displays the dynamic conditional betas derived from the
DCC-GARCH framework exhibit substantial time variation across
Gold, WTI, the SP500, and the SSE, emphasizing the importance
of capturing conditional dynamics rather than relying on static
OLS estimates.

The results indicate that exposures among these assets are far from
constant, with the most pronounced deviations occurring during
episodes of systemic stress. For the SP500, conditional betas
with Gold, WTI, and the SSE remain close to zero for most of the
period but display notable spikes during crisis episodes, such as
the COVID-19 outbreak in 2020 and the subsequent inflationary
and monetary tightening shocks 0f 2022-2023. This highlights the
vulnerability of U.S. equities to global disturbances, where cross-
asset linkages intensify under stress. WTT demonstrates the highest
volatility in conditional betas, particularly against the SP500
and Gold. These elevated and fluctuating values underscore oil’s
sensitivity to macro-financial turbulence, where global demand
shocks, supply disruptions, and geopolitical risks sharply alter
its co-movements with other assets. Gold, by contrast, shows
relatively moderate conditional betas, often hovering near zero
but rising intermittently during stress episodes. These dynamics
reflect gold’s dual role as both a safe-haven and a risk-sensitive
asset, with its hedging capacity being episodic and dependent on
prevailing macroeconomic and financial conditions. The SSE,
meanwhile, exhibits largely muted conditional betas across the
sample, pointing to a relatively weak transmission of Chinese
market shocks to other assets. Nevertheless, occasional upward
movements are observed during periods of heightened uncertainty,
suggesting that Chinese equities can act as a marginal source of
global spillovers in times of systemic stress.

4.1.3. Dynamic conditional correlations

Figure 3 displays the dynamic conditional correlations among
Gold, WTI, the SP500, and the SSE, capturing how their co-
movements evolve across time.

The results reveal important differences in diversification and
hedging potential across assets. For the SP500, correlations with
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Figure 1: Dynamic conditional variance-covariance
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The dynamic conditional variances and covariances are estimated using the DCC-GARCH framework (Engle, 2002) combined with mixed

univariate GARCH models (Antonakakis et al., 2021)

Figure 2: Dynamic conditional betas
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The dynamic conditional betas are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models

(Antonakakis et al., 2021)

both WTI and Gold exhibit pronounced spikes during systemic
stress, such as the COVID-19 shock in 2020 and the monetary
tightening episodes of 2022-2023. These increases, often exceeding
0.4, indicate that U.S. equities became more synchronized with
commodity and safe-haven assets during crises, thereby reducing
the scope for diversification precisely when it is most needed.
WTI shows the highest degree of correlation variability, with
correlations against Gold and the SP500 fluctuating sharply during
periods of heightened market uncertainty. These patterns highlight
oil’s sensitivity to macro-financial turbulence and underscore its
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dual role as both a driver and recipient of global risk spillovers.
Gold, by contrast, maintains correlations that are generally close
to zero and occasionally negative, particularly during episodes
of heightened stress. This reinforces its long-established role
as a hedge and safe-haven asset, capable of decoupling from
risk-on assets when systemic uncertainty intensifies. Finally, the
SSE exhibits the lowest and most stable correlations across the
sample, rarely exceeding 0.2. This suggests that Chinese equities
provide modest but steady diversification benefits, with limited
transmission of domestic shocks to global markets.
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Figure 3: Dynamic conditional correlations
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The dynamic conditional correlations are retrieved from the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models
(Antonakakis et al., 2021)

Figure 4: Dynamic conditional R2 decomposed measures
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The dynamic conditional R? decomposed goodness-of-fit measures are based on the DCC-GARCH framework (Engle, 2002) with mixed univariate
GARCH models (Antonakakis et al., 2021) and the R? decomposition approach of Genizi (1993)

4.1.4. Dynamic conditional R* and R? decomposed measures In summary, the SP500 and WTI exhibit the highest R’ values,
Figure 4 illustrates the dynamic conditional R’ decomposed indicating that their dynamics are more strongly explained by other
measures derived from the DCC-GARCH framework, capturing ~ market variables, particularly during turbulent periods such as the
the evolving explanatory power among the studied assets. The COVID-19 crisis (2020-2021) and the Russia—Ukraine conflict
figure highlights substantial fluctuations in the R? values across (2022). This suggests heightened co-movements and stronger
time, suggesting that the strength of the relationships between interdependence when market uncertainty surges.

assets is highly time-dependent and sensitive to market conditions.
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In contrast, Gold and SSE display lower and more stable
R? levels, reflecting their more idiosyncratic behavior and
limited exposure to systemic market fluctuations. This stability
underscores Gold’s traditional role as a safe-haven asset, whose
returns are less driven by the same factors affecting riskier
markets.

