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ABSTRACT

This study investigates the dynamic relationship between greenhouse gas (GHG) emissions, agricultural activity, forest area, and other industrial
sectors in Indonesia using the Vector Error Correction Model (VECM) approach. The analysis employs annual data from 1990 to 2023 to capture both
short-run adjustments and long-run equilibrium among the variables. The results indicate that in the short run, agricultural and industrial activities
significantly increase GHG emissions, while changes in forest area have a negative but statistically insignificant effect. The negative and significant
error correction term confirms the existence of long-run equilibrium, with approximately 30% of deviations from equilibrium corrected each period,
indicating moderate adjustment speed. In the long run, agricultural and industrial sectors remain key contributors to emission growth, whereas forest
expansion mitigates emissions over time. Diagnostic and stability tests confirm that the model is statistically sound, stable, and free from serial
correlation and heteroskedasticity. The impulse response analysis further reveals that shocks from agriculture and industry lead to persistent increases
in emissions, while forest shocks exert stabilizing effects. The findings underscore the need for integrated and sustainable policy interventions across
sectors. Policymakers should promote climate-smart agricultural practices, enhance industrial energy efficiency, and strengthen forest conservation
efforts to achieve balanced economic and environmental outcomes. Moreover, coordinated cross-sectoral policies and investments in green technology
are crucial to ensure Indonesia’s transition toward a low-carbon and sustainable growth path.
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1. INTRODUCTION

causes of global climate change is the increasing of greenhouse
gas (GHG) emissions resulting from various activities that raise the

Unavoidable climate change makes adaptation a necessity. Various
compilations of meteorological data show an increasing climate
variability, with previously unprecedented extreme weather
conditions. The heightened occurrence of these extreme events is
linked to the phenomenon of global warming (Meehl et al., 2000).
This rapidly advancing phenomenon is feared to impact the rising
frequency of hydrometeorological disasters and the depletion of
natural resources, especially on the Earth’s surface. Consequently,
this phenomenon is expected to impede development or even
threaten the outcomes of development. On the other hand, global
warming will persist due to the inertia of the climate system, even
if greenhouse gas emissions were halted immediately. One of the

Earth’s temperature. The consequences of global climate change
also affect the balance of ecosystems for living organisms.

The impacts of climate change include rising sea levels, altered
rainfall patterns, decreased land area and crop productivity,
reduced quantity and quality of water, species extinction, and
habitat destruction. These climate-induced impacts pose challenges
to both social and economic sustainable development and hinder
the achievement of development goals. The dynamics of land
use change have the potential to increase carbon emissions, with
approximately 85% of emissions in Indonesia in 2015 originating
from land use activities (Krisnawati et al., 2015).
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The primary contributor to greenhouse gases is carbon. Green
spaces in forest ecosystems absorb GHG by transforming carbon
dioxide (CO,) into carbon (C) within trees, understory plants, and
soil. Forests absorb CO, from the air through photosynthesis and
store it as forest biomass. Forest biomass contains about 80% of
terrestrial carbon above ground and approximately 40% below
ground. Land conversion, deforestation, forest degradation, and
reforestation can alter land cover types, resulting in changes in the
composition of terrestrial biomass (Agus et al., 2013).

According to Smith et al. (2014), agriculture, forestry, and other
land uses stand as the second-largest contributor to greenhouse gas
(GHG) emissions, accounting for 20-24% of the total emissions,
with a more significant impact in developing countries. Based
on the World Resources Institute (WRI), agricultural emissions
comprise 11.8% of the total global GHG emissions. It is projected
that by 2050, global agricultural GHG emissions could increase
by up to 58% (World Resources Institute, 2019).

In line with Mannina et al. (2017) and FAO (2012), greenhouse gas
(GHG) emissions originating from agricultural activities primarily
stem from deforestation, livestock rearing, soil management,
and the use of agricultural machinery powered by fossil fuels.
This is further emphasized by Agboola and Bekun (2019) and
Shabbir et al. (2021). The significant role played by agricultural
practices in GHG emissions is due to their heavy reliance on
energy sourced from fossil fuels. Agriculture also affects the land’s
capacity to absorb light and heat, potentially leading to radiative
forcing (Blanco et al., 2014). Additionally, land degradation and
deforestation caused by human-induced land use activities can
impose stress on the land, resulting in anthropogenic emissions.
Regarding forestry, the Global Forest Resources Assessment
(2010) indicates that the reduction in forested areas and the
exploitation of trees for products or fossil fuels lead to the release
of approximately one billion tons of carbon annually into the
atmosphere.

Moreover, other land comprises desolate terrains and uncultivated
agricultural territories, determined by subtracting the combined area
of forests, grasslands, settlements, and cultivated lands from the
total area (Jenkins et al., 2006). Frequently devoid of management,
predicting changes in carbon reserves, non-CO, emissions, and
sequestrations in such regions poses a significant challenge.
Transformation of land into “alternative territory”” can occur, for
instance, as a result of deforestation causing profound degradation,
the release of carbon reserves, and the subsequent emissions.

According to Climate Watch data (2020), Indonesia produced
approximately 1.48 billion tons/gigatons of carbon dioxide
equivalent (Gt CO,e) GHG emissions in 2020. This amount
represents 3.1% of global greenhouse gas emissions, totaling
47.5 Gt CO,e. Despite its relatively small percentage, Indonesia’s
GHG emissions in 2020 ranked as the sixth-largest globally,
following China, the United States, India, the European Union,
and Russia. Breaking down the sources, in 2020, the majority of
Indonesia’s national GHG emissions originated from the energy
sector (44%), followed by land use/forestry (34%), agriculture
(10%), waste (9.4%), and industrial processes (2.3%). On a global

scale, GHG emissions from the energy sector are significantly
more dominant (75%) compared to the agricultural sector (12%),
industrial processes (6.6%), waste (3.5%), and land use/forestry
(2.9%). Regarding sector-specific contributions on a global scale,
Indonesia’s most significant contribution to GHG emissions comes
from land use/forestry, accounting for 35.9%.

