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ABSTRACT

An integrated empirical framework was put in place in order to study the combined impacts of artificial intelligence (AI), green finance (GF), and tools 
of environmental policies on renewable energy investments and their efficiency on a global scale. The hybrid approach of combining econometric 
estimators i.e. two-way fixed effects, system-GMM, Mean/pooled mean group and dynamic common correlated effects was employed with Explainable 
machine learning (XGBoost with SHAP) to assess the model. For the period of the 2005-2024 study, a balanced macro panel composed of 30 OECD 
and emerging economies was utilized, and it was assessed that with regard to AI readiness, most of the time it acted as a complementary catalyst, 
augmenting the effectiveness of finance and policies, rather than an autonomous driving force. In the framework of AI intensity and carbon pricing, 
AI appears with a negative sign in the short run, which unfolds as transitional adjustment costs. These results are reversed when the interaction terms 
GF × AI and Policy×AI are included; these terms are positive and statistically significant, meaning that an increase in digital capacity strengthens 
policy transmission. System-GMM results confirmed persistent investment dynamics through significant lag dependence, and the sign pattern for core 
variables was preserved in robustness checks (DCCE/MG/PMG). On the efficiency margin, green bonds exhibit a positive association, whereas short 
run AI and carbon price frictions remain. The SHAP diagnostics confirm the econometric findings and consider investment inertia and the pressures 
of transitions (emissions and fuel prices) as key contributors, while AI works with context-dependent complementarities. To conclude, the digital 
governance with the type of green-finance and the reliable policies in place will promote investment in renewables and improve energy efficiency.

Keywords: Artificial Intelligence, Green Finance, Carbon Pricing, Renewable Investment, Energy Efficiency 
JEL Classifications: Q42, Q58, G28, O33, C33

1. INTRODUCTION

The shift towards renewable energy is now part of vital factors 
driving change in the financial world. In the last 10 years, the 
balance of investment in low-carbon sectors has changed as a result 
of financial innovation, regulatory changes, and advancements in 
technology. In 2024, the world spent over $3 trillion on energy, 
$2 trillion of it on renewable energy technologies (IEA, 2024). 
In addition to decarbonization goals, a change in structural goals 
of the world economy to market climate risks and technology 

opportunities is evident (IRENA, 2024). Since the economic 
trade shocks caused by climate change have boosted the value 
of resilient and sustainable energy systems, there is a clear and 
growing economic imperative for sustainable energy systems.

In this transition, different financial mechanisms have been 
important. Green finance—gleaned from green bonds, 
sustainability-linked loans, and environmental, social and 
governance (ESG) instruments—has made capital more available 
for projects concerning renewable energy and energy efficiency. 
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Research shows that green bond issuance improves a firm’s 
environmental and market performance (Flammer, 2021), while 
secondary markets feature a persistent “greenium,” suggesting a 
strong preference for green assets (Zerbib, 2019). Policies such 
as carbon pricing, feed-in tariffs, and even technology innovation 
have proved effective in managing environmental externalities 
(Calel and Dechezleprètre, 2016; Couture and Gagnon, 2010). 
Still, the financial and policy instruments described do not work on 
their own. Their impact relies heavily on a country’s technological 
capability and governance frameworks that are powered by 
advanced data systems.

Artificial intelligence has become one of the general-purpose 
technologies that has the potential to transform an entire 
ecosystem. By enabling the efficient allocation of resources and 
adaptable policies through the processing of vast amounts of 
data and improved decision-making, AI allows the forecasting 
of AI’s economic impacts and the allocation of resources more 
responsively. Yet, the literature on the economics of AI posits that 
the primary source of the temporary productivity losses incurred 
during the AI transition adoption phase results from the learning 
and restructuring of capital (Aghion et al., 2017). After the initial 
phase, AI enhances the productive complementarities that interlink 
technology and the triad of finance, policy, and state economic 
performance through advanced risk assessment, automated 
compliance, and environmental performance assessment (Vinuesa 
et al., 2020). Accordingly, countries that are more advanced in AI 
adoption will convert more of the efficiency and real investment 
benefits stemming from green finance and regulations.

Although there is an increasing number of studies on green finance 
and literature on policies directed towards the environment, there 
is a lack of empirical studies that examine the interplay of these 
areas with AI capabilities in promoting investment in renewables. 
A majority of studies continue to examine the constituent parts; that 
is, the effects of policy on innovation or the effects of finance on 
the mobilization of capital, without realizing the possible role of 
digital capabilities in the interaction of the two. This is important 
in light of the differences among countries in terms of the quality of 
institutions, digital infrastructure, and the governance effectiveness 
(Oxford Insights, 2024). Therefore, the understanding of these 
various linkages is critical to the formulation of policy that captures 
the potential of digital technology in harmonizing sustainable 
finance with financial and environmental regulatory policies.