Interestingly, spikes in R? measures during crisis episodes indicate
that periods of high uncertainty amplify the explanatory power
of global risk factors, leading to synchronized movements across
assets. Consequently, elevated R? values can be interpreted as
indicators of market stress, where diversification opportunities
diminish and cross-market connectedness intensifies.

4.2. R’ Decomposed Connectedness Approach

We first discuss the average connectedness measures, followed
by an analysis of the dynamic connectedness plots, which offer a
more detailed perspective on the time-varying behavior that may
be obscured by the averaged values. The connectedness table is
then presented in Figure 5.

Table 3 displays the averaged connectedness measures for studied
variables. Cross-market transmission remains moderate, as the
total connectedness index (TCI) is about 24.41%, meaning
roughly one quarter of each market’s forecast error variance is
explained by shocks from other markets. The SP 500 emerges
as the principal transmitter, sending 9.47% of shocks to others
and receiving 9.28%, which yields the highest positive net
connectedness of about 0.20. Gold and WTI each transmit around
6% of shocks although receiving slightly more, about 6.4%,
resulting in small negative net spillovers of (—0.07). The SSE is
the least influential market, transmitting only 2.39% and receiving
2.44%, with a nearly neutral net effect of (—0.05). “Inc.Own”
values show that while own variance shares are included, each
market’s total variance share slightly exceeds 100%, consistent
with an overall connectedness of roughly 8.14% compared with
the baseline TCI of 6.10%. Net pairwise transmission counts
further designate that the SP 500 acts as a net transmitter to three
markets, WTI to one, gold to two, and the SSE to none. Overall,
the evidence highlights the SP 500 as the primary source of
return spillovers, with WTI and gold playing secondary roles as
mild net receivers and the SSE remaining largely insulated from
external shocks.

4.2.1. Total connectedness index

Figure 5 illustrates the evolution of dynamic total connectedness
(TCI), which captures the overall intensity of spillovers and
interdependence among the studied assets over time. The
fluctuations in TCI reflect the degree of market-wide risk
transmission and systemic connectedness across periods of calm
and turmoil.

Several notable peaks can be observed, corresponding to periods
of heightened market uncertainty. The first major spike appears
around 2018, likely linked to global financial tensions and energy
market adjustments. A sharp rise is again evident in early 2020,
coinciding with the outbreak of the COVID-19 pandemic, when
uncertainty surged across global financial and commodity markets.

Figure 5: Dynamic total connectedness
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Dynamic total connectedness measures rest on the DCC-GARCH
framework (Engle, 2002) with mixed univariate GARCH models
(Antonakakis et al., 2021)

Table 3: Averaged connectedness measures

Asset Gold WTI SP500 SSE FROM
Gold 100.00 1.48 4.22 0.55 6.24
WTI 1.48 100.00 4.18 0.79 6.45
SP500 4.13 4.10 100.00 1.05 9.28
SSE 0.56 0.80 1.08 100.00 2.44
TO 6.17 6.38 9.47 2.39 24.41
Inc.Own 106.17 106.38 109.47 102.39 cTCI/TCI
NET —-0.07 —-0.07 0.20 —-0.05 8.14/6.10
NPT 2.00 1.00 3.00 0.00

Averaged R? decomposed connectedness measures are based on a DCC-GARCH
(Engle, 2002) with mixed univariate GARCH models (Antonakakis et al., 2021). Inc.
Own (Including Own), represents the sum of the contribution FROM (shocks received
from other assets) plus the asset’s own shocks. In other words, it reflects the share of
forecast error variance explained by both the asset itself and external sources. NET is
the difference between the contribution TO (shocks transmitted to others) and FROM
(shocks received from others). NPT measures the net bilateral shock transmission
between assets, capturing the dominant direction of pairwise connectedness

