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ABSTRACT

This study investigates the dynamic relationship between greenhouse gas (GHG) emissions, agricultural activity, forest area, and other industrial 
sectors in Indonesia using the Vector Error Correction Model (VECM) approach. The analysis employs annual data from 1990 to 2023 to capture both 
short-run adjustments and long-run equilibrium among the variables. The results indicate that in the short run, agricultural and industrial activities 
significantly increase GHG emissions, while changes in forest area have a negative but statistically insignificant effect. The negative and significant 
error correction term confirms the existence of long-run equilibrium, with approximately 30% of deviations from equilibrium corrected each period, 
indicating moderate adjustment speed. In the long run, agricultural and industrial sectors remain key contributors to emission growth, whereas forest 
expansion mitigates emissions over time. Diagnostic and stability tests confirm that the model is statistically sound, stable, and free from serial 
correlation and heteroskedasticity. The impulse response analysis further reveals that shocks from agriculture and industry lead to persistent increases 
in emissions, while forest shocks exert stabilizing effects. The findings underscore the need for integrated and sustainable policy interventions across 
sectors. Policymakers should promote climate-smart agricultural practices, enhance industrial energy efficiency, and strengthen forest conservation 
efforts to achieve balanced economic and environmental outcomes. Moreover, coordinated cross-sectoral policies and investments in green technology 
are crucial to ensure Indonesia’s transition toward a low-carbon and sustainable growth path.
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1. INTRODUCTION

Unavoidable climate change makes adaptation a necessity. Various 
compilations of meteorological data show an increasing climate 
variability, with previously unprecedented extreme weather 
conditions. The heightened occurrence of these extreme events is 
linked to the phenomenon of global warming (Meehl et al., 2000). 
This rapidly advancing phenomenon is feared to impact the rising 
frequency of hydrometeorological disasters and the depletion of 
natural resources, especially on the Earth’s surface. Consequently, 
this phenomenon is expected to impede development or even 
threaten the outcomes of development. On the other hand, global 
warming will persist due to the inertia of the climate system, even 
if greenhouse gas emissions were halted immediately. One of the 

causes of global climate change is the increasing of greenhouse 
gas (GHG) emissions resulting from various activities that raise the 
Earth’s temperature. The consequences of global climate change 
also affect the balance of ecosystems for living organisms.

The impacts of climate change include rising sea levels, altered 
rainfall patterns, decreased land area and crop productivity, 
reduced quantity and quality of water, species extinction, and 
habitat destruction. These climate-induced impacts pose challenges 
to both social and economic sustainable development and hinder 
the achievement of development goals. The dynamics of land 
use change have the potential to increase carbon emissions, with 
approximately 85% of emissions in Indonesia in 2015 originating 
from land use activities (Krisnawati et al., 2015).
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The primary contributor to greenhouse gases is carbon. Green 
spaces in forest ecosystems absorb GHG by transforming carbon 
dioxide (CO2) into carbon (C) within trees, understory plants, and 
soil. Forests absorb CO2 from the air through photosynthesis and 
store it as forest biomass. Forest biomass contains about 80% of 
terrestrial carbon above ground and approximately 40% below 
ground. Land conversion, deforestation, forest degradation, and 
reforestation can alter land cover types, resulting in changes in the 
composition of terrestrial biomass (Agus et al., 2013).

According to Smith et al. (2014), agriculture, forestry, and other 
land uses stand as the second-largest contributor to greenhouse gas 
(GHG) emissions, accounting for 20-24% of the total emissions, 
with a more significant impact in developing countries. Based 
on the World Resources Institute (WRI), agricultural emissions 
comprise 11.8% of the total global GHG emissions. It is projected 
that by 2050, global agricultural GHG emissions could increase 
by up to 58% (World Resources Institute, 2019).

In line with Mannina et al. (2017) and FAO (2012), greenhouse gas 
(GHG) emissions originating from agricultural activities primarily 
stem from deforestation, livestock rearing, soil management, 
and the use of agricultural machinery powered by fossil fuels. 
This is further emphasized by Agboola and Bekun (2019) and 
Shabbir et al. (2021). The significant role played by agricultural 
practices in GHG emissions is due to their heavy reliance on 
energy sourced from fossil fuels. Agriculture also affects the land’s 
capacity to absorb light and heat, potentially leading to radiative 
forcing (Blanco et al., 2014). Additionally, land degradation and 
deforestation caused by human-induced land use activities can 
impose stress on the land, resulting in anthropogenic emissions. 
Regarding forestry, the Global Forest Resources Assessment 
(2010) indicates that the reduction in forested areas and the 
exploitation of trees for products or fossil fuels lead to the release 
of approximately one billion tons of carbon annually into the 
atmosphere.

Moreover, other land comprises desolate terrains and uncultivated 
agricultural territories, determined by subtracting the combined area 
of forests, grasslands, settlements, and cultivated lands from the 
total area (Jenkins et al., 2006). Frequently devoid of management, 
predicting changes in carbon reserves, non-CO2 emissions, and 
sequestrations in such regions poses a significant challenge. 
Transformation of land into “alternative territory” can occur, for 
instance, as a result of deforestation causing profound degradation, 
the release of carbon reserves, and the subsequent emissions.

According to Climate Watch data (2020), Indonesia produced 
approximately 1.48 billion tons/gigatons of carbon dioxide 
equivalent (Gt CO2e) GHG emissions in 2020. This amount 
represents 3.1% of global greenhouse gas emissions, totaling 
47.5 Gt CO2e. Despite its relatively small percentage, Indonesia’s 
GHG emissions in 2020 ranked as the sixth-largest globally, 
following China, the United States, India, the European Union, 
and Russia. Breaking down the sources, in 2020, the majority of 
Indonesia’s national GHG emissions originated from the energy 
sector (44%), followed by land use/forestry (34%), agriculture 
(10%), waste (9.4%), and industrial processes (2.3%). On a global 

scale, GHG emissions from the energy sector are significantly 
more dominant (75%) compared to the agricultural sector (12%), 
industrial processes (6.6%), waste (3.5%), and land use/forestry 
(2.9%). Regarding sector-specific contributions on a global scale, 
Indonesia’s most significant contribution to GHG emissions comes 
from land use/forestry, accounting for 35.9%.