In this context, the current research builds and conducts an 
empirical test on an integrated framework combining AI, 
green finance, and environmental policies across 30 OECD 
and developing countries from 2005 to 2024. This research 
employs a hybrid empirical strategy that combines machine 
learning—specifically the XGBoost model and the SHAP-based 
interpretability framework to understand model outputs (Chen and 
Guestrin, 2016)—and several econometric techniques (two-way 
fixed effects, System-GMM, and Dynamic Common Correlated 
Effects (DCCE) approaches). By including the cross-term 
interactions (AI × GF, AI × Policy), this research assesses the 
extent to which AI readiness acts as a moderator on the financial 
and policy instruments of investment and efficiency in renewables. 

By doing so, this research contributes to the literature on a digital-
financial-policy nexus in the renewable energy transition by 
shifting the analytical framework from linear, disconnected models 
to more comprehensive and integrated perspectives.

2. CONCEPTUAL FRAMEWORK

This study’s conceptual framework centers on the interplay of 
artificial intelligence (AI), green finance (GF), and environmental 
policy tools for enabling and optimizing sustainable investment. 
Theoretically, AI can be viewed as a general-purpose technology 
that augments decision-making and efficiency due to sophisticated 
data processing and forecasting (Brynjolfsson et al., 2019). 
However, the immediate impact might be neutral or even 
unfavorable due to transitional adjustment costs—such as 
difficulties with integration, changes in organizational structures, 
and learning curve challenges (Aghion et al., 2017). Over a 
prolonged timeframe, AI drives productivity and synergistic 
complements with the financial and policy frameworks. 
This relationship aligns with the theory of technological 
complementarities (Aghion et al., 2019).

As a green finance channel, green finance contributes to lowering 
the cost of capital for renewable investments and financing 
environmentally sustainable projects, thus promoting cleaner 
technology adoption (Flammer, 2021). This mechanism is 
primarily facilitated by green bonds and ESG-linked instruments, 
as they certify environmental performance and corporate 
accountability by sending investor signals (Zerbib, 2019; Tang and 
Zhang, 2020). When paired with AI-enabled financial analytics, 
the efficiency of capital allocation can be optimized even further, 
as predictive algorithms identify high-impact green projects and 
evaluate risk-adjusted returns with greater accuracy.

Before discussing climate-related investments, one must analyze 
the fine details that determine how environmental policies shape the 
climate for investments and innovations. Economic mechanisms 
that help with innovation, investments, and innovation directed 
towards emissions reductions, as observed with the influence of 
carbon taxes (Calel and Dechezleprêtre, 2016).

The relationship between the three variables, AI, GF, and Policy, 
has the potential for profound synergistic relationships. In the case 
of artificial ıntelligence, the interplay of the financial and policy 
elements of the three variables. For countries that are ready and 
made advancements with AI and have strong institutions, strong 
economic growth coupled with robust policies for investments 
will come from the synergistic relationship from AI × GF and 
AI × Policy. In under developed countries, the loose legal 
framework and lack of advanced digital infrastructure will make 
the synergistic relationship between AI and Policy very small.

This framework assumes that AI transitions from being its own 
influence and detached technology to an influence that can 
augment technology. Missing, and most likely neglected, context 
to the framework are nonlinear relationships along with threshold 
determinants. For example, the lack of strong cohesive policies 
and AI will lead to underwhelming returns.
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3. LITERATURE REVIEW

3.1. Environmental Policy and Technological Change
The effect of policies on the development of clean innovation 
has been widely reported. According to Acemoglu et al. (2012), 
policies that offer price incentives foster “directed technological 
change,” whereby innovation is diverted from fossil fuels to 
renewables. Calel and Dechezleprêtre (2016) observed similar 
results when considering firms covered by the EU Emissions 
Trading System (ETS) as they increased patenting activity for 
low-carbon innovations. Recently, Colmer et al. (2025) provided 
further firm-level evidence that reinforced market-based policies 
through carbon pricing, which achieves significant emission 
reductions with no adverse effect on competitiveness. Sweden 
also provided evidence of the effectiveness of carbon tax policies 
by significantly decreasing firm-level CO₂ intensity (Martinsson 
et al., 2024).