Another visible increase emerges around 2022, corresponding to
the Russo-Ukrainian conflict, which significantly disrupted energy
markets and heightened co-movements among assets. Although
the 2022 surge is less pronounced than the 2020 peak, it follows
a period of relatively low connectedness observed in late 2021,
suggesting that the markets had temporarily stabilized before the
geopolitical shock. This pattern indicates that while systemic risk
remains sensitive to major global events, the overall connectedness
trend appears to moderate over time potentially reflecting stronger
market resilience, improved diversification strategies, and greater
integration of sustainability-focused investments such as ESG-
linked assets.

4.2.2. Net total directional connectedness

Figure 6 illustrates the net total directional connectedness among
Gold, WTI, SP500, and SSE, highlighting which assets act as
net transmitters or receivers of shocks over time. Overall, the
SP500 and WTI emerge as dominant net transmitters, indicating
their leading roles in propagating market shocks to other assets.
In contrast, Gold and the SSE generally behave as net receivers,
absorbing volatility rather than generating it.
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Gold’s persistent negative net connectedness underscores its
defensive and safe-haven nature, especially during market turmoil
such as the COVID-19 pandemic (2020) and the Russia—Ukraine
conflict (2022), when it absorbed spillovers from equity and energy
markets. Conversely, the SP500’s positive net connectedness
during these crises reflects its strong influence on market-wide
volatility, consistent with its status as a global risk barometer.
WTTI’s similar transmitting behavior suggests that energy price
shocks are key drivers of cross-market risk transmission. These
findings collectively emphasize the asymmetric shock transmission
structure, where risk flows predominantly from equity and energy
markets toward safe-haven assets like Gold, confirming its
enduring role as a stabilizing asset within diversified portfolios.

4.3. Portfolio Risk Management

This section examines the performance of bivariate and multivariate
hedging and minimum-risk portfolios. The analysis evaluates
portfolio efficiency through hedging effectiveness (Ederington,

1979), Sharpe ratios (Sharpe, 1994), and the information ratio
relative to the GRE market portfolio. It begins with a review of
individual asset performance, annualized returns, volatility, and
risk-adjusted metrics, summarized in Table 4.

4.3.1. Hedging portfolios

Table 4 and Table 5 presents bivariate and multivariate hedge
ratios respectively. The hedge ratio analysis, crossways all asset
combinations, reveals notable differences in hedging effectiveness
and risk-adjusted performance. When gold is the hedged asset,
hedging with WTI provides the most favorable outcome, with
a modest mean hedge ratio of 0.039, low hedging effectiveness
(HE =0.021), nevertheless the highest Sharpe ratio (SR = 0.776),
indicating a meaningful improvement in risk-adjusted returns
despite limited risk reduction. Hedging gold with the SP 500 or SSE
yields slightly lower SR values (0.723 and 0.714, respectively) and
minimal HE, suggesting that WTI offers a comparatively stronger
stabilizing effect for gold portfolios. For WTI, the combination

Figure 6: Net total directional connectedness
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Net total directional connectedness measures rest on the DCC-GARCH framework (Engle, 2002) with mixed univariate GARCH models

(Antonakakis et al., 2021)

Table 4: Bivariate hedging portfolios

Gold/WTI 0.039 0.031 —0.014 0.094
Gold/SP500 0.023 0.252 —0.406 0.416
Gold/SSE 0.069 0.038 0.012 0.140
WTI/Gold 0.283 0.271 —0.089 0.747
WTI/SP500 0.511 0.414 —0.063 1.302
WTI/SSE 0.259 0.139 0.121 0.408
SP500/Gold 0.049 0.252 —0.314 0.474
SP500/WTI 0.071 0.062 —0.007 0.179
SP500/SSE 0.110 0.060 0.045 0.227
SSE/Gold 0.085 0.058 0.022 0.203
SSE/WTI 0.047 0.019 0.025 0.084
SSE/SP500 0.142 0.074 0.053 0.289