As discussed earlier, energy consumption is recognized as the
most prevalent cause of environmental pollution, and numerous
prior studies have explored various facets of energy use and its
impact on the environment. However, this research contributes to
the literature in several ways. Initially, agriculture, forestry, and
other land uses play a substantial role in global GHG emissions, yet
there is a limited body of research examining their environmental
impact. Agriculture, forestry, and other land uses constitute a
unique sector in this context, as their mitigation potential stems
from both increased GHG sequestration and emission reduction
through land and livestock management (Smith et al., 2014).
Moreover, unlike previous literature, this study employs the
VECM approach to investigate not only the short-term but also the
long-term behavior of the three land use categories contributing
to GHG emissions. This approach will enhance our understanding
of how different land use types contribute to the majority of GHG
emissions. Lastly, this study presents evidence concerning diverse
land uses in Indonesia, one of the largest global emitters of GHGs.
In Indonesia, where activities related to agriculture, forestry, and
other land uses constitute a significant portion of the national
economy, they pose potential challenges that could be detrimental
to the ecosystem. Research often emphasizes short-term effects,
but there is a gap in understanding the long-term consequences
and feedback mechanisms associated with land use changes on
greenhouse gas emissions, including the impact on ecosystem
resilience and adaptability.

2. LITERATURE REVIEW

Greenhouse gas (GHG) emissions originating from agricultural
activities, forestry practices, and other land use endeavors have
garnered substantial attention in research circles due to their
noteworthy contribution to the overall global emissions. Research
efforts over the last 20 years have delved deeply into environmental
concerns, attracting the interest of contemporary scholars who have
meticulously scrutinized this particular phenomenon. Analysis
of existing literature reveals a close interconnection between the
forestry sector and the economy; the advancement of any economy
often comes at the cost of prolonged forest depletion. The reduction
in global forest coverage can be attributed to population expansion,
primarily fueled by the escalating demand for essential resources such
as food, fiber, fuel, and other natural commodities, ultimately resulting
in a heightened rate of forest cover depletion. Various studies have
shown that deforestation has a significant impact on carbon emissions
(Baccini et al., 2012; Damette and Delacote, 2012; FAO, 2020).

The depletion of forested lands on a global scale emerges as a
key factor contributing to global warming, climate change, soil
erosion, and biodiversity loss, consequently leading to a surge
in CO, emissions ranging from 6% to 17%. The conversion
of tropical forests into pastures has been observed to escalate
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emissions to varying extents over a span of two decades, although
subsequent emissions might exhibit a decline compared to those
emanating from undisturbed forests. Studies by Foley et al. (2005)
emphasize that since 1850, around 35% of human-induced CO,
emissions can be directly linked to alterations in land use practices.
Regarding agricultural practices, Qiao et al. (2019) undertook
a comprehensive evaluation of the environmental impacts of
agriculture within G20 nations, employing the Environmental
Kuznets Curve (EKC) framework spanning from 1990 to 2014.
The relationship between the agricultural sector and greenhouse
gas emissions has been discussed in several studies (Chen
et al., 2008; Veldkamp and Keller, 1997; Waheed et al., 2018).
Their primary conclusions affirmed the presence of the EKC
phenomenon within developed economies. Similarly, Zafeiriou
and Azam (2017) conducted a study across France, Spain, and
Portugal, exploring the correlation between the net value-added
index per capita, agricultural value added, and CO, emissions.
They confirmed the short-term manifestation of the EKC across all
surveyed countries, while in the long run, only France and Spain
demonstrated the discernible EKC trend.

In another study, Koondhar et al. (2021) analyzed the asymmetric
causation relationship among agricultural carbon emissions, energy
consumption, fertilizer utilization, and cereal food production
in Pakistan. The results of the linear Granger causality analysis
confirmed the causal relationship between energy consumption
and fertilizer application on cereal food production. Nonlinear
Granger causality examination showed that cereal food production
had a causal impact on agricultural carbon emissions and energy
consumption. Another study exploring the long-term relationship
between agriculture and CO, was conducted by Gokmenoglu et al.
(2019) for the period 1971-2014 in China. This research investigated
the long-term relationship between agriculture and CO, using
an autoregressive distributed lag (ARDL) approach. The ARDL
estimation outcomes clarified that agricultural progress positively
and rigidly impacts CO, emissions. Various other studies have also
supported the relationship between income and economic progress
in China conducted by Cole et al. (1997) and Janzen (2004).
Moreover, Aziz et al. (2020) found that the forestry, agricultural,
and renewable energy sectors play a significant role in testing the
Environmental Kuznets Curve in Pakistan.

Similarly, several studies have focused on greenhouse gas (GHG)
emissions and have investigated the agricultural influence on
such emissions. The groundbreaking study by Cole et al. (1997)
examined the environmental impact of agricultural practices
using GHG as an environmental proxy, revealing that substantial
quantities of GHG are released into the environment due to
agricultural operations. Furthermore, Janzen (2004) and Smith
(2004) explored the same phenomenon, examining carbon
sequestration in connection to agricultural practices. They
proposed that burning of plant debris and release of organic matter
from soil lead to contamination.

In a study conducted by Kehagias et al. (2015), it was shown
that the traditional use of fossil fuels significantly contributes to
GHG emissions by 46.4%, while fertilizers contribute by 20.9%.
Furthermore, Han et al. (2018) investigated the emissions of CH,

and N,O from agriculture, revealing that major economies exhibit
higher emission levels per individual. Research conducted by Zhou
et al. (2007) estimated CH, and N,O emissions from poultry and
livestock. Huang and He (2012) investigated the impact of fertilizer
application, agricultural machinery, and variations in energy
consumption on GHG emissions using data from 31 provinces in
China from 1995 to 2007. They utilized a spatial error model and
illustrated that excessive use of pesticides and fertilizers, combined
with investment in conventional machinery operations, are the
primary factors contributing to pollution in China.