3.2. Green Finance and Capital Allocation
Extensive research on Green Finance confirms its potential in 
integrating sustainability objectives within capital markets. 
Flammer (2021) argues that the market valuation of companies 
that issue green bonds increases alongside improvements in their 
environmental performance. Tang and Zhang (2020) noted that 
stakeholders respond positively to the announcement of green 
bonds, while Zerbib (2019) found evidence of a green premium, 
meaning that investors are willing to pay a higher price for green 
certified bonds and accept a lower yield. Collectively, the evidence 
suggests that the financial sustainability instruments available 
in the market today help alleviate financing tension, improve 
market transparency, and promote the development of sustainable 
innovation. Furthermore, Mazzucato and Semieniuk (2018) 
demonstrated that different financing structures and sources have 
a strong impact on the direction of the growing renewable energy.

3.3. Artificial Intelligence as a Catalyst for Sustainable 
Investment
In recent years, AI has been seen as a positive technological 
innovation in creating value in financial decision-making, as 
well as in the achievement of positive results in an organization’s 
sustainability efforts. While productivity dividends remain the 
impact of AI on prediction, efficiency, and resource allocation as 
noted by Brynjolfsson et al. (2019) may take time to realize due to 
several adaptation costs. On the AI’s impact to SDG (Sustainable 
Development Goals) achievement, Vinuesa et al. (2020) articulated 
how AI enhances data and its monitoring for several SDGs which 
includes SDG 7 (affordable and clean energy) and SDG 13 
(Climate Action). AI-based technologies in the financial sector are 
becoming commonplace as tools for credit scoring, ESG analytics, 
and investment screening which are focused on the reduction of 
asymmetries and the advancement of green innovation financing.

3.4. Methodological Advances: Integrating 
Explainable AI and Econometrics
The combination of explainable ML and econometrics is helping 
to model complex nonlinear multi-factor relationships. Friedman 
(2001) pioneered works on gradient boosting machines (GBM), 
and later on, Chen and Guestrin (2016) built XGBoost, which 

is a scalable algorithm designed for heterogeneous panel data. 
Lundberg et al. (2020) developed SHAP (shapley additive 
explanations) to explain AI and advanced interpretability more 
and introduced the decomposition of feature effects which 
helps visualize marginal contributions. These methods are 
particularly useful for examining the role of AI as a moderator in 
green investment models since they capture complex nonlinear 
relationships across countries and diverse policy regimes.

3.5. Research Gaps
While there is more literature on the subject, there are still several 
gaps. First, the empirical study of the integrated dynamics of AI, 
GF, and policy remains scarce. Second, the cross-country empirical 
analysis of AI’s moderating role on the financial and policy 
effectiveness constitutes a significant gap. Third, many studies fail 
to recognize the nonlinear thresholds where AI readiness pivots the 
green finance and policy effectiveness. This study addresses these 
gaps and contributes to the literature by combining econometric 
modeling and explainable ML to analyze the long-run equilibrium 
and the short-run dynamics of these interrelated factors.

3.6. Research Questions and Hypotheses
This study seeks to assess the impact of AI-driven financial 
innovations on the transition to renewable energy in relation to 
efficiency gains, investments, and policy outcomes across different 
nations. AI’s ability to enhance information processing and 
decision-making in green finance is likely to be a game changer 
in optimizing the speed of sustainable energy systems capital 
(Apergis and Payne, 2010; Bhattacharya et al., 2022).

3.7. Research Questions are Provided Below as Folows
•	 Do AI-supported financial strategies improve renewable 

energy efficiency?
•	 Do these strategies significantly increase renewable investment 

inflows?
•	 Do policy instruments (e.g., carbon pricing, feed-in tariffs) 

interact with AI-based finance to amplify their impact on 
sustainability outcomes?

Based on these questions, the following hypotheses are proposed:
H1: The interaction between AI adoption and green finance (AI × 

GF) positively affects renewable energy efficiency.
H2: AI-derived financial signals (Investment^ML) positively 

influence renewable investment flows.
H3: The interaction term (Policy × AI) exerts a positive moderating 

effect on renewable investment and efficiency.

4. DATASET AND METHODOLOGY

4.1. Dataset and Variables
The dataset spans the years 2005-2024 and encompasses 30 OECD 
and emerging economies based on the availability of data and the 
diversity of policies. Each year data was collected from a number 
of sources internationally:
•	 Investments in and capacity for renewable energy  -  IEA 

(2024), IRENA (2024), BloombergNEF (2023).
•	 Green finance (e.g., Green Bonds, ESG Loans)  -  Climate 

Bonds Initiative (2024) and Refinitiv Eikon.
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•	 AI adoption  -  Oxford Insights (2024) Government AI 
Readiness Index.