0.021 0.659 0.001 0.001 0.776
0.034 0.398 0.001 0.001 0.723
0.006 0.000 0.001 0.001 0.714
0.017 0.889 0.001 0.005 0.113
0.057 0.398 0.000 0.005 —-0.019
0.018 0.000 0.001 0.005 0.159
—0.013 0.889 0.001 0.002 0.585
0.066 0.659 0.001 0.002 0.791
0.034 0.000 0.001 0.002 0.725
0.008 0.889 0.000 0.002 —0.042
0.017 0.659 0.000 0.002 0.020
0.013 0.398 0.000 0.002 —-0.071
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Table 5: Multivariate hedging portfolios

Asset Pair Mean Standard deviation 5% 95% HE P-value Return Risk SR
Gold/WTI 0.037 0.028 -0.001 0.086 0.053 0.186 0.001 0.001 0.823
Gold/SP500 —0.001 0.259 —0.446 0.387

Gold/SSE 0.058 0.036 0.009 0.125

WTI/Gold 0.278 0.253 -0.007 0.705 0.077 0.054 0.000 0.005 -0.037
WTI/SP500 0.495 0.429 -0.070 1.285

WTI/SSE 0.190 0.097 0.074 0.327

SP500/Gold 0.024 0.251 —0.335 0.445 0.050 0.213 0.001 0.002 0.787
SP500/WTI 0.065 0.061 -0.010 0.167

SP500/SSE 0.089 0.050 0.035 0.186

SSE/Gold 0.076 0.060 0.013 0.179 0.029 0.477 0.000 0.002 -0.109
SSE/WTI 0.036 0.016 0.017 0.064

SSE/SP500 0.128 0.075 0.038 0.254

with the SP 500 shows the highest HE (0.057) amongst its pairs,
though the SR is negative (—0.019), implying that while risk is
somewhat mitigated, overall risk-adjusted returns deteriorate.
Hedging WTI with SSE offers slightly positive SR (0.159) and low
HE (0.018), offering a safer but moderate hedging benefit. Hedging
WTI with gold produces low HE and poor SR, indicating limited
effectiveness. Using the SP 500 as the hedged asset, hedging with
WTI stands out as the most effective strategy, delivering both the
highest HE (0.066) and the highest SR (0.791) across all asset
pairs, highlighting its dual benefit of risk reduction and strong
risk-adjusted performance. Hedging the SP 500 with SSE or gold
provides moderate SR values (0.725 and 0.585, respectively) yet
lower HE, suggesting limited risk mitigation.

Lastly, for the SSE, all hedging strategies offer limited benefit.
Hedging with gold, WTI, or the SP 500 results in low HE values
(0.008-0.017) and mostly negative or marginally positive SR,
reflecting minimal improvements in portfolio performance. Generally,
the results indicate that SP5S00/WTI is the most efficient hedging
combination, offering substantial risk-adjusted benefits, gold benefits
moderately from WTI hedging, and SSE remains largely insensitive
to cross-asset hedging, providing minimal diversification advantages.
Worth noting that Gold is not an effective hedge for SP500.

The comparison between bivariate and multivariate hedging
strategies reveals that multivariate portfolios generally enhance
hedging performance across most assets. For gold, the bivariate
hedges show modest HE, ranging from 0.006 (Gold/SSE) to 0.034
(Gold/SP500), with Sharpe ratios between 0.714 and 0.776, the
highest being for Gold/WTI (0.776). When gold is hedged using
all three other assets simultancously, the multivariate hedge
achieves a higher HE 0f 0.053 and an improved SR of 0.823. This
demonstrates that combining WTI, SP500, and SSE provides a
stronger risk reduction and better risk-adjusted performance than
any single bivariate combination.

For WTI, bivariate HE ranges from 0.017 (WTI/Gold) to 0.057
(WTI/SP500), while SR varies from —0.019 (WTI/SP500) to
0.159 (WTI/SSE). In the multivariate portfolio, although HE
improves to 0.077, the SR becomes slightly negative at —0.037.
This indicates that, despite a more effective reduction in risk,
the multivariate hedge reduces expected returns relative to risk,
highlighting a trade-off between risk mitigation and risk-adjusted
performance for WTIL.