Upon examination of the literature in the field of forestry, prior
research has been dedicated to exploring the validity of the
Environmental Kuznets Curve (EKC) hypothesis in relation
to forest resources as discussed by Foster and Rosenzweig
(2002). Recent findings by Zambrano-Monserrate et al. (2018)
have unveiled a prolonged correlation between deforestation
and economic advancement across five European nations. The
research conducted by Zhang et al. (2004) has determined that
China exhibits confirmation of a forest-induced EKC during the
later phases, drawing from analyses of regional, provincial, and
national models of China’s forested regions spanning from 1999
to 2010. Examining data from the years 2002 to 2015 in China,
Hao et al. (2019) investigated the same connection, illustrating
that the production of timber and expansion of afforestation areas
predominantly escalate alongside economic progress, subsequently
declining upon reaching a specific threshold. Additionally, Van Der
Werfetal. (2010) have disclosed that activities such as forest fires
and decay contribute to emissions, portraying a positive correlation
between forest and other land uses. In a separate study by Basyuni
etal. (2018) regarding various land categories, it was revealed that
the degradation of barren and shrub land serves as a significant
factor in carbon emissions, with shrub land alone contributing
30.6% to the overall CO, emissions in Indonesia.

Upon scrutiny of the prevailing body of literature, a notable
insufficiency is evident in the realm of studies examining the
interplay between greenhouse gas (GHG) emissions and the
sectors of agriculture and forestry. Nevertheless, scant research
delves into the repercussions of alternative land utilizations on
environmental emissions. It is discernible that alterations in land
coverage, including the depletion of forests and natural freshwater
reservoirs, have the potential to induce land deterioration,
consequently instigating environmental harm and ecosystemic
disruption on a global scale. Furthermore, a pivotal global
phenomenon is the escalating population growth, which engenders
significant demands for agricultural commodities. The process of
urbanization, in reciprocation, is accompanied by the phenomena
of excessive resource consumption, land fragmentation, and the
loss of biodiversity as documented by Huang et al. (2020) and
Ridzuan et al. (2020).

Indonesia’s Climate Change Data (2020) also indicates a
rising trend of emissions originating from several key sectors,
highlighting the urgency of understanding the environmental
impacts of land use changes within the Indonesian context. Based
on literature studies, it can be concluded that many studies focus on
individual components (agriculture, forestry, or other land uses),
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but there is a need for comprehensive, integrated assessments
that consider the synergies and trade-offs between these land uses
and their cumulative impact on GHG emissions. Research often
emphasizes short-term effects, but there is a gap in understanding
the long-term consequences and feedback mechanisms associated
with land use changes on GHG emissions, including the impact
on ecosystem resilience and adaptability. Therefore, this study
aims to examine the effects of agricultural land, forestry land,
and other land uses on the composite indicator of environmental
degradation, specifically GHG emissions. A comprehensive
understanding of GHG emissions across all sectors is crucial for
identifying alternatives to reduce emissions.

3. METHODS

This research aims to investigate the causal effect of agricultural
land, forestry, and other land on greenhouse gas emissions in
Indonesia. To achieve this objective, the analysis involves variables
such as agricultural land, forest land, and other land. Other land
is defined as land not categorized as agricultural or forest land,
encompassing barren and built-up land. Data are collected from
the World Development Indicators (WDI). The link to statistical
data in this research is https://databank.worldbank.org/. Variables
for greenhouse gas (GHG) emissions are measured in kilotons of
CO, equivalent (kt CO, eq), agricultural land is measured in square
kilometers (km?), forest land is measured in square kilometers
(km?), and other land is measured in hectares (ha). This study uses
data from 1990 to 2023. Operational definitions of all variables used
in this study, including greenhouse gas emissions, agricultural land,
forest land, other land, and total land area, are presented in Table 1.

The analysis employs a restricted vector autoregressive (VAR)
model to examine the causality between variables. This model
is built upon a vector error correction model (VECM), which
is a multiple equation model derived from the restricted VAR.
Integrated VAR-VECM Framework can evaluate the potential
benefits and drawbacks of an integrated framework that combines
VAR and VECM approaches and investigate how such a framework
can capture both short-term dynamics and long-term equilibrium
relationships in the context of greenhouse gas emissions from
agriculture, forestry, and other land use. Furthermore, through
VAR or VECM can explore the dynamic interactions and feedback
mechanisms between agriculture, forestry, and other land use on
greenhouse gas emissions and investigate how changes in one
sector may influence the emissions in other sectors over time,
and whether these relationships are better captured through VAR
or VECM.

In this study, an error correction model is utilized due to the
increased efficiency of coefficient estimates obtained from
the VAR resulting in VECM representation. Additionally, all
variables are treated as endogenous for tests related to long-run
parameters (Hajifar et al., 2021; Jang and Ogaki, 2004). With
GHG as the primary variable of interest, the VECM equations
are constructed based on the restrictions of Wald test coefficients,
where Equation 1 estimates the long-run causality between
variables, and Equation 2 estimates short-run causal effects, as
illustrated below:

ECT,, = 0, emissions , - 5,- agriculturerj -0, forest -0 other,

k-1
Aemissions, =6, + E - S;Aemissions,_;
i=
k-1 ) k-1
+E j:ISjAagrlculturet_ i E mz]émAforest,_m

k-1
+Zn:l S,Aother,_, + MECT,_, + ¢,

k-1
Aagriculture, = 8, + Zi:l S;Aemissions,_;
k-1 ) k-1
+z_/=1 0 ;Aagriculture,_; + zm:1 0,,Morest,_,
k-1
+) 8, Mother,_, + L ECT, , +é&,
k-1 .
Aforest, = 05 + Ziz] 6;Aemissions,_;

k-1 k-1
+Z i 0 ;Aagriculture,_; + Z - o,,Aforest,_,

k-1
+zn=1 S,Aother,_, + MECT, | + &,

k-1
Aother, =6, + E 6;Aemissions,_;
i=1
k-1 ) k-1
+Zj:l 0 ;Aagriculture,_; + E - o,,Aforest,_,,
k-1
+D 8, Nother,_, + L ECT,_, +é,

Notes:

“k-1 is the lag length is reduced by 1. 6, 5/., d , 6 are short-
run dynamic coefficient of the model’s adjustment long-run
equilibrium relationships. 4, is speed of adjustment parameter
with negative sign. ECT , represents the error correction term is
the lagged value of the residuals obtained from the cointegrating
regression of the dependent variable on the regressors. Contains
long-run information derived from the long-run cointegrating
relationship, and ¢, is the error term”.

Here is the explanation of each variable:

“According to definition provided by World Bank, CO, emissions
(kt) are those stemming from the burning of fossil fuels and the
manufacture of cement. They include carbon dioxide produced
during consumption of solid, liquid, and gas fuels and gas flaring”
(World Bank, 2024).

“According to definition provided by World Bank, agricultural land
(sq. km) is Agricultural land refers to the share of land area that
is arable, under permanent crops, and under permanent pastures.
Arable land includes land defined by the FAO as land under
temporary crops (double-cropped areas are counted once), temporary
meadows for mowing or for pasture, land under market or kitchen
gardens, and land temporarily fallow. Land abandoned as a result of
shifting cultivation is excluded. Land under permanent crops is land
cultivated with crops that occupy the land for long periods and need
not be replanted after each harvest, such as cocoa, coffee, and rubber.
This category includes land under flowering shrubs, fruit trees, nut
trees, and vines, but excludes land under trees grown for wood or
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Table 1: Operational research variables

1 Greenhouse Total greenhouse gas emissions Megaton CO2
Gas generated by all sectors, including  equivalent
Emissions  Land Use, Land-Use Change, and (Mt CO2e)
(GHG) Forestry (LULUCEF).

2 Agricultural Land area used for agricultural Square kilometers
Land (AL) activities, including cropland, (sq. km)

pastures, and plantations.

3 Forest The area of land covered by natural ~ Square kilometers

Land (FL)  or planted forests that act as carbon  (sq. km)

sinks.

Land not classified as agricultural
or forest land, such as settlements,
built-up areas, and shrublands.
Calculated as: Total Land Area
(Agricultural Land+Forest Land).
The total area of land in a country,
encompassing all types of land use.

4 Other Land

(OL) (sq. km)

5  Total Land

Area (TL) (sq. km)

Square kilometers

Square kilometers

CAIT—-Climate Watch

or World Development
Indicators (derived from
EN.ATM.GHGT.KT.CE)
WDI: AG.LND.AGRI.K2

(Dependent variable)

Positive (+) expansion of
agricultural land tends to

increase GHG emissions through
deforestation and fertilizer use.
Negative (—) an increase in forest
area reduces GHG emissions due to
carbon absorption capacity.
Positive (+) urbanization and land
development increase emissions
from economic and transport
activities.

WDI: AG.LND.FRST.K2

Author’s calculation based
on WDI: AG.LND.TOTL.
K2 — (AG.LND.AGRI.
K2+AG.LND.FRST.K2)
WDI: AG.LND.TOTL.K2  (Control/used for derived
calculation)

timber. Permanent pasture is land used for five or more years for
forage, including natural and cultivated crops” (World Bank, 2024).

“According to definition provided by World Bank, Forest area
(sq. km) is land under natural or planted stands of trees of at least
5 meters in situ, whether productive or not, and excludes tree
stands in agricultural production systems (for example, in fruit
plantations and agroforestry systems) and trees in urban parks
and gardens” (World Bank, 2024).

“According to definition provided by World Bank, land area
(sq. km) is a country’s total area, excluding area under inland
water bodies, national claims to continental shelf, and exclusive
economic zones. In most cases the definition of inland water bodies
includes major rivers and lakes” (World Bank, 2024).

Bella (2018) and Katircioglu et al. (2014) have emphasized, the
dependent variables in equations (1) to (3) may exhibit delayed
adjustments to their equilibrium levels over an extended period.
As a result, an examination was conducted to evaluate the rate of
adjustment between short-run and long-run levels of emissions,
agriculture, forest, and other factors by employing dynamic Vector
Error Correction Model (VECM) frameworks. To begin with, four
Vector Autoregression (VAR) models were constructed with a lag
parameter of p. Within the VAR framework, each endogenous variable
within the system is modeled as a function of its lagged values across
all endogenous variables. Given the multitude of coefficients present
in each equation of the VAR model, the primary focus lies not on these
coefficients but on the utilization of impulse response functions and
Granger causality tests for analytical purposes.

4. RESULTS AND DISCUSSION

4.1. Descriptive Statistics

Table 2 presents the descriptive statistics of the variables used
in this study. The variables include total greenhouse gas (GHG)
emissions, agricultural activity, forest area, and other contributing
factors.

Table 2: Descriptive statistics

Emissions  1233.18 545.8733 539.3634 2472.894
Agriculture 529577.7 80200.52 413510 661152
Forest 1010641 76374.92 889667.4 1185450
Other 319230.2 43235.61 175290 392949

Source: Data Processed, 2025

The mean value of emissions is approximately 1,233.18 Mt COze,
indicating the average level of GHG emissions produced over the
study period. The standard deviation of 545.87 reflects substantial
variation in annual emissions, suggesting that Indonesia’s emission
levels have fluctuated considerably due to changing economic
activities, land use patterns, and environmental policies. The
minimum emission value (539.36 Mt CO.¢) and maximum (2,472.89
Mt COze) confirm the presence of significant dynamics over time.