As discussed earlier, energy consumption is recognized as the 
most prevalent cause of environmental pollution, and numerous 
prior studies have explored various facets of energy use and its 
impact on the environment. However, this research contributes to 
the literature in several ways. Initially, agriculture, forestry, and 
other land uses play a substantial role in global GHG emissions, yet 
there is a limited body of research examining their environmental 
impact. Agriculture, forestry, and other land uses constitute a 
unique sector in this context, as their mitigation potential stems 
from both increased GHG sequestration and emission reduction 
through land and livestock management (Smith et al., 2014). 
Moreover, unlike previous literature, this study employs the 
VECM approach to investigate not only the short-term but also the 
long-term behavior of the three land use categories contributing 
to GHG emissions. This approach will enhance our understanding 
of how different land use types contribute to the majority of GHG 
emissions. Lastly, this study presents evidence concerning diverse 
land uses in Indonesia, one of the largest global emitters of GHGs. 
In Indonesia, where activities related to agriculture, forestry, and 
other land uses constitute a significant portion of the national 
economy, they pose potential challenges that could be detrimental 
to the ecosystem. Research often emphasizes short-term effects, 
but there is a gap in understanding the long-term consequences 
and feedback mechanisms associated with land use changes on 
greenhouse gas emissions, including the impact on ecosystem 
resilience and adaptability.

2. LITERATURE REVIEW

Greenhouse gas (GHG) emissions originating from agricultural 
activities, forestry practices, and other land use endeavors have 
garnered substantial attention in research circles due to their 
noteworthy contribution to the overall global emissions. Research 
efforts over the last 20 years have delved deeply into environmental 
concerns, attracting the interest of contemporary scholars who have 
meticulously scrutinized this particular phenomenon. Analysis 
of existing literature reveals a close interconnection between the 
forestry sector and the economy; the advancement of any economy 
often comes at the cost of prolonged forest depletion. The reduction 
in global forest coverage can be attributed to population expansion, 
primarily fueled by the escalating demand for essential resources such 
as food, fiber, fuel, and other natural commodities, ultimately resulting 
in a heightened rate of forest cover depletion. Various studies have 
shown that deforestation has a significant impact on carbon emissions 
(Baccini et al., 2012; Damette and Delacote, 2012; FAO, 2020).

The depletion of forested lands on a global scale emerges as a 
key factor contributing to global warming, climate change, soil 
erosion, and biodiversity loss, consequently leading to a surge 
in CO2 emissions ranging from 6% to 17%. The conversion 
of tropical forests into pastures has been observed to escalate 
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emissions to varying extents over a span of two decades, although 
subsequent emissions might exhibit a decline compared to those 
emanating from undisturbed forests. Studies by Foley et al. (2005) 
emphasize that since 1850, around 35% of human-induced CO2 
emissions can be directly linked to alterations in land use practices. 
Regarding agricultural practices, Qiao et al. (2019) undertook 
a comprehensive evaluation of the environmental impacts of 
agriculture within G20 nations, employing the Environmental 
Kuznets Curve (EKC) framework spanning from 1990 to 2014. 
The relationship between the agricultural sector and greenhouse 
gas emissions has been discussed in several studies (Chen 
et al., 2008; Veldkamp and Keller, 1997; Waheed et al., 2018). 
Their primary conclusions affirmed the presence of the EKC 
phenomenon within developed economies. Similarly, Zafeiriou 
and Azam (2017) conducted a study across France, Spain, and 
Portugal, exploring the correlation between the net value-added 
index per capita, agricultural value added, and CO2 emissions. 
They confirmed the short-term manifestation of the EKC across all 
surveyed countries, while in the long run, only France and Spain 
demonstrated the discernible EKC trend.

In another study, Koondhar et al. (2021) analyzed the asymmetric 
causation relationship among agricultural carbon emissions, energy 
consumption, fertilizer utilization, and cereal food production 
in Pakistan. The results of the linear Granger causality analysis 
confirmed the causal relationship between energy consumption 
and fertilizer application on cereal food production. Nonlinear 
Granger causality examination showed that cereal food production 
had a causal impact on agricultural carbon emissions and energy 
consumption. Another study exploring the long-term relationship 
between agriculture and CO2 was conducted by Gokmenoglu et al. 
(2019) for the period 1971-2014 in China. This research investigated 
the long-term relationship between agriculture and CO2 using 
an autoregressive distributed lag (ARDL) approach. The ARDL 
estimation outcomes clarified that agricultural progress positively 
and rigidly impacts CO2 emissions. Various other studies have also 
supported the relationship between income and economic progress 
in China conducted by Cole et al. (1997) and Janzen (2004). 
Moreover, Aziz et al. (2020) found that the forestry, agricultural, 
and renewable energy sectors play a significant role in testing the 
Environmental Kuznets Curve in Pakistan.

Similarly, several studies have focused on greenhouse gas (GHG) 
emissions and have investigated the agricultural influence on 
such emissions. The groundbreaking study by Cole et al. (1997) 
examined the environmental impact of agricultural practices 
using GHG as an environmental proxy, revealing that substantial 
quantities of GHG are released into the environment due to 
agricultural operations. Furthermore, Janzen (2004) and Smith 
(2004) explored the same phenomenon, examining carbon 
sequestration in connection to agricultural practices. They 
proposed that burning of plant debris and release of organic matter 
from soil lead to contamination.