When SP500 is hedged, the bivariate HE ranges from —0.013
(SP500/Gold) to 0.066 (SP500/WTTI), and SR spans 0.585 to
0.791, with SP500/WTTI offering both the highest HE and SR
among bivariate options. The multivariate hedge preserves or
slightly enhances HE and maintains a high SR of 0.787, showing
that combining WTI, gold, and SSE provides a robust hedge while
sustaining strong risk-adjusted performance. For SSE, bivariate
HE is low across all pairs (0.008-0.029), and SR is negative or
close to zero (—0.109-0.020), indicating weak risk reduction. In
the multivariate hedge, HE improves modestly, but SR remains
negative at —0.109, reflecting that while risk is partially reduced,
the combination of hedging assets does not compensate enough
to achieve positive risk-adjusted returns. This suggests that SSE
is difficult to hedge effectively with the selected assets and may
require alternative strategies for meaningful risk-adjusted gains.

In summary, Gold and SP500 benefit from both higher HE
and improved SR, whereas WTI and SSE, despite higher HE,
experience negative SR in the multivariate portfolio, indicating
a trade-off between risk reduction and risk-adjusted returns for
these markets.

4.3.2. Minimum-risk portfolios

We now turn to an examination of both bivariate and multivariate
portfolio strategies designed to minimize risk while indirectly
enhancing the Sharpe ratio, which measures the highest return
achievable for a given level of investment risk. Our analysis begins
with the empirical results of Kroner and Ng (1998), who report
optimal bivariate portfolio weights, as summarized in Table 6.

The results show substantial variation in optimal weights across
asset pairs. For instance, the Gold/WTI portfolio shows a relatively
low hedging effectiveness (HE = 0.098) but maintains a Sharpe
ratio of 0.653, suggesting moderate risk reduction with decent
risk-adjusted performance. In contrast, Gold/SP500 and Gold/SSE
provide higher HE values of 0.454 and 0.421, respectively, with
Sharpe ratios of 1.023 and 0.504, indicating that the inclusion of
particularly SP500 improves risk-adjusted returns for gold. Since
the best SR is for Gold/SP500, this combination appears to be the
most efficient in terms of risk-adjusted performance.

Interestingly, the WTI-hedged portfolios reveal that high HE
does not always translate into improved Sharpe ratios. The WT1/
Gold portfolio achieves the highest HE (0.929) but a moderate
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Table 6: Optimal bivariate portfolio weights

Gold/WTI 0.881 0.075 0.733 0.987 0.098 0.013 0.653
Gold/SP500 0.491 0.217 0.171 0.879 0.454 0.000 1.023
Gold/SSE 0.547 0.159 0.324 0.847 0.421 0.000 0.504
WTI/Gold 0.119 0.075 0.013 0.267 0.929 0.000 0.653
WTI/SP500 0.109 0.119 0.000 0.360 0.867 0.000 0.209
WTI/SSE 0.158 0.116 0.036 0.400 0.900 0.000 -0.154
SP500/Gold 0.509 0.217 0.121 0.829 0.666 0.000 1.023
SP500/WTI 0.891 0.119 0.640 1.000 —0.035 0.407 0.209
SP500/SSE 0.561 0.226 0.166 0.895 0.593 0.000 0.126
SSE/Gold 0.453 0.159 0.153 0.676 0.612 0.000 0.504
SSE/WTI 0.842 0.116 0.600 0.964 0.148 0.000 —0.154
SSE/SP500 0.439 0.226 0.105 0.834 0.555 0.000 0.126

SR of 0.653. In contrast, the WTI/SSE portfolio, despite an HE
01 0.900, results in a negative SR of —0.154. Similarly, the WTI/
SP500 portfolio has an HE of 0.867 but a SR of 0.209, reflecting
that effective risk reduction may come at the cost of risk-adjusted