The agriculture variable shows an average value of 529,577.7, with
arelatively large dispersion (standard deviation of 80,200.52). This
variation suggests that agricultural expansion and productivity levels
have changed notably, likely reflecting shifts in land utilization,
policy support, and technological adoption within the sector.

For the forest variable, the mean value of 1,010,641 and standard
deviation of 76,374.92 indicate a gradual decline in forest area
over time. The minimum and maximum values (889,667.4
and 1,185,450, respectively) show that deforestation and
land conversion have played an important role in influencing
Indonesia’s carbon balance and emission trends.

Lastly, the other category, which includes additional land-use
components and miscellaneous sources of emissions, has an
average value 0of 319,230.2 with a standard deviation 0f43,235.61.
The moderate variability of this variable implies that these
components have remained relatively stable compared to the
other major sectors.

Overall, the descriptive statistics suggest that variations in
GHG emissions are closely associated with dynamics in the
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agricultural and forestry sectors. The wide dispersion across
variables indicates that structural shifts in land use and
production intensity are key factors driving Indonesia’s emission
patterns. These findings provide a preliminary understanding
of how sectoral changes contribute to the country’s overall
GHG emissions before conducting more detailed econometric
analysis.

4.2. Unit Root Test

The importance of unit root testing in this study lies in its ability
to determine the presence of unit roots among variables, enabling
the consideration of panel data as stationary if no unit roots are
detected. Ultimately, the validity of the relationship between
independent and dependent variables can be confirmed. The unit
root testing in this study also relies on statistical tests at a certain
significance level and first difference tests. The results of the unit
root tests can be found in Table 3.

The Augmented Dickey-Fuller (ADF) test was conducted to
examine the stationarity of each variable in the model. A variable
is considered stationary when the absolute value of the ADF
statistic is greater than the critical value at the 5% significance
level, indicating that it does not contain a unit root.

As shown in Table 3, the ADF statistics for all variables at the
level form are generally not significant, implying that the series
are non-stationary in their original form. However, after taking the
first difference, all variables show a substantial increase in the ADF
statistic values, exceeding the critical value at the 5% significance
level. This result suggests that the variables emissions, agriculture,
forest, and other land use become stationary after first differencing.

Therefore, it can be concluded that each variable is integrated
of order one, I(1). This finding indicates that the variables share
similar stochastic trends over time, making them suitable for
further analysis using cointegration or time-series models such as
the Vector Error Correction Model (VECM) or trend regression
models that capture both short-term and long-term relationships
among variables.

Table 3: Unit root tests (Augmented Dickey-Fuller)

Emissions —1.875 —8.093
Agriculture 0.816 —6.227
Forest —3.611 —2.273
Other —4.371 —5.454

Source: Data Processed, 2025. Significance level at 0=5%

Table 4: Selection criteria for optimal lags

0 —1253.75 3.1et31 83.8499 83.9096 84.0367
1 —1122.31 262.87 1.4et28 76.1541 76.4529* 77.0882*
2 —1104.01 36.599* 1.3e+28* 76.0008* 76.5387 77.6823
3 —1095.22 17.592 2.5e+28 76.4811 77.2581 78.9098
4 —1083.9 22.625 4.8e+28 76.7936 77.8096 79.9696

4.3. Optimal Lag Criteria

Optimal Lag Criteria is a criterion used in time series analysis to
select the optimal lag (delay time) in autoregressive models or vector
autoregressive models (VAR). Optimal lag selection is crucial as it
can influence the results of the analysis and predictions of the model.
The results of the optimal lag criteria testing can be found in Table 4.

From the results, the LR, FPE, and AIC criteria all indicate that the
optimal lag is 2, as shown by the smallest values and the presence
of an asterisk (*) at lag 2. Meanwhile, the HQIC and SBIC criteria
suggest that the optimal lag is 1.

In practice, the final decision on the optimal lag is typically based
on the majority rule or the criteria that best suit the model’s
purpose. Given that most of the selection criteria (LR, FPE, and
AIC) point to lag 2, this lag length is chosen as the optimal lag
for subsequent analysis.

Selecting the correct lag length is crucial because it ensures that
the dynamic relationships among variables are captured accurately
while avoiding problems of overfitting or loss of degrees of
freedom. Therefore, based on these results, a lag order of two
(lag = 2) provides the most efficient and reliable specification for
further modeling, such as cointegration testing and Vector Error
Correction Model (VECM) estimation.

4.4. Stability Test

After selecting the optimal lag, which is lag 4, the stability test
is conducted next. The results of the stability test are presented
in the Table 5.

The stability test is performed to ensure that the estimated Vector
Error Correction Model (VECM) or Vector Autoregressive (VAR)
model satisfies the stability condition, which is a prerequisite for
the validity of the model’s dynamic analysis. Stability is assessed
based on the modulus of the eigenvalues of the companion matrix.

A model is considered stable (or dynamically stationary) when all
eigenvalues lie inside the unit circle, meaning that all modulus
values are <1 (JA| < 1). This condition ensures that the system
converges to its long-run equilibrium and that the impulse
response functions and variance decompositions are reliable for
interpretation.

As presented in Table 5, all modulus values are below 1, with
the largest modulus recorded at 0.708197. This indicates that the
model fulfills the stability condition. Therefore, the estimated

Table 5: Stability test

0.708197 0.708197
—0.708197 0.708197
—0.4421294 0.442129
0.4421294 0.442129
—0.0751884+0.3818831i 0.389215
—0.0751884—-0.3818831i 0.389215
0.0751884+0.3818831i 0.389215
0.0751884—0.38188311 0.389215

At 5% level, * indicates the lag order selection criterion. Source: Data Processed, 2025

Source: Data Processed, 2025
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Figure 1: Roots of the companion matrix
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VAR/VECM model is stable and suitable for further econometric
analysis, including cointegration testing and long-term causality
assessment.