•	 Energy policies (e.g., carbon pricing, FITs, and R&D 
support)  -  OECD Policy Instruments for the Environment 
Database.

•	 Macroeconomic variables and other controls - World Bank 
WDI (2024) and BP Statistical Review (2023).

All finance variables were deflated to 2020 US dollars and World 
Bank GDP deflators. Country harmonized values were done through 
PPP. Data outliers were winsorized and logarithmic transformations 
to skew variables were done using Wooldridge (2019).

The key variables used in the empirical analysis, together with 
their definitions, measurement methods, and data sources, are 
summarized in Table 1 for clarity and reproducibility.

The inclusion of carbon pricing as a policy instrument is further 
supported by empirical evidence demonstrating that the European 
Union Emissions Trading System has led to meaningful reductions 
in CO₂ emissions, even during periods of relatively low permit 
prices (Bayer and Aklin, 2020).

4.2. Methodology
The empirical model is based on a two-way fixed effects 
specification to account for unobserved heterogeneity across 
countries and years, indicated in Equation 1 as follows:

Y_it = α_i + γ_t + β1GF_it + β2 AI_it + β3 (GF_it × AI_it) + δ’X_it 
+ ε_it� (1)

Where Y_it represents either renewable energy investment or 
energy efficiency, α_i and γ_t are country and time effects, and ε_it 
denotes the error term. The coefficient β3 captures the moderating 
effect of AI-driven finance on green finance outcomes. Robustness 
is ensured by employing Driscoll-Kraay standard errors.

For strong inference, the Driscoll-Kraay heteroskedasticity and 
autocorrelation-consistent standard errors were implemented 
(Driscoll and Kraay, 1998). Pesaran’s CD test was used for cross-
sectional dependence, and Levin et al. (2002) and Imet al. (2003) 
were used for panel stationarity. The long-term relationships 
were confirmed using Pedroni (1999) and Westerlund (2007) 
cointegration tests.

A System-GMM estimator (Arellano and Bover, 1995; Blundell 
and Bond, 1998) was used to tackle endogeneity, dynamic effects, 
and persistence:

Y_it = ρY_i,t−1 + α _i + γ_t + β1GF_it + β2 AI_it + β3 (GF_it × 
AI_it) + δ’X_it + u_it� (2)

Lagged dependent variables were used as instruments. Instrument 
proliferation was mitigated using the collapse option, with Hansen 
P-values maintained between 0.1 and 0.9 to ensure validity. AR(2) 
tests confirmed the absence of second-order autocorrelation.

Robustness was further validated through mean group (MG) and 
pooled mean group (PMG) estimations (Pesaran et al., 1999), 
dynamic common correlated effects (DCCE) (Chudik and Pesaran, 
2015), and Panel Quantile Regressions to assess heterogeneity 
across country groups.

The ML model complements the econometric specification 
by enhancing predictive accuracy and robustness across 
heterogeneous country samples.

Given the potential for multicollinearity in models combining 
macro-financial, policy, and technological variables, diagnostic 
checks were carefully considered in line with established 
approaches for detecting and mitigating collinearity in multivariate 
empirical frameworks (Dormann et al., 2013).

To complement econometric estimation, an AI-based predictive 
framework was integrated. Gradient Boosting Machine (Friedman, 
2001) and XGBoost (Chen and Guestrin, 2016) algorithms were 
trained to predict next-period renewable investment (Investmentt+1) 
using financial, policy, and macroeconomic predictors. Temporal 
cross-validation employed a rolling-origin scheme (60/20/20 split), 
ensuring no data leakage. Hyperparameter optimization followed 
a random search procedure, and model performance was evaluated 
using RMSE, MAPE, and R2 metrics.

Model interpretability was achieved using SHAP values (Lundberg 
and Lee, 2017), enabling decomposition of predicted outcomes by 
feature importance. Partial dependence plots (PDPs) visualized 
marginal effects of AI and policy interactions.

Figure 1 presents the conceptual framework of the study, 
illustrating the hypothesized transmission mechanism through 
which artificial intelligence adoption influences renewable energy 
investment and efficiency indirectly via green finance, while 
accounting for the moderating role of policy interaction.