Table 7: Multivariate portfolio analysis

Minimum variance portfolio (MVP)

performance. These findings underscore the importance of not Gold 0347 0148  0.131 0.628 0597 0.000 0.624
solely relying on hedging effectiveness as a measure of portfolio WTI 0.018 ~ 0.024  0.000 0.070 0.968  0.000
quality. A high HE indicates effective risk reduction, but it does SP500 0379 0202 0.063 0.687 0.754  0.000
. . . SSE 0256  0.142  0.050 0.519 0.730 0.000
not guarantee improved risk-adjusted returns. Conversely, a o . .
. . ., Minimum correlation portfolio (MCP)
negative Sharpe ratio suggests that the portff)ho.s re.turns do not Gold 0276 0038 0223 0344 —0119 0007 0510
adequately compensate for the risk taken, highlighting the need WTI 0224  0.040 0.152 0277 0912 0.000
for a balanced approach in portfolio construction that considers SP500 0.252  0.038 0.194 0319 0.315 0.000
both risk reduction and return enhancement. SSE 0248  0.035 0.184 0.299 0251  0.000
Minimum connectedness portfolio (MPP)
.. . Gold 0250 0.014 0226 0272 -0272 0.000 0.440
Pprtfohos 1nvqlV1ng the SP500 generally produce moderate to WTI 0249 0012 0229 0272 0.900 0.000
high HE, ranging from —0.035 (SP500/WTI) to 0.666 (SP500/ SP500  0.235 0017 0205 0257 0222  0.000
Gold), with SR values between 0.126 and 1.023. Gold again SSE 0266  0.014 0248 0.291 0.149 0.000
consistently contributes to higher Sharpe ratios, whereas WTI and M(limigum bOIV;Srllate R()20p105rtf011)02(21\2m()) )275 267 0000 043
SS:(E c;mbnzlatlons, despite high HE, often fail to achieve strong WTL 0249 0013 027 0272 0900 0000 0439
risk-adjusted returns. SP500 0.234  0.018 0.203 0.258 0.225 0.000 0.439
SSE 0266  0.014 0248 0.294 0.152 0.000 0.439
Finally, SSE portfolios show mixed results. SSE/Gold and SSE/ Minimum R2 decomposed connectedness portfolio (M2P)
SP500 deliver moderate HE (0.612 and 0.555) with positive SR Gold 0250  0.008 0236 0262 0287 0.000 0.449
(0.504 and 0.126), while SSE/WTI has relatively lower HE (0.148) WTL 0249 0007 0237 0262 0899 0.000 0449
and a negative SR (—0.154), indicating limited improvement in SP300 - 0.242°0.009 02270254 0.2120.000 0449
& ) ’ & SSE 0259  0.008 0249 0274 0.138 0.000 0.449

risk-adjusted performance.

Overall, these results suggest that while bivariate hedging can
reduce risk, the impact on risk-adjusted returns depends heavily
on the chosen combination. Gold-based portfolios generally
provide the most favorable balance between risk reduction and
Sharpe ratio, whereas WTI and SSE hedges may lower risk but
not always enhance risk-adjusted performance.

Next, we pay particular attention to the analyze the multivariate
approach for the five distinct portfolios (Table 7). Primary, for the
Minimum Variance Portfolio (MVP), the asset weights are 0.347
for Gold, 0.018 for WTI, 0.379 for SP500, and 0.256 for SSE.
This portfolio places the largest emphasis on SP500 and Gold,
with a substantial allocation to SSE, while limiting exposure
to WTI to control risk. The HE values; 0.597 for Gold, 0.968
for WTI, 0.754 for SP500, and 0.730 for SSE, indicate varying
levels of connectedness, where WTI’s high HE suggests it still
plays an important role in diversification despite its low weight.
The overall Sharpe Ratio for this portfolio is 0.624, reflecting a
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significant risk-adjusted return mainly driven by the concentration
in equities and gold.

The Minimum Correlation Portfolio (MCP) spreads weights more
evenly across assets, with 0.276 in Gold, 0.224 in WTI, 0.252
in SP500, and 0.248 in SSE. This balanced allocation seeks to
minimize correlations among assets to improve diversification.
The HE values vary: Gold has a slightly negative HE of —0.119,
indicating less integration, while WTI’s high HE of 0.912 points
to a central diversification role. SP500 and SSE have positive HE
values of 0.315 and 0.251 respectively. The portfolio’s Sharpe
Ratio is 0.510, showing a modest but meaningful risk-adjusted
return from this diversification approach.