In conclusion, the results of the stability test confirm that
the dynamic relationships among the variables—emissions,
agriculture, forest, and other sectors—are statistically consistent
and the model can be reliably used to analyze both short-run and
long-run interactions.

Figure 1 illustrates the roots of the companion matrix, which are
the eigenvalues used to assess the stability of the Vector Error
Correction Model (VECM). In this figure, each point represents
one eigenvalue plotted according to its real and imaginary
components within the complex plane. The circle represents
the unit circle, which serves as the boundary for the stability
condition. The model is considered stable when all eigenvalues
lie within the unit circle (i.e., their moduli are less than one).
As shown in Figure 1, all the eigenvalues are located inside
the circle, confirming that the estimated VECM satisfies the
stability condition. This graphical result is consistent with the
findings in Table 5, where all modulus values were less than one.
Therefore, both numerical and graphical stability tests consistently
indicate that the model is dynamically stable. This ensures that
the estimated relationships among greenhouse gas emissions,
agricultural activities, forest cover, and other land-use factors
are reliable and can be further analyzed to understand short-run
dynamics and long-run equilibrium adjustments within the system.

4.5. Johansen Co-integration Test

The Johansen co-integration test is used to examine whether there
is a co-integration relationship between two or more variables in
a multivariate system. The results of the Johansen co-integration
test can be found in Table 6.

Table 6 presents the results of the Johansen co-integration
test, which aims to determine whether a long-run equilibrium

Table 6: Johansen tests for co-integration

0 —1204.5109 - 47.6983 47.21
1 —1190.213 0.59083 19.1026* 29.68
2 —1184.5546  0.29788 7.7858 15.41
3 —1180.7692  0.21069 0.2149 3.76
4 —1180.6617  0.00669

Source: Data Processed, 2025. *Signifies the rejection of hypothesis at
significance level of 5%

Table 7: Short-run dynamics of the vector error correction
model (VECM)

Error correction —0.297 0.085 —3.49 0.001
term (ECT,_))

Aemissions,_, 0.214 0.094 2.28 0.026
Aagriculture _, 0.184 0.062 2.97 0.005
Aforest —0.071 0.049 —1.45 0.152
Aother,_, 0.054 0.027 2 0.048
Constant 0.002 0.001 1.78 0.078

Model Fit: R*=0.42|Adjusted R> = 0.35|AIC = —5.23|SC = —4.87

Table 8: Long-run cointegrating equation (Normalised on
emissions)

Agriculture 0.542 0.174 3.11 0.002
Forest —-0.307 0.126 —2.43 0.018
Other 0.218 0.102 2.14 0.036
Constant -1.874 — — —

relationship exists among the variables emissions, agriculture,
forest, and other land-use components. The trace statistic is
compared to the 5% critical value to decide the presence of co-
integration. The null hypothesis of no co-integration is rejected
when the trace statistic exceeds the critical value.

From Table 6, at maximum rank 0, the trace statistic (47.6983) is
slightly higher than the 5% critical value (47.21), indicating the
rejection of the null hypothesis of no co-integration. However, at
maximum rank 1, the trace statistic (19.1026) is below the critical
value (29.68), meaning that we fail to reject the null hypothesis
of at most one co-integrating relationship. This result suggests the
presence of one co-integrating vector, implying that there is a stable
long-run equilibrium relationship among greenhouse gas emissions,
agricultural activities, forest cover, and other land-use factors. In other
words, although short-term fluctuations may occur, these variables
tend to move together over the long run. This finding supports the
existence of long-run equilibrium dynamics in the environmental and
land-use system of Indonesia, where changes in one component (e.g.,
agriculture or forest area) are eventually balanced by adjustments in
greenhouse gas emissions and other land-use categories.

4.6. VECM Models

The estimation results of VECM (Vector Error Correction Model)
is presented in Table 7. This illustrates the short-term variation of
each variable. In Table 7, columns 2-5 (models (I), (II), (IIT), and
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(IV)) detail the estimation outcomes of the VECM for emissions,
agriculture, forest, and other, respectively. The short-term variation
of each variable is influenced by two factors: one involves the
short-term variations of other variables and the variable itself
(i.e., D_emissions, D agriculture, D forest, and D_other), while
the other factor is the deviation of the variable from the long-term
equilibrium (i.e., ECT) in the previous period. The coefficients
of ECT signify the adjustment of the long-term equilibrium
relationship to short-term variation.

The short-run dynamics of the Vector Error Correction Model
(VECM) describe how greenhouse gas (GHG) emissions adjust
in response to short-term changes in agriculture, forest area,
and other sectoral activities. The results in Table 7 indicate both
the short-term interactions among variables and the mechanism
through which emissions return to long-run equilibrium after
temporary shocks.

The Error Correction Term (ECT _,) has a negative and statistically
significant coefficient (—0.297, P = 0.001), confirming the
existence of a valid long-run equilibrium relationship among
emissions, agriculture, forest, and other sectors. This coefficient
implies that approximately 29.7% of the disequilibrium from the
previous period is corrected in the current period. In other words,
when the system deviates from its long-run path, it gradually
adjusts toward equilibrium at a moderate speed. The significance
of the ECT provides strong evidence of cointegration and a stable
adjustment mechanism in the model.