The diagnostic and robustness analyses were conducted to 
ensure the validity and stability of the empirical results. Cross-
sectional dependence was first examined using Pesaran’s CD 
test, which indicated significant interdependencies among 

Table 1: Variables and measurement
Symbol Variable (EN) Measurement Source
Investment it Renewable energy ınvestment Annual RE investment (billion USD) IEA, BNEF
Efficiencyit Energy efficiency ındex GDP per unit of energy consumption WDI
GFit Green finance ındex Weighted z‑score of green bond issuance and ESG loans CBI, Refinitiv
AIit AI adoption ındex Composite readiness score (0‑1) Oxford Insights
Policyit Policy ınstrument Carbon price (USD/tCO2) or FIT intensity index OECD
Xit Controls GDP per capita, CO2 emissions, energy import dependency WDI, BP
Monetary variables are expressed in constant 2020 USD (PPP‑adjusted); extreme values are winsorized at the 1st‑99th percentiles
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through the Pedroni (1999) and Westerlund (2007) cointegration 
tests, both of which confirmed statistically significant long-term 
associations. To address potential endogeneity, Hansen and 
Sargan tests were employed to assess the validity and relevance of 
instruments within the System-GMM framework, while Arellano-
Bond AR(2) diagnostics confirmed the absence of second-order 
serial correlation (Arellano and Bover, 1995; Blundell and Bond, 
1998). Furthermore, alternative estimators such as the mean 
group (MG), pooled mean group (PMG), and Dynamic Common 
Correlated Effects (DCCE) methods were implemented to account 
for heterogeneity and common shocks across panels (Pesaran 
et al., 1999; Chudik and Pesaran, 2015). Finally, re-estimations 
excluding outliers and using alternative subsamples yielded 
consistent coefficient signs and significance levels, reinforcing 
the robustness and reliability of the empirical findings.

5. TEST RESULTS

5.1. Descriptive Statistics
The descriptive statistics regarding the variables utilized in the 
empirical analysis are summarized in Table 2. These statistics are 
the starting point in gaining an understanding of the distributional 
properties, central tendencies, and the dispersion of the data for 30 
countries between the years 2005 and 2024. These parameters need 
to be summarized and described to evaluate data norm, to check 
for outliers and to analyze if properly variable transformation 
and standardization techniques were applied in the data set prior 
to the econometric modeling (Wooldridge, 2019; Gujarati and 
Porter, 2020). To determine the presence of any abnormality, the 
analysis of skewness, kurtosis, and the Jarque-Bera stats were 
applied, considering that abnormality may impact the reliability 
of inference for the panel estimations (Baltagi, 2021).

The descriptive statistics point out to the considerable heterogeneity 
regarding the investments in the renewable energy sector, with an 
average of 80.88 bln USD in investments and 123.5 bln USD 
in investments for the standard deviation, an evidence for the 
huge cross-sectional dispersion that is observed in the global 
investments (IEA, 2024). The logarithmic transformation of the 
investments (ln1p_Investment) showed near normal properties 

Table 2: Descriptive statistics
Variable Obs. Mean Standard deviation Min Max Skew. Kurt. Jarque‑Bera P-value
Investment (USD2020, billion) 600 80.88 123.50 0.43 881.09 3.56 14.85 0.000
ln (1+Investment) 600 3.69 1.24 0.35 6.78 −0.13 −0.01 0.408
Efficiency Index 600 88.79 16.51 61.57 128.86 0.18 −1.17 0.000
Green Bonds (USD2020, billion) 600 14.37 33.28 0.00 292.56 4.85 29.10 0.000
ln (1+Green Bonds) 600 1.66 1.35 0.00 5.68 0.69 −0.32 0.000
ESG loans (USD2020, billion) 600 3.50 6.66 0.01 58.45 3.81 18.58 0.000
ln (1+ESG loans) 600 0.97 0.92 0.00 4.09 1.03 0.27 0.000
AI ındex (0‑1) 600 0.49 0.13 0.23 0.85 0.10 −0.62 0.005
Carbon price (USD/tCO₂) 600 16.56 25.16 0.00 97.88 1.15 −0.14 0.000
Feed‑in Tariff ındex (0‑2) 600 0.55 0.76 0.00 2.00 0.96 −0.60 0.000
Policy ındex (combined) 600 0.33 0.41 0.00 1.28 0.67 −1.24 0.000
GDP per Capita (PPP, 2020 USD) 600 44,032.5 22,236.4 10,223.3 134,582.5 1.00 0.83 0.000
CO2 emissions (Mt) 600 410.51 358.86 13.39 1,871.72 1.50 2.34 0.000
Energy ımport dependency (%) 600 40.87 17.31 11.75 69.55 −0.02 −1.26 0.000
Fuel price (Industrial, USD/MWh) 600 103.68 29.38 52.43 207.63 0.79 0.26 0.000
FX volatility ındex 600 0.17 0.07 0.03 0.32 −0.04 −1.29 0.000
Sovereign 10Y Yield (%) 600 6.62 3.11 0.17 12.15 −0.09 −1.30 0.000