In a study conducted by Kehagias et al. (2015), it was shown 
that the traditional use of fossil fuels significantly contributes to 
GHG emissions by 46.4%, while fertilizers contribute by 20.9%. 
Furthermore, Han et al. (2018) investigated the emissions of CH4 

and N2O from agriculture, revealing that major economies exhibit 
higher emission levels per individual. Research conducted by Zhou 
et al. (2007) estimated CH4 and N2O emissions from poultry and 
livestock. Huang and He (2012) investigated the impact of fertilizer 
application, agricultural machinery, and variations in energy 
consumption on GHG emissions using data from 31 provinces in 
China from 1995 to 2007. They utilized a spatial error model and 
illustrated that excessive use of pesticides and fertilizers, combined 
with investment in conventional machinery operations, are the 
primary factors contributing to pollution in China.

Upon examination of the literature in the field of forestry, prior 
research has been dedicated to exploring the validity of the 
Environmental Kuznets Curve (EKC) hypothesis in relation 
to forest resources as discussed by Foster and Rosenzweig 
(2002). Recent findings by Zambrano-Monserrate et al. (2018) 
have unveiled a prolonged correlation between deforestation 
and economic advancement across five European nations. The 
research conducted by Zhang et al. (2004) has determined that 
China exhibits confirmation of a forest-induced EKC during the 
later phases, drawing from analyses of regional, provincial, and 
national models of China’s forested regions spanning from 1999 
to 2010. Examining data from the years 2002 to 2015 in China, 
Hao et al. (2019) investigated the same connection, illustrating 
that the production of timber and expansion of afforestation areas 
predominantly escalate alongside economic progress, subsequently 
declining upon reaching a specific threshold. Additionally, Van Der 
Werf et al. (2010) have disclosed that activities such as forest fires 
and decay contribute to emissions, portraying a positive correlation 
between forest and other land uses. In a separate study by Basyuni 
et al. (2018) regarding various land categories, it was revealed that 
the degradation of barren and shrub land serves as a significant 
factor in carbon emissions, with shrub land alone contributing 
30.6% to the overall CO2 emissions in Indonesia.

Upon scrutiny of the prevailing body of literature, a notable 
insufficiency is evident in the realm of studies examining the 
interplay between greenhouse gas (GHG) emissions and the 
sectors of agriculture and forestry. Nevertheless, scant research 
delves into the repercussions of alternative land utilizations on 
environmental emissions. It is discernible that alterations in land 
coverage, including the depletion of forests and natural freshwater 
reservoirs, have the potential to induce land deterioration, 
consequently instigating environmental harm and ecosystemic 
disruption on a global scale. Furthermore, a pivotal global 
phenomenon is the escalating population growth, which engenders 
significant demands for agricultural commodities. The process of 
urbanization, in reciprocation, is accompanied by the phenomena 
of excessive resource consumption, land fragmentation, and the 
loss of biodiversity as documented by Huang et al. (2020) and 
Ridzuan et al. (2020).

Indonesia’s Climate Change Data (2020) also indicates a 
rising trend of emissions originating from several key sectors, 
highlighting the urgency of understanding the environmental 
impacts of land use changes within the Indonesian context. Based 
on literature studies, it can be concluded that many studies focus on 
individual components (agriculture, forestry, or other land uses), 
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but there is a need for comprehensive, integrated assessments 
that consider the synergies and trade-offs between these land uses 
and their cumulative impact on GHG emissions. Research often 
emphasizes short-term effects, but there is a gap in understanding 
the long-term consequences and feedback mechanisms associated 
with land use changes on GHG emissions, including the impact 
on ecosystem resilience and adaptability. Therefore, this study 
aims to examine the effects of agricultural land, forestry land, 
and other land uses on the composite indicator of environmental 
degradation, specifically GHG emissions. A  comprehensive 
understanding of GHG emissions across all sectors is crucial for 
identifying alternatives to reduce emissions.

3. METHODS

This research aims to investigate the causal effect of agricultural 
land, forestry, and other land on greenhouse gas emissions in 
Indonesia. To achieve this objective, the analysis involves variables 
such as agricultural land, forest land, and other land. Other land 
is defined as land not categorized as agricultural or forest land, 
encompassing barren and built-up land. Data are collected from 
the World Development Indicators (WDI). The link to statistical 
data in this research is https://databank.worldbank.org/. Variables 
for greenhouse gas (GHG) emissions are measured in kilotons of 
CO2 equivalent (kt CO2 eq), agricultural land is measured in square 
kilometers (km²), forest land is measured in square kilometers 
(km²), and other land is measured in hectares (ha). This study uses 
data from 1990 to 2023. Operational definitions of all variables used 
in this study, including greenhouse gas emissions, agricultural land, 
forest land, other land, and total land area, are presented in Table 1.

The analysis employs a restricted vector autoregressive (VAR) 
model to examine the causality between variables. This model 
is built upon a vector error correction model (VECM), which 
is a multiple equation model derived from the restricted VAR. 
Integrated VAR-VECM Framework can evaluate the potential 
benefits and drawbacks of an integrated framework that combines 
VAR and VECM approaches and investigate how such a framework 
can capture both short-term dynamics and long-term equilibrium 
relationships in the context of greenhouse gas emissions from 
agriculture, forestry, and other land use. Furthermore, through 
VAR or VECM can explore the dynamic interactions and feedback 
mechanisms between agriculture, forestry, and other land use on 
greenhouse gas emissions and investigate how changes in one 
sector may influence the emissions in other sectors over time, 
and whether these relationships are better captured through VAR 
or VECM.

In this study, an error correction model is utilized due to the 
increased efficiency of coefficient estimates obtained from 
the VAR resulting in VECM representation. Additionally, all 
variables are treated as endogenous for tests related to long-run 
parameters (Hajifar et al., 2021; Jang and Ogaki, 2004). With 
GHG as the primary variable of interest, the VECM equations 
are constructed based on the restrictions of Wald test coefficients, 
where Equation 1 estimates the long-run causality between 
variables, and Equation 2 estimates short-run causal effects, as 
illustrated below:

ECTt-1 = δi emissionst-I - δj agriculturet-j - δm forestt-m - δn othert-n
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Notes:
“k-1 is the lag length is reduced by 1. δi, δj, δm, δn are short-
run dynamic coefficient of the model’s adjustment long-run 
equilibrium relationships. λi is speed of adjustment parameter 
with negative sign. ECTt-1 represents the error correction term is 
the lagged value of the residuals obtained from the cointegrating 
regression of the dependent variable on the regressors. Contains 
long-run information derived from the long-run cointegrating 
relationship, and ε1t is the error term”.