For the Minimum Connectedness Portfolio (MPP), the asset
weights are fairly balanced, with Gold at 0.250, WTI at 0.249,
SP500 at 0.235, and SSE at 0.266. This portfolio focuses on
minimizing systemic risk by reducing connectedness among
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assets within the network. The HE values reflect this risk reduction
approach: WTI’s high positive HE of 0.900 indicates a strong
contribution to lowering portfolio risk through connectedness
reduction, while Gold’s negative HE of —0.272 suggests it
contributes less to this risk mitigation. SP500 and SSE show
moderate positive HE values of 0.222 and 0.149, respectively,
indicating some role in risk reduction. The overall Sharpe Ratio
0f0.440 is lower than those of the MVP and MCP, signaling more
modest risk-adjusted returns but reflecting a more effective control
of risk by strategically managing asset connectedness.

In the Minimum Bivariate R’ Portfolio (MRP), the asset weights
closely mirror those of the Minimum Connectedness Portfolio,
with Gold at 0.251, WTTI at 0.249, SP500 at 0.234, and SSE at
0.266. The HE values show a consistent pattern where Gold
has a negative HE of (—0.267), indicating it contributes less to
reducing overall portfolio risk, while WTI has a high positive HE
of 0.900, reflecting its strong role in risk mitigation. SP500 and
SSE have moderate positive HE values, supporting some degree
of risk reduction. The Sharpe Ratio for this portfolio is 0.439,
closely matching the MPP, which suggests similar effectiveness
in balancing return and risk.

The Minimum R’ Decomposed Connectedness Portfolio (M2P)
allocates weights 0f 0.250 to Gold, 0.249 to WTI, 0.242 to SP500,
and 0.259 to SSE. The HE values continue the trend of Gold having
anegative value at —0.287, WTI maintaining a high positive HE of
0.899, while SP500 and SSE have moderate HE values of 0.212
and 0.138 respectively. These HE values imply that WTI remains
the primary asset contributing to risk reduction, whereas Gold’s
negative HE indicates a lesser role in mitigating portfolio risk.
SP500 and SSE provide moderate benefits in risk control through
their HE values. The Sharpe Ratio of 0.449 is slightly higher than
that of MRP and MPP, indicating a modest improvement in risk-
adjusted returns while maintaining a balanced portfolio.

In summary, the Minimum Variance Portfolio (MVP) concentrates
on SP500, Gold, and SSE with relatively higher risk-adjusted
returns, as seen in its highest Sharpe Ratio of 0.624. The other
portfolios distribute weights more evenly to reduce correlations
among assets and enhance diversification, resulting in better
risk control but generally lower Sharpe Ratios ranging from
0.439 to 0.510. These findings illustrate the trade-off between a
concentrated portfolio targeting maximum efficiency and more
balanced portfolios focused on reducing risk through diversified
asset allocation and interaction metrics.

4.3.3. Portfolio performance
The portfolio performance presented in Table 8 examines

the performance of the constructed portfolios. The MVP

Table 8: Portfolio performance

has the lowest return at 0.0005519 but also the lowest standard
deviation at 0.0008841, reflecting the portfolio’s emphasis on
risk minimization. Its Sharpe Ratio calculated by standard
deviation is the highest at 0.6242, indicating the best risk-
adjusted return among the portfolios when volatility is the
measure of risk. However, MVP has not the highest Sharpe
Ratios when assessed with Value at Risk (VaR) and have the
lowest one when calculated by Conditional VaR (CVaR),
scoring 5.9791 and 3.2311 respectively, which suggests it
performs relatively less favorably when risk is evaluated with
tail risk measures.

The MCP shows a higher return of 0.0007516 but also a
substantially higher standard deviation of 0.0014739, indicating
greater volatility than MVP and lower than the others. Its Sharpe
Ratio based on standard deviation is 0.5099, lower than MVP but
still respectable. The MCP has the highest Sharpe Ratios for both
VaR and CVaR risk assessments, at 6.9254 each, highlighting its
strong performance when accounting for downside risk and tail
events.

MPC and MRP portfolios have similar returns (0.0006909 and
0.0006889) and standard deviations (around 0.00157), with Sharpe
Ratios based on standard deviation around 0.44. Both exhibit
slightly lower performance on VaR and CVaR Sharpe Ratios
compared to MCP but higher than MVP, indicating moderate
effectiveness in risk adjustment across different risk frameworks.