Figure 1: Conceptual research model

Arrows denote hypothesized positive relationships; dashed lines 
indicate policy moderation through carbon pricing and renewable 
incentives

countries, confirming the need for robust covariance estimators 
(Pesaran, 2004). Panel unit root tests following Levin et al. 
(2002) and Im et al. (2003) revealed mixed stationarity properties 
across variables, leading to the application of first-difference 
transformations for non-stationary series. The existence of a long-
run equilibrium relationship between artificial intelligence, green 
finance, and renewable energy outcomes was subsequently verified 
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(skewness = −0.13; P > 0.05), confirming the success of the 
transformation applied to reduce the impact of the heavy-tailed 
distribution.

The distributions of green bond issuances and volumes of ESG 
loans show disproportionate right-skewness and leptokurtosis, 
indicating a few countries, mostly advanced economies, driving 
flows of green finance. This is consistent with findings that 
geographies of green financial markets are concentrated in high-
income countries (Bhattacharya et al., 2022; Zerbib, 2019). The AI 
readiness index also shows similar, although moderate, dispersion 
(mean = 0.49; σ = 0.13), reflecting the cross-country asymmetries 
in digital and institutional frameworks (Oxford Insights, 2024).

CO₂ emission ranges exhibit plausible extremes, and the variances 
are very high. While imports of dependent energy are structurally 
framed around the 40.9% average, globally, emissions are framed 
around the 410 Mt average with a maximum of 1,872 Mt (World 
Bank, 2024). Jarque-Bera test outcomes validate the non-normality of 
a number of economic and environmental variables and the adopted 
use of Driscoll-Kraay covariance (Driscoll and Kraay, 1998).

5.2. Correlation Analysis
The correlation heatmap outlines the preliminary check regarding 
the study’s numeric variables within the correlation framework 
and highlights the need for more check-the-mechanism correlation 

multicollinearity multicollinearity and blocks moving together 
policy-finance variables seamlessly prior to the deployment of 
the fixed effects along with dynamic panel estimators. Definitions 
and transformations of the variables along with study periods 
spanning 2005-2024 across 30 countries are explained in detail 
within the manuscript.

As illustrated in Figure 2, the correlation heatmap offers a 
preliminary diagnostic assessment of pairwise relationships 
among the study variables, indicating moderate correlations across 
selected financial and policy indicators while alleviating concerns 
regarding excessive multicollinearity.

Renewable investment shows a clear persistence. The 
lng(1+Investment) and its lag shows extreme correlation(≈0.99) 
which justifies the need for specifications in state dependence to 
mitigate dynamic panel bias using the System GMM approach 
along the lag instruments (Arellano and Bover 1995, Blundell and 
Bond 1998). The GreenBond interrelationship with other variables 
(level, lng(1+GreenBond), the green bond z-score, the ESG-loan 
z-score and the weighted GF index) has strong correlation (r often 
>0.70, reaching ≈ 0.85-0.86 between composite and components) 
indicative of redundancies and risk of high multicollinearity. The 
composite of each construct with clear setting of bounds for the 
variance to restrict inflation is preferred, considering the limits of 
the “rule-of-thumb” diagnostics (O’Brien, 2007).

Figure 2: Correlation heatmap of numeric variables
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I noticed how closely aligned certain policies are with one another: 
For example the Carbon Price and the combined Policy Index have 
correlation values of 0.87, indicating the policies are likely passed 
together. To limit collinearity, orthogonalization (e.g., residualizing 
the combined index on carbon price) or will likely be needed and 
be more beneficial than collinearity preserving information. Jolliffe 
(2002) discusses dimension reduction techniques like PCA which 
may provide additional value by removing collinearity. When it 
comes global shocks that are not observed and cause common 
movements across different time series, utilizing the (D)CCE 
estimator along with robust covariance methods will be beneficial 
(Chudik and Pesaran, 2015).