The coefficient of Aemissions, _, 0.214, P =0.026) is positive
and significant, indicating that past changes in emissions have
a reinforcing effect on current emissions. This suggests that
emission patterns exhibit short-term persistence, where previous
increases in emissions tend to continue into the next period due
to ongoing industrial or energy-intensive activities. The estimated
coefficient for Aagriculture_ 0.184, P = 0.005) is also positive
and statistically significant at the 1% level. This implies that a
short-term expansion in agricultural activities leads to higher GHG
emissions, likely through mechanisms such as land conversion,
fertilizer use, and livestock-related methane emissions. The result
underscores the environmental trade-offs associated with short-
term agricultural growth. In contrast, the coefficient for Aforest
(—0.071, P = 0.152) is negative but statistically insignificant,
suggesting that short-term variations in forest area do not have a
significant immediate impact on emissions. This may indicate that
the carbon sequestration effects of forest changes take longer to
materialize or that the observed variations in forest cover are not
large enough to influence emissions significantly in the short run.
The Aother _, variable (0.054, P = 0.048) representing emissions
from other sectors such as industry, transport, and energy is
positive and statistically significant at the 5% level. This finding
suggests that short-run increases in industrial or energy-related
activities contribute directly to higher emission levels, consistent
with patterns observed in developing economies where industrial
growth tends to be carbon-intensive. The constant term (0.002,
P = 0.078) is positive but only marginally significant, implying
a small autonomous increase in emissions not explained by the
included explanatory variables.

Regarding overall model performance, the R? value of 0.42
and adjusted R? of 0.35 indicate that approximately 35-42% of
short-term variations in emissions are explained by the included
variables. The Akaike Information Criterion (AIC = —5.23) and
Schwarz Criterion (SC = —4.87) confirm the model’s goodness
of fit and suitability for further policy interpretation. In summary,
the short-run VECM results demonstrate that agricultural and
industrial activities exert significant positive short-term effects
on greenhouse gas emissions, while the forest sector provides
only a weak, statistically insignificant mitigating influence. The
significant and negative ECT term validates the presence of a
self-correcting mechanism, confirming that deviations from long-
run equilibrium are gradually adjusted over time. These findings
emphasize the need for integrated short-term environmental
management, balancing economic expansion with emission control
policies to ensure sustainable development.

The results of the estimated long-run cointegrating equation
can be seen in Table 8, which shows the long-term relationships
among the key land-use variables and greenhouse gas emissions.
The long-run cointegrating equation represents the stable
equilibrium relationship among greenhouse gas (GHG) emissions,
agricultural activities, forest area, and other economic sectors.
The normalization on emissions implies that changes in these
explanatory variables are interpreted as long-term determinants of
emission levels. The coefficient of Agriculture (0.542, P =0.002)
is positive and statistically significant at the 1% level, indicating
that agricultural expansion has a strong long-run impact on
increasing GHG emissions. A 1% rise in agricultural activity is
associated with an estimated 0.54% increase in emissions over
the long term. This result aligns with empirical evidence that
agricultural intensification through deforestation, soil disturbance,
and livestock farming contributes to cumulative carbon and
methane emissions. It also underscores the structural dependence
of emission growth on the agricultural sector in economies with
substantial rural production bases.

The Forest variable has a negative and statistically significant
coefficient (—0.307, P=0.018), suggesting that forest cover plays
a crucial role in mitigating emissions in the long run. Specifically,
a 1% increase in forest area is associated with a 0.31% reduction
in GHG emissions, reflecting the carbon sequestration and
absorption capacity of forests. This finding supports the argument
that sustainable forest management and conservation policies
can serve as effective long-term strategies for achieving climate
mitigation goals.

The coefficient of Other sectors (0.218, P = 0.036) is positive
and significant at the 5% level, indicating that industrial, energy,
and transportation-related activities contribute positively to
long-term emission growth. This positive relationship highlights
the persistent environmental costs associated with economic
modernization and the reliance on fossil fuel-intensive production
systems. The result implies that without structural changes in
the energy mix or production efficiency, industrial and service-
related sectors will continue to be major contributors to emission
accumulation.
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The constant term (—1.874) is negative, representing the baseline
level of emissions when other explanatory factors are held
constant. This intercept may capture unobserved factors such as
technological efficiency, environmental policies, or natural carbon
sinks that help stabilize emissions in the long run.

In summary, the long-run cointegrating equation reveals a stable
equilibrium relationship in which agriculture and industrial
activities are the main sources of emissions, while forest area
serves as a natural counterbalancing factor. These results
emphasize the importance of integrating sustainable land-use
practices, renewable energy adoption, and reforestation initiatives
into long-term emission reduction strategies. The significance of
all key variables confirms that emissions are structurally linked to
sectoral economic dynamics, making policy interventions in these
areas crucial for achieving sustainable low-carbon development.

Table 9 presents the results of several post-estimation diagnostic
and stability tests conducted to ensure the reliability and robustness
of the estimated Vector Error Correction Model (VECM). These
tests assess whether the underlying assumptions of the model are
satisfied namely, model stability, absence of serial correlation,

Table 9: Diagnostic and stability tests of the VECM model

Test Statistic  P-value Decision

Stability Test (Roots of All — Model is

Characteristic Polynomial)  roots<1 stable

LM Test for Serial 5.34 0.21 No serial

Correlation (lag=1) correlation

Jarque—Bera Normality 4.87 0.3 Residuals

Test are normally
distributed

Heteroskedasticity Test 16.22 0.19 Homoskedastic

(White) residuals

normality of residuals, and homoskedasticity. The stability test,
based on the roots of the characteristic polynomial, confirms that
all roots lie inside the unit circle (modulus < 1). This indicates that
the estimated VECM satisfies the stability condition and that the
long-run equilibrium relationships identified in the cointegration
analysis are dynamically stable. In other words, the system
will return to equilibrium following any short-run disturbance,
validating the model’s long-run interpretability.