Here is the explanation of each variable:

“According to definition provided by World Bank, CO2 emissions 
(kt) are those stemming from the burning of fossil fuels and the 
manufacture of cement. They include carbon dioxide produced 
during consumption of solid, liquid, and gas fuels and gas flaring” 
(World Bank, 2024).

“According to definition provided by World Bank, agricultural land 
(sq. km) is Agricultural land refers to the share of land area that 
is arable, under permanent crops, and under permanent pastures. 
Arable land includes land defined by the FAO as land under 
temporary crops (double-cropped areas are counted once), temporary 
meadows for mowing or for pasture, land under market or kitchen 
gardens, and land temporarily fallow. Land abandoned as a result of 
shifting cultivation is excluded. Land under permanent crops is land 
cultivated with crops that occupy the land for long periods and need 
not be replanted after each harvest, such as cocoa, coffee, and rubber. 
This category includes land under flowering shrubs, fruit trees, nut 
trees, and vines, but excludes land under trees grown for wood or 
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timber. Permanent pasture is land used for five or more years for 
forage, including natural and cultivated crops” (World Bank, 2024).

“According to definition provided by World Bank, Forest area 
(sq. km) is land under natural or planted stands of trees of at least 
5 meters in situ, whether productive or not, and excludes tree 
stands in agricultural production systems (for example, in fruit 
plantations and agroforestry systems) and trees in urban parks 
and gardens” (World Bank, 2024).

“According to definition provided by World Bank, land area 
(sq. km) is a country’s total area, excluding area under inland 
water bodies, national claims to continental shelf, and exclusive 
economic zones. In most cases the definition of inland water bodies 
includes major rivers and lakes” (World Bank, 2024).

Bella (2018) and Katircioglu et al. (2014) have emphasized, the 
dependent variables in equations (1) to (3) may exhibit delayed 
adjustments to their equilibrium levels over an extended period. 
As a result, an examination was conducted to evaluate the rate of 
adjustment between short-run and long-run levels of emissions, 
agriculture, forest, and other factors by employing dynamic Vector 
Error Correction Model (VECM) frameworks. To begin with, four 
Vector Autoregression (VAR) models were constructed with a lag 
parameter of p. Within the VAR framework, each endogenous variable 
within the system is modeled as a function of its lagged values across 
all endogenous variables. Given the multitude of coefficients present 
in each equation of the VAR model, the primary focus lies not on these 
coefficients but on the utilization of impulse response functions and 
Granger causality tests for analytical purposes.

4. RESULTS AND DISCUSSION

4.1. Descriptive Statistics
Table 2 presents the descriptive statistics of the variables used 
in this study. The variables include total greenhouse gas (GHG) 
emissions, agricultural activity, forest area, and other contributing 
factors.

The mean value of emissions is approximately 1,233.18 Mt CO₂e, 
indicating the average level of GHG emissions produced over the 
study period. The standard deviation of 545.87 reflects substantial 
variation in annual emissions, suggesting that Indonesia’s emission 
levels have fluctuated considerably due to changing economic 
activities, land use patterns, and environmental policies. The 
minimum emission value (539.36 Mt CO₂e) and maximum (2,472.89 
Mt CO₂e) confirm the presence of significant dynamics over time.

The agriculture variable shows an average value of 529,577.7, with 
a relatively large dispersion (standard deviation of 80,200.52). This 
variation suggests that agricultural expansion and productivity levels 
have changed notably, likely reflecting shifts in land utilization, 
policy support, and technological adoption within the sector.

For the forest variable, the mean value of 1,010,641 and standard 
deviation of 76,374.92 indicate a gradual decline in forest area 
over time. The minimum and maximum values (889,667.4 
and 1,185,450, respectively) show that deforestation and 
land conversion have played an important role in influencing 
Indonesia’s carbon balance and emission trends.

Lastly, the other category, which includes additional land-use 
components and miscellaneous sources of emissions, has an 
average value of 319,230.2 with a standard deviation of 43,235.61. 
The moderate variability of this variable implies that these 
components have remained relatively stable compared to the 
other major sectors.

Overall, the descriptive statistics suggest that variations in 
GHG emissions are closely associated with dynamics in the 

Table 1: Operational research variables
No Variable Operational definition Unit/Data form Data source (WDI Code/

Database)
Expected relationship to GHG

1 Greenhouse 
Gas 
Emissions 
(GHG)

Total greenhouse gas emissions 
generated by all sectors, including 
Land Use, Land‑Use Change, and 
Forestry (LULUCF).

Megaton CO₂ 
equivalent 
(Mt CO₂e)

CAIT–Climate Watch 
or World Development 
Indicators (derived from 
EN.ATM.GHGT.KT.CE)

(Dependent variable)

2 Agricultural 
Land (AL)

Land area used for agricultural 
activities, including cropland, 
pastures, and plantations.

Square kilometers 
(sq. km)

WDI: AG.LND.AGRI.K2 Positive (+) expansion of 
agricultural land tends to 
increase GHG emissions through 
deforestation and fertilizer use.

3 Forest 
Land (FL)

The area of land covered by natural 
or planted forests that act as carbon 
sinks.

Square kilometers 
(sq. km)

WDI: AG.LND.FRST.K2 Negative (−) an increase in forest 
area reduces GHG emissions due to 
carbon absorption capacity.

4 Other Land 
(OL)

Land not classified as agricultural 
or forest land, such as settlements, 
built‑up areas, and shrublands. 
Calculated as: Total Land Area 
(Agricultural Land+Forest Land).

Square kilometers 
(sq. km)

Author’s calculation based 
on WDI: AG.LND.TOTL.
K2 − (AG.LND.AGRI.
K2+AG.LND.FRST.K2)

Positive (+) urbanization and land 
development increase emissions 
from economic and transport 
activities.