The correlation with finance and investment for AI index is of 
lower value compared to other indicators (|r| <0.30) and that 
can be explained by the varied speed of different systems and 
the multi-channel nature of AI (and the AI ecosystem). Fixed 
effects and interaction terms in the panel model provide a clearer 
picture of the effect than simple bivariate correlations. Policy 
and macroeconomic time series are likely heavy-tailed and in the 
absence of differencing/cointegration will likely cause spurious 
correlation. The correlation will likely be spurious high due to 
the trending nature of the variables/time series for the specific 
Granger and Newbold (1974) example. The specific unit-root 
and cointegration strategy combined with Driscoll-Kraay on the 
manuscript handles these points (Driscoll and Kraay, 1998; Levin 
et al., 2002; Im et al., 2003; Westerlund, 2007).

5.3. Econometric Estimation Results: Two-Way Fixed 
Effects Analysis
The findings from estimating the two-way fixed effects model, 
describing the primary drivers behind the investments on 
renewable energy for the period 2005-2024, is shown in Table 3. 
This model calculates the unit effects on financial, policy, and 
technological variables, which entails using robust Driscoll-Kraay 
standard errors for estimating the correlations and dependencies, 
as well as the heteroskedasticity in the serial and cross sectional 
macro panel Driscoll and Kraay, 1998. This model is useful in 
analyzing the combined effect of policy tools, AI intensity, and 
green financial instruments, on renewable energy investments, on 
which there is still very limited literature, despite the incorporation 
of technological innovations and green finance in growth-oriented 
energy transition model (Apergis and Payne, 2010; Bhattacharya 

et al., 2022).

As for the goodness-of-fit, note that the negative overall R2 scores 
do not indicate poor fit of the model because of the fixed effects 
and should not be viewed in any normal way. It should not be 
interpreted as the normal fit. The inference is done through the 
within R² and robust F-statistics (Wooldridge, 2019).

The findings in Table 3 indicate that AI intensity holds a strong 
negative relation to renewable investment (β = −2.015, P < 0.001). 
This negative effect may be attributed to transitional costs 
and adjustment frictions in the digital transformation process, 
particularly in cases where the economy is primarily focused on 
the short-term benefits of AI investments that transform capital 
and labor structures, as opposed to the long-term efficiency gains 
(Aghion et al., 2019). The short-term negative effect of digital 
technologies is embedded in the theory of technological diffusion. 
Acemoglu and Restrepo (2019) attributed such short-term negative 
effects to incomplete absorptive capacity and a lack of coordinated 
institutional structures.

The compliance and transition costs in carbon-heavy economies 
can explain the strong negative effect of carbon price on renewable 
investment as well (β = −0.0046, P < 0.001). These findings are 
consistent with the previous research that suggests carbon pricing 
might lead to a negative structural sensitivity of investments in the 
short run, which is only reversible after the economy structurally 
adapts to the use of cleaner technologies (Greenstone et al., 2022).

On the other hand, industrial fuel prices positively correlate to 
renewables investments (β = 0.0033, P = 0.039), which shows 
that price pressures within conventional energy industries serve as 
signals to invest in renewables (IEA, 2024). This price-investment 
relationship fits the substitution principle in energy economics, 
which argues that diversification into renewables happens faster 
when fossil fuel prices rise.

Other macroeconomic variables, like GDP per capita and 
sovereign yields, did not have statistical significance, which 
suggests that long-term structural factors and financing 
conditions might have already been captured by country fixed 
effects. In the same vein, the coefficients on green bonds and 
ESG loans were positive, but statistically insignificant, which 

Table 3: Two‑way fixed effects estimation results (robust standard errors)
Variable Coefficient Standard error t‑statistic P‑value 95% confidence ınterval
Constant 3.9962 0.4297 9.300 0.000 (3.152, 4.840)
ln (1+Green bonds) 0.0416 0.0272 1.528 0.127 (−0.012, 0.095)
ln (1+ESG loans) −0.0358 0.0341 −1.050 0.294 (−0.103, 0.031)
AI ındex (0‑1) −2.0153 0.4451 −4.528 0.000 (−2.890, −1.141)
Carbon price (USD/tCO₂) −0.0046 0.0010 −4.714 0.000 (−0.0065, −0.0027)
Policy ındex (combined) −0.0789 0.0676 −1.168 0.244 (−0.212, 0.054)
GDP per Capita (PPP, 2020 USD) 1.74×10⁻6 1.83×10⁻6 0.950 0.343 (−1.86×10⁻6, 5.34×10⁻6)
Energy ımport dependency (%) 0.0089 0.0073 1.215 0.225 (−0.006, 0.023)
Fuel Price (Industrial, USD/MWh) 0.0033 0.0016 2.073 0.039 (0.0002, 0.0064)
FX volatility ındex −0.1093 0.4249 −0.257 0.797 (−0.944, 0.725)
Sovereign 10‑year yield (%) −0.0021 0.0122 −0.170 0.865 (−0.026, 0.022)
Model diagnostics: Dependent variable: ln (1+Investment); Estimator: Two‑way fixed effects (Entity and time); Covariance estimator: Driscoll‑Kraay (Robust); Observations: 600 
(30 countries×20 years); F‑statistic (robust): ≈ 10.7 P<0.001; R² (Within): ≈ 0.18 R2 (Overall): ≈ −0.19; Poolability F‑test: 184.62 P<0.001
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implies that the deepening of finance, by itself, does not lead to 
increased real investment without supportive institutional and 
technological structures.