The M2P offers a return of 0.0007103 and the highest standard
deviation at 0.0015807, signaling the greatest volatility among
the portfolios. Its Sharpe Ratio based on standard deviation is
0.4494, slightly better than MPC and MGP but lower than MCP
and MVP. The VaR and CVaR Sharpe Ratios of 5.5132 suggest
moderate performance in controlling tail risk, better than MVP
but not as strong as MCP.

In conclusion, the MVP emphasizes low volatility and achieves
the best risk-adjusted return measured by standard deviation
but underperforms with tail risk metrics. MCP provides higher
returns with increased volatility but excels in managing downside
risks shown by its superior VaR and CVaR Sharpe Ratios. MPC,
MGP, and MRP portfolios demonstrate modest returns and risk
profiles, balancing between volatility and tail risk performance.
These results suggest that investors should adapt their portfolio
choices according to their priorities: favoring the MVP for
shortterm stability, the MCP for stronger protection against
extreme losses, or intermediate portfolios for a balance between
return and risk management. For policymakers and regulators,
these findings highlight the importance of promoting dynamic
portfolio management approaches that explicitly incorporate tail

Performance Measures MVP MCP MPC MRP M2P

Return 0.0005519 0.0007516 0.0006909 0.0006889 0.0007103
Standard deviation 0.0008841 0.0014739 0.0015713 0.0015684 0.0015807
Sharpe Ratio (Standard deviation) 0.6242339 0.5098996 0.4396996 0.4392650 0.4493604
Sharpe Ratio (VaR) 5.9791028 6.9254220 5.3911580 5.3915879 5.5131796
Sharpe Ratio (CVaR) 3.2311361 6.9254220 5.3911580 5.3915879 5.5131796
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risks in order to strengthen the resilience of financial markets to
systemic shocks.

5. CONCLUSION AND POLICY
RECOMMENDATIONS

This study delves into the evolving interconnections among
gold, WTI crude oil, the S&P 500, and the Shanghai Stock
Exchange Composite Index from 2019 to 2025, using an advanced
econometric framework that combines multivariate regression,
the DCC-GARCH model, dynamic conditional R’ metrics, and
decomposed connectedness indices. The statistically significant
findings evince that these relationships fluctuate over time and
strengthen during systemic stress periods, such as the COVID-19
pandemic and the Russia—Ukraine conflict. Consistent with prior
research (Wang et al., 2022a; Ghorbel et al., 2022; Pandey et al.,
2023; Yousaf et al., 2023; Filippidis et al., 2023; Zhang and Wu,
2024), the results provide evidence that gold remains the least
interconnected asset, reinforcing its longstanding role as a safe
haven. Conversely, WTI crude oil exhibits high volatility and
significant contagion effects. The S&P 500 is identified as the main
channel for shock transmission, underscoring its key influence on
global financial instability, while the SSE appears more insulated,
offering moderate diversification benefits. By incorporating
connectedness indicators into portfolio construction, the analysis
demonstrates that adaptive strategies, which adjust to changing
asset interdependencies, outperform traditional approaches based
on variance-covariance or correlation matrices, particularly in
terms of hedging effectiveness and risk-adjusted returns during
crises. These findings suggest that diversification benefits are
conditional and require flexible models that explicitly incorporate
systemic linkages. Furthermore, empirical evidence confirms that
dynamic connectedness-based methods evince greater resilience
compared to static diversification frameworks (Broadstock et al.,
2022; Gupta et al., 2023; Frikha et al., 2023; Belkhir et al., 2025).

These conclusions carry important implications for both
policymakers and investors. For regulators, rising connectedness
during crises calls for coordinated macroprudential policies and
targeted interventions to stabilize energy markets. For investors,
the study highlights the limitations of fixed diversification
techniques and advocates strategic inclusion of gold as a hedging
asset while closely monitoring contagion effects stemming from
oil markets. Overall, applying connectedness analysis to regulatory
frameworks and investment strategies serves as a valuable tool to
enhance financial stability, effectively bridging theory and practice.
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