5 Total Land 
Area (TL)

The total area of land in a country, 
encompassing all types of land use.

Square kilometers 
(sq. km)

WDI: AG.LND.TOTL.K2 (Control/used for derived 
calculation)

Table 2: Descriptive statistics
Variable Mean Standard Deviation Min Max
Emissions 1233.18 545.8733 539.3634 2472.894
Agriculture 529577.7 80200.52 413510 661152
Forest 1010641 76374.92 889667.4 1185450
Other 319230.2 43235.61 175290 392949
Source: Data Processed, 2025
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agricultural and forestry sectors. The wide dispersion across 
variables indicates that structural shifts in land use and 
production intensity are key factors driving Indonesia’s emission 
patterns. These findings provide a preliminary understanding 
of how sectoral changes contribute to the country’s overall 
GHG emissions before conducting more detailed econometric 
analysis.

4.2. Unit Root Test
The importance of unit root testing in this study lies in its ability 
to determine the presence of unit roots among variables, enabling 
the consideration of panel data as stationary if no unit roots are 
detected. Ultimately, the validity of the relationship between 
independent and dependent variables can be confirmed. The unit 
root testing in this study also relies on statistical tests at a certain 
significance level and first difference tests. The results of the unit 
root tests can be found in Table 3.

The Augmented Dickey-Fuller (ADF) test was conducted to 
examine the stationarity of each variable in the model. A variable 
is considered stationary when the absolute value of the ADF 
statistic is greater than the critical value at the 5% significance 
level, indicating that it does not contain a unit root.

As shown in Table 3, the ADF statistics for all variables at the 
level form are generally not significant, implying that the series 
are non-stationary in their original form. However, after taking the 
first difference, all variables show a substantial increase in the ADF 
statistic values, exceeding the critical value at the 5% significance 
level. This result suggests that the variables emissions, agriculture, 
forest, and other land use become stationary after first differencing.

Therefore, it can be concluded that each variable is integrated 
of order one, I(1). This finding indicates that the variables share 
similar stochastic trends over time, making them suitable for 
further analysis using cointegration or time-series models such as 
the Vector Error Correction Model (VECM) or trend regression 
models that capture both short-term and long-term relationships 
among variables.

4.3. Optimal Lag Criteria
Optimal Lag Criteria is a criterion used in time series analysis to 
select the optimal lag (delay time) in autoregressive models or vector 
autoregressive models (VAR). Optimal lag selection is crucial as it 
can influence the results of the analysis and predictions of the model. 
The results of the optimal lag criteria testing can be found in Table 4.

From the results, the LR, FPE, and AIC criteria all indicate that the 
optimal lag is 2, as shown by the smallest values and the presence 
of an asterisk (*) at lag 2. Meanwhile, the HQIC and SBIC criteria 
suggest that the optimal lag is 1.

In practice, the final decision on the optimal lag is typically based 
on the majority rule or the criteria that best suit the model’s 
purpose. Given that most of the selection criteria (LR, FPE, and 
AIC) point to lag 2, this lag length is chosen as the optimal lag 
for subsequent analysis.

Selecting the correct lag length is crucial because it ensures that 
the dynamic relationships among variables are captured accurately 
while avoiding problems of overfitting or loss of degrees of 
freedom. Therefore, based on these results, a lag order of two 
(lag = 2) provides the most efficient and reliable specification for 
further modeling, such as cointegration testing and Vector Error 
Correction Model (VECM) estimation.

4.4. Stability Test
After selecting the optimal lag, which is lag 4, the stability test 
is conducted next. The results of the stability test are presented 
in the Table 5.

The stability test is performed to ensure that the estimated Vector 
Error Correction Model (VECM) or Vector Autoregressive (VAR) 
model satisfies the stability condition, which is a prerequisite for 
the validity of the model’s dynamic analysis. Stability is assessed 
based on the modulus of the eigenvalues of the companion matrix.

A model is considered stable (or dynamically stationary) when all 
eigenvalues lie inside the unit circle, meaning that all modulus 
values are <1 (|λ| < 1). This condition ensures that the system 
converges to its long-run equilibrium and that the impulse 
response functions and variance decompositions are reliable for 
interpretation.

As presented in Table 5, all modulus values are below 1, with 
the largest modulus recorded at 0.708197. This indicates that the 
model fulfills the stability condition. Therefore, the estimated 

Table 4: Selection criteria for optimal lags
Lag LL LR FPE AIC HQIC SBIC
0 −1253.75 3.1e+31 83.8499 83.9096 84.0367
1 −1122.31 262.87 1.4e+28 76.1541 76.4529* 77.0882*
2 −1104.01 36.599* 1.3e+28* 76.0008* 76.5387 77.6823
3 −1095.22 17.592 2.5e+28 76.4811 77.2581 78.9098
4 −1083.9 22.625 4.8e+28 76.7936 77.8096 79.9696
At 5% level, * indicates the lag order selection criterion. Source: Data Processed, 2025

Table 3: Unit root tests (Augmented Dickey‑Fuller)
Variable Unit root tests

At level At first difference
Emissions −1.875 −8.093
Agriculture 0.816 −6.227
Forest −3.611 −2.273
Other −4.371 −5.454
Source: Data Processed, 2025. Significance level at α=5%

Table 5: Stability test
Eigenvalue Modulus
0.708197 0.708197
−0.708197 0.708197
−0.4421294 0.442129
0.4421294 0.442129
−0.0751884+0.3818831i 0.389215
−0.0751884−0.3818831i 0.389215
0.0751884+0.3818831i 0.389215
0.0751884−0.3818831i 0.389215
Source: Data Processed, 2025
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VAR/VECM model is stable and suitable for further econometric 
analysis, including cointegration testing and long-term causality 
assessment.

In conclusion, the results of the stability test confirm that 
the dynamic relationships among the variables—emissions, 
agriculture, forest, and other sectors—are statistically consistent 
and the model can be reliably used to analyze both short-run and 
long-run interactions.