The Lagrange Multiplier (LM) test for serial correlation at lag 1
yields a statistic of 5.34 (P = 0.21), which fails to reject the null
hypothesis of no autocorrelation in the residuals. This suggests
that the model’s error terms are not serially correlated, confirming
that the dynamic specification adequately captures the short-run
adjustments between variables. The Jarque—Bera normality test
returns a statistic of 4.87 (P = 0.30), indicating that the residuals
are normally distributed. This satisfies the normality assumption
necessary for valid statistical inference within the VECM
framework, implying that the model’s estimated coefficients and
significance tests are unbiased and consistent. Finally, the White
heteroskedasticity test produces a statistic of 16.22 (P = 0.19),
suggesting that there is no evidence of heteroskedasticity in the
residuals. The variance of the error terms is therefore constant,
supporting the reliability of the model’s standard errors and
t-statistics.

Overall, the diagnostic results confirm that the VECM model
is statistically sound and well-specified. The absence of serial
correlation and heteroskedasticity, combined with normal
residuals and a stable dynamic structure, indicates that the model
provides robust and credible long- and short-run estimates of
the relationships among greenhouse gas emissions, agricultural
activity, forest area, and other sectors. These findings reinforce

Figure 2: Impulse responses of emissions, agriculture, forest, and other
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the validity of the empirical results and their policy implications
for emission management and sustainable development.

4.7. Impulse Response Analysis

The impulse response analysis tracks the response of endogenous
variables in the VAR/VECM system due to shocks or changes in its
exogenous variables. Figure 1 shows the impulse responses among
emissions, agriculture, forest, and other utilizing the VECM models.

Figure 2 illustrates the impulse response functions (IRFs) derived
from the Vector Error Correction Model (VECM), capturing the
dynamic interactions among greenhouse gas (GHG) emissions,
agricultural activity, forest area, and other sectors (e.g., energy and
industry). Each panel represents the response of one variable to a
one-standard-deviation shock in another, over a 60-period horizon.

The IRFs indicate that a positive shock in agriculture generates
a persistent increase in emissions, confirming that agricultural
activities contribute significantly to short-run and medium-run
emission growth. The response stabilizes after several periods,
suggesting a long-run equilibrium adjustment. Similarly, shocks
in the “other” sector representing energy and industrial sources
also produce a strong positive response in emissions, though the
effect gradually diminishes over time, reflecting temporary but
influential industrial impacts on emission dynamics.

Conversely, a shock to the forest variable shows a negative effect
on emissions, implying that expansion or preservation of forest
areas mitigates GHG emissions. However, the magnitude of this
response is relatively small and fades over time, indicating that
forest-based mitigation effects are stabilizing but not dominant in
the short run. The own-response functions (on the diagonal panels)
demonstrate that each variable tends to revert to equilibrium after
initial fluctuations, confirming the stability of the system consistent
with the earlier stability test (all roots < 1).

Overall, the impulse response analysis highlights that agricultural
and industrial shocks have the most substantial and lasting impacts
on emissions, while forest dynamics play a moderating but limited
role. This pattern underscores the need for emission mitigation
policies that balance economic productivity in agriculture and
industry with sustainable forest management.

5. CONCLUSION

The findings from the Vector Error Correction Model (VECM)
and impulse response analysis provide clear evidence of the
interconnected dynamics between greenhouse gas (GHG)
emissions, agricultural activity, forest area, and industrial sectors.
In the short run, both agriculture and industry significantly increase
emissions, confirming that economic expansion in these sectors
contributes to environmental pressure. Meanwhile, the forest
sector exhibits a negative but statistically weak relationship
with emissions, indicating its limited role in short-term emission
reduction. The negative and significant error correction term (ECT)
confirms a stable long-run equilibrium, showing that deviations
from equilibrium are gradually corrected over time approximately
30% each period.

In the long run, agriculture and industry remain the dominant
drivers of emission growth, while forest expansion acts as a
mitigating factor. Diagnostic and stability tests confirm that
the model is statistically valid, free from serial correlation and
heteroskedasticity, and dynamically stable. The impulse response
analysis further demonstrates that shocks originating from
agriculture and industry lead to sustained increases in emissions,
whereas shocks to forest variables result in gradual emission
stabilization. These results collectively suggest that reducing
emissions in the long term requires an integrated and balanced
approach across economic and environmental sectors.

Building on these findings, it is recommended that policymakers
prioritize the integration of sustainable practices within key
emission-generating sectors. First, in the agricultural sector,
promoting climate-smart and low-carbon agricultural systems
is essential. This can be achieved through efficient fertilizer
management, reduced methane emissions from livestock, and
enhanced soil carbon sequestration. By doing so, agricultural
productivity can continue to grow without proportionally
increasing environmental pressure.

Second, the industrial sector should be reoriented toward energy
efficiency and cleaner production technologies. Introducing green
incentives, carbon pricing mechanisms, and renewable energy
investments can help reduce the emission intensity of industrial
output. These measures not only mitigate emissions but also
support industrial competitiveness in the emerging green economy.

Moreover, the study highlights the vital role of forest management
in offsetting emissions from other sectors. Therefore, forest
conservation and restoration programs must be strengthened
through reforestation initiatives, stricter land-use regulation, and
economic incentives for maintaining forest ecosystems. This
approach ensures that forest resources continue to function as
natural carbon sinks and biodiversity reserves.

Finally, an effective emission mitigation strategy requires cross-
sectoral policy integration and innovation investment. Government
institutions should coordinate policies between the agricultural,
industrial, and environmental sectors to ensure coherent and
sustainable development planning. At the same time, research and
technological innovation in green infrastructure, renewable energy,
and carbon capture should be actively supported to maintain
progress toward long-term low-carbon growth.

In summary, the empirical results underscore that economic
development and environmental sustainability must advance
together. Transitioning toward a low-emission economy demands
coherent policy design, intersectoral collaboration, and sustained
commitment to innovation ensuring that future economic growth
is not achieved at the expense of ecological balance.
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