Figure 1 illustrates the roots of the companion matrix, which are 
the eigenvalues used to assess the stability of the Vector Error 
Correction Model (VECM). In this figure, each point represents 
one eigenvalue plotted according to its real and imaginary 
components within the complex plane. The circle represents 
the unit circle, which serves as the boundary for the stability 
condition. The model is considered stable when all eigenvalues 
lie within the unit circle (i.e., their moduli are less than one). 
As shown in Figure  1, all the eigenvalues are located inside 
the circle, confirming that the estimated VECM satisfies the 
stability condition. This graphical result is consistent with the 
findings in Table 5, where all modulus values were less than one. 
Therefore, both numerical and graphical stability tests consistently 
indicate that the model is dynamically stable. This ensures that 
the estimated relationships among greenhouse gas emissions, 
agricultural activities, forest cover, and other land-use factors 
are reliable and can be further analyzed to understand short-run 
dynamics and long-run equilibrium adjustments within the system.

4.5. Johansen Co-integration Test
The Johansen co-integration test is used to examine whether there 
is a co-integration relationship between two or more variables in 
a multivariate system. The results of the Johansen co-integration 
test can be found in Table 6.

Table  6 presents the results of the Johansen co-integration 
test, which aims to determine whether a long-run equilibrium 

relationship exists among the variables emissions, agriculture, 
forest, and other land-use components. The trace statistic is 
compared to the 5% critical value to decide the presence of co-
integration. The null hypothesis of no co-integration is rejected 
when the trace statistic exceeds the critical value.

From Table 6, at maximum rank 0, the trace statistic (47.6983) is 
slightly higher than the 5% critical value (47.21), indicating the 
rejection of the null hypothesis of no co-integration. However, at 
maximum rank 1, the trace statistic (19.1026) is below the critical 
value (29.68), meaning that we fail to reject the null hypothesis 
of at most one co-integrating relationship. This result suggests the 
presence of one co-integrating vector, implying that there is a stable 
long-run equilibrium relationship among greenhouse gas emissions, 
agricultural activities, forest cover, and other land-use factors. In other 
words, although short-term fluctuations may occur, these variables 
tend to move together over the long run. This finding supports the 
existence of long-run equilibrium dynamics in the environmental and 
land-use system of Indonesia, where changes in one component (e.g., 
agriculture or forest area) are eventually balanced by adjustments in 
greenhouse gas emissions and other land-use categories.

4.6. VECM Models
The estimation results of VECM (Vector Error Correction Model) 
is presented in Table 7. This illustrates the short-term variation of 
each variable. In Table 7, columns 2-5 (models (I), (II), (III), and 

Figure 1: Roots of the companion matrix

Table 8: Long‑run cointegrating equation (Normalised on 
emissions)
Variable Coefficient Standard error t‑statistic P‑value
Agriculture 0.542 0.174 3.11 0.002
Forest −0.307 0.126 −2.43 0.018
Other 0.218 0.102 2.14 0.036
Constant −1.874 — — —

Table 6: Johansen tests for co‑integration
Maximum 
rank

LL Eigenvalue Trace 
statistic

5% Critical 
value

0 −1204.5109 ‑ 47.6983 47.21
1 −1190.213 0.59083 19.1026* 29.68
2 −1184.5546 0.29788 7.7858 15.41
3 −1180.7692 0.21069 0.2149 3.76
4 −1180.6617 0.00669
Source: Data Processed, 2025. *Signifies the rejection of hypothesis at 
significance level of 5%

Table 7: Short‑run dynamics of the vector error correction 
model (VECM)

(Dependent variable: ΔEmissions)
Variable Coefficient Standard 

error
t‑statistic P‑value

Error correction 
term (ECTt−1)

−0.297 0.085 −3.49 0.001

Δemissionst−1
0.214 0.094 2.28 0.026

Δagriculturet−1
0.184 0.062 2.97 0.005

Δforestt−1
−0.071 0.049 −1.45 0.152

Δothert−1
0.054 0.027 2 0.048

Constant 0.002 0.001 1.78 0.078
Model Fit: R2=0.42|Adjusted R² = 0.35|AIC = −5.23|SC = −4.87
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(IV)) detail the estimation outcomes of the VECM for emissions, 
agriculture, forest, and other, respectively. The short-term variation 
of each variable is influenced by two factors: one involves the 
short-term variations of other variables and the variable itself 
(i.e., D_emissions, D_agriculture, D_forest, and D_other), while 
the other factor is the deviation of the variable from the long-term 
equilibrium (i.e., ECT) in the previous period. The coefficients 
of ECT signify the adjustment of the long-term equilibrium 
relationship to short-term variation.

The short-run dynamics of the Vector Error Correction Model 
(VECM) describe how greenhouse gas (GHG) emissions adjust 
in response to short-term changes in agriculture, forest area, 
and other sectoral activities. The results in Table 7 indicate both 
the short-term interactions among variables and the mechanism 
through which emissions return to long-run equilibrium after 
temporary shocks.

The Error Correction Term (ECTt−1) has a negative and statistically 
significant coefficient (−0.297, P = 0.001), confirming the 
existence of a valid long-run equilibrium relationship among 
emissions, agriculture, forest, and other sectors. This coefficient 
implies that approximately 29.7% of the disequilibrium from the 
previous period is corrected in the current period. In other words, 
when the system deviates from its long-run path, it gradually 
adjusts toward equilibrium at a moderate speed. The significance 
of the ECT provides strong evidence of cointegration and a stable 
adjustment mechanism in the model.

The coefficient of Δemissionst−1  (0.214, P =0.026) is positive 
and significant, indicating that past changes in emissions have 
a reinforcing effect on current emissions. This suggests that 
emission patterns exhibit short-term persistence, where previous 
increases in emissions tend to continue into the next period due 
to ongoing industrial or energy-intensive activities. The estimated 
coefficient for Δagriculturet−1 (0.184, P = 0.005) is also positive 
and statistically significant at the 1% level. This implies that a 
short-term expansion in agricultural activities leads to higher GHG 
emissions, likely through mechanisms such as land conversion, 
fertilizer use, and livestock-related methane emissions. The result 
underscores the environmental trade-offs associated with short-
term agricultural growth. In contrast, the coefficient for Δforestt−1 
(−0.071, P = 0.152) is negative but statistically insignificant, 
suggesting that short-term variations in forest area do not have a 
significant immediate impact on emissions. This may indicate that 
the carbon sequestration effects of forest changes take longer to 
materialize or that the observed variations in forest cover are not 
large enough to influence emissions significantly in the short run. 
The Δothert−1 variable (0.054, P = 0.048) representing emissions 
from other sectors such as industry, transport, and energy is 
positive and statistically significant at the 5% level. This finding 
suggests that short-run increases in industrial or energy-related 
activities contribute directly to higher emission levels, consistent 
with patterns observed in developing economies where industrial 
growth tends to be carbon-intensive. The constant term (0.002, 
P = 0.078) is positive but only marginally significant, implying 
a small autonomous increase in emissions not explained by the 
included explanatory variables.

Regarding overall model performance, the R² value of 0.42 
and adjusted R² of 0.35 indicate that approximately 35–42% of 
short-term variations in emissions are explained by the included 
variables. The Akaike Information Criterion (AIC = −5.23) and 
Schwarz Criterion (SC = −4.87) confirm the model’s goodness 
of fit and suitability for further policy interpretation. In summary, 
the short-run VECM results demonstrate that agricultural and 
industrial activities exert significant positive short-term effects 
on greenhouse gas emissions, while the forest sector provides 
only a weak, statistically insignificant mitigating influence. The 
significant and negative ECT term validates the presence of a 
self-correcting mechanism, confirming that deviations from long-
run equilibrium are gradually adjusted over time. These findings 
emphasize the need for integrated short-term environmental 
management, balancing economic expansion with emission control 
policies to ensure sustainable development.

The results of the estimated long-run cointegrating equation 
can be seen in Table 8, which shows the long-term relationships 
among the key land-use variables and greenhouse gas emissions. 
The long-run cointegrating equation represents the stable 
equilibrium relationship among greenhouse gas (GHG) emissions, 
agricultural activities, forest area, and other economic sectors. 
The normalization on emissions implies that changes in these 
explanatory variables are interpreted as long-term determinants of 
emission levels. The coefficient of Agriculture (0.542, P = 0.002) 
is positive and statistically significant at the 1% level, indicating 
that agricultural expansion has a strong long-run impact on 
increasing GHG emissions. A 1% rise in agricultural activity is 
associated with an estimated 0.54% increase in emissions over 
the long term. This result aligns with empirical evidence that 
agricultural intensification through deforestation, soil disturbance, 
and livestock farming contributes to cumulative carbon and 
methane emissions. It also underscores the structural dependence 
of emission growth on the agricultural sector in economies with 
substantial rural production bases.

The Forest variable has a negative and statistically significant 
coefficient (−0.307, P = 0.018), suggesting that forest cover plays 
a crucial role in mitigating emissions in the long run. Specifically, 
a 1% increase in forest area is associated with a 0.31% reduction 
in GHG emissions, reflecting the carbon sequestration and 
absorption capacity of forests. This finding supports the argument 
that sustainable forest management and conservation policies 
can serve as effective long-term strategies for achieving climate 
mitigation goals.

The coefficient of Other sectors (0.218, P = 0.036) is positive 
and significant at the 5% level, indicating that industrial, energy, 
and transportation-related activities contribute positively to 
long-term emission growth. This positive relationship highlights 
the persistent environmental costs associated with economic 
modernization and the reliance on fossil fuel–intensive production 
systems. The result implies that without structural changes in 
the energy mix or production efficiency, industrial and service-
related sectors will continue to be major contributors to emission 
accumulation.
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The constant term (−1.874) is negative, representing the baseline 
level of emissions when other explanatory factors are held 
constant. This intercept may capture unobserved factors such as 
technological efficiency, environmental policies, or natural carbon 
sinks that help stabilize emissions in the long run.

In summary, the long-run cointegrating equation reveals a stable 
equilibrium relationship in which agriculture and industrial 
activities are the main sources of emissions, while forest area 
serves as a natural counterbalancing factor. These results 
emphasize the importance of integrating sustainable land-use 
practices, renewable energy adoption, and reforestation initiatives 
into long-term emission reduction strategies. The significance of 
all key variables confirms that emissions are structurally linked to 
sectoral economic dynamics, making policy interventions in these 
areas crucial for achieving sustainable low-carbon development.

Table 9 presents the results of several post-estimation diagnostic 
and stability tests conducted to ensure the reliability and robustness 
of the estimated Vector Error Correction Model (VECM). These 
tests assess whether the underlying assumptions of the model are 
satisfied namely, model stability, absence of serial correlation, 

normality of residuals, and homoskedasticity. The stability test, 
based on the roots of the characteristic polynomial, confirms that 
all roots lie inside the unit circle (modulus < 1). This indicates that 
the estimated VECM satisfies the stability condition and that the 
long-run equilibrium relationships identified in the cointegration 
analysis are dynamically stable. In other words, the system 
will return to equilibrium following any short-run disturbance, 
validating the model’s long-run interpretability.

The Lagrange Multiplier (LM) test for serial correlation at lag 1 
yields a statistic of 5.34 (P = 0.21), which fails to reject the null 
hypothesis of no autocorrelation in the residuals. This suggests 
that the model’s error terms are not serially correlated, confirming 
that the dynamic specification adequately captures the short-run 
adjustments between variables. The Jarque–Bera normality test 
returns a statistic of 4.87 (P = 0.30), indicating that the residuals 
are normally distributed. This satisfies the normality assumption 
necessary for valid statistical inference within the VECM 
framework, implying that the model’s estimated coefficients and 
significance tests are unbiased and consistent. Finally, the White 
heteroskedasticity test produces a statistic of 16.22 (P = 0.19), 
suggesting that there is no evidence of heteroskedasticity in the 
residuals. The variance of the error terms is therefore constant, 
supporting the reliability of the model’s standard errors and 
t-statistics.

Overall, the diagnostic results confirm that the VECM model 
is statistically sound and well-specified. The absence of serial 
correlation and heteroskedasticity, combined with normal 
residuals and a stable dynamic structure, indicates that the model 
provides robust and credible long-  and short-run estimates of 
the relationships among greenhouse gas emissions, agricultural 
activity, forest area, and other sectors. These findings reinforce 

Source: Data Processed, 2025

Figure 2: Impulse responses of emissions, agriculture, forest, and other

Table 9: Diagnostic and stability tests of the VECM model
Test Statistic P‑value Decision
Stability Test (Roots of 
Characteristic Polynomial)

All 
roots<1

— Model is 
stable

LM Test for Serial 
Correlation (lag=1)

5.34 0.21 No serial 
correlation

Jarque–Bera Normality 
Test

4.87 0.3 Residuals 
are normally 
distributed

Heteroskedasticity Test 
(White)

16.22 0.19 Homoskedastic 
residuals
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the validity of the empirical results and their policy implications 
for emission management and sustainable development.

4.7. Impulse Response Analysis
The impulse response analysis tracks the response of endogenous 
variables in the VAR/VECM system due to shocks or changes in its 
exogenous variables. Figure 1 shows the impulse responses among 
emissions, agriculture, forest, and other utilizing the VECM models.

Figure 2 illustrates the impulse response functions (IRFs) derived 
from the Vector Error Correction Model (VECM), capturing the 
dynamic interactions among greenhouse gas (GHG) emissions, 
agricultural activity, forest area, and other sectors (e.g., energy and 
industry). Each panel represents the response of one variable to a 
one-standard-deviation shock in another, over a 60-period horizon.

The IRFs indicate that a positive shock in agriculture generates 
a persistent increase in emissions, confirming that agricultural 
activities contribute significantly to short-run and medium-run 
emission growth. The response stabilizes after several periods, 
suggesting a long-run equilibrium adjustment. Similarly, shocks 
in the “other” sector representing energy and industrial sources 
also produce a strong positive response in emissions, though the 
effect gradually diminishes over time, reflecting temporary but 
influential industrial impacts on emission dynamics.

Conversely, a shock to the forest variable shows a negative effect 
on emissions, implying that expansion or preservation of forest 
areas mitigates GHG emissions. However, the magnitude of this 
response is relatively small and fades over time, indicating that 
forest-based mitigation effects are stabilizing but not dominant in 
the short run. The own-response functions (on the diagonal panels) 
demonstrate that each variable tends to revert to equilibrium after 
initial fluctuations, confirming the stability of the system consistent 
with the earlier stability test (all roots < 1).

Overall, the impulse response analysis highlights that agricultural 
and industrial shocks have the most substantial and lasting impacts 
on emissions, while forest dynamics play a moderating but limited 
role. This pattern underscores the need for emission mitigation 
policies that balance economic productivity in agriculture and 
industry with sustainable forest management.

5. CONCLUSION

The findings from the Vector Error Correction Model (VECM) 
and impulse response analysis provide clear evidence of the 
interconnected dynamics between greenhouse gas (GHG) 
emissions, agricultural activity, forest area, and industrial sectors. 
In the short run, both agriculture and industry significantly increase 
emissions, confirming that economic expansion in these sectors 
contributes to environmental pressure. Meanwhile, the forest 
sector exhibits a negative but statistically weak relationship 
with emissions, indicating its limited role in short-term emission 
reduction. The negative and significant error correction term (ECT) 
confirms a stable long-run equilibrium, showing that deviations 
from equilibrium are gradually corrected over time approximately 
30% each period.

In the long run, agriculture and industry remain the dominant 
drivers of emission growth, while forest expansion acts as a 
mitigating factor. Diagnostic and stability tests confirm that 
the model is statistically valid, free from serial correlation and 
heteroskedasticity, and dynamically stable. The impulse response 
analysis further demonstrates that shocks originating from 
agriculture and industry lead to sustained increases in emissions, 
whereas shocks to forest variables result in gradual emission 
stabilization. These results collectively suggest that reducing 
emissions in the long term requires an integrated and balanced 
approach across economic and environmental sectors.

Building on these findings, it is recommended that policymakers 
prioritize the integration of sustainable practices within key 
emission-generating sectors. First, in the agricultural sector, 
promoting climate-smart and low-carbon agricultural systems 
is essential. This can be achieved through efficient fertilizer 
management, reduced methane emissions from livestock, and 
enhanced soil carbon sequestration. By doing so, agricultural 
productivity can continue to grow without proportionally 
increasing environmental pressure.

Second, the industrial sector should be reoriented toward energy 
efficiency and cleaner production technologies. Introducing green 
incentives, carbon pricing mechanisms, and renewable energy 
investments can help reduce the emission intensity of industrial 
output. These measures not only mitigate emissions but also 
support industrial competitiveness in the emerging green economy.

Moreover, the study highlights the vital role of forest management 
in offsetting emissions from other sectors. Therefore, forest 
conservation and restoration programs must be strengthened 
through reforestation initiatives, stricter land-use regulation, and 
economic incentives for maintaining forest ecosystems. This 
approach ensures that forest resources continue to function as 
natural carbon sinks and biodiversity reserves.

Finally, an effective emission mitigation strategy requires cross-
sectoral policy integration and innovation investment. Government 
institutions should coordinate policies between the agricultural, 
industrial, and environmental sectors to ensure coherent and 
sustainable development planning. At the same time, research and 
technological innovation in green infrastructure, renewable energy, 
and carbon capture should be actively supported to maintain 
progress toward long-term low-carbon growth.

In summary, the empirical results underscore that economic 
development and environmental sustainability must advance 
together. Transitioning toward a low-emission economy demands 
coherent policy design, intersectoral collaboration, and sustained 
commitment to innovation ensuring that future economic growth 
is not achieved at the expense of ecological balance.
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