The results of this study capture a complex reality: AI and carbon 
pricing tools seem to influence investment decisions within 
realignment processes in transition, rather than through direct 
stimulation. This underscores the need for a coordinated evolution 
of technology and regulation to transform available financial 
and policy instruments into real investment shifts in renewables 
(Acemoglu et al., 2022; IRENA, 2024).

5.3.1. Extended FE with ınteractions (GF×AI, Policy×AI)
To test the hypothesized moderations, interaction terms were 
included between green finance and AI intensity (GF × AI) and 
between policy index and AI intensity (Policy × AI). Table  4 
reports the extended fixed-effects specification estimated with 
Driscoll-Kraay standard errors.

The results show that AI intensity notably influences the financial 
and policy dimensions of renewable investment. Within the 
framework of digital-complementarity theory, the augmented 
green finance instruments’ effectiveness stems from AI absorptive 
potential. This is evident from the interaction’s positive and 
significant coefficient, GF×AI (β = 0.118, P < 0.05).

The Policy×AI (β = 0.074, P < 0.05) interaction also provides 
similar insights. AI-driven economies exhibit stronger investment 
hinges with well-designed policies. This finding advances the 

institutional-complementarity hypothesis, juxtaposing digital 
governance with policy coordination to ease transitional frictions 
(Acemoglu and Restrepo, 2019; OECD, 2023).

The results indicate that digitization amplifies, not substitutes, 
the financial and policy efforts. Such countries will, therefore, 
have a comparative advantage in completing renewable energy 
transitions.

Nonlinearity checks confirm the hypothesis that as digital 
capabilities deepen, frictions will ease. This is shown with a 
weak U-shaped pattern when a quadratic term for AI and an 
indicator at AI = 0.5 is used while the turning point rests beyond 
the 75th percentile.

It can be inferred that a semi-elastic estimate of Fuel Price (0.0033) 
means that with increases of 10 USD/MWh, investments of 
approximately 3.3% more will be made. On the other hand, with 
increases of 10 USD/tCO2 on the carbon price, investments of 
approximately 4.6% less will be made, which is consistent with 
transitional compliance costs.

5.3.2. Dynamic panel analysis (system-GMM results)
The use of a two-step System-GMM estimator to potentially 
address endogeneity and dynamic persistence with renewable 
investment was apparent with lagged investment terms as 
instruments and application of coordinate collapse to mitigate 
instrument proliferation. The estimation results are shown in 
Table 5.

Table 4: Two‑Way fixed effects with ınteraction terms (Driscoll‑Kraay Ses)
Variable Coefficient Standard error t‑statistic P‑value 95% confidence ınterval
Constant 3.9821 0.4412 9.02 0.000 (3.094, 4.870)
Ln (1 + Green bonds) 0.0523 0.0269 1.944 0.052 (−0.0005, 0.105)
Ln (1 + ESG loans) −0.0308 0.0332 −0.928 0.354 (−0.096, 0.034)
AI ındex (0‑1) −1.7542 0.4779 −3.67 0.001 (−2.712, −0.796)
Carbon price (USD/tCO2) −0.0049 0.0011 −4.35 0.000 (−0.0071, −0.0027)
Policy ındex (combined) −0.0667 0.0614 −1.086 0.281 (−0.192, 0.058)
GF × AI 0.1184 0.0452 2.618 0.010 (0.029, 0.207)
Policy × AI 0.0739 0.0338 2.187 0.030 (0.007, 0.141)
GDP per Capita (PPP, 2020 USD) 1.65 × 10⁻6 1.77 × 10⁻6 0.932 0.352 (−1.93 × 10⁻6, 5.23 × 10⁻6)
Energy ımport dependency (%) 0.0092 0.0071 1.296 0.198 (−0.005, 0.023)
Fuel price (USD/MWh) 0.0035 0.0015 2.333 0.022 (0.0005, 0.0065)
Fx volatility ındex −0.1172 0.4110 −0.285 0.777 (−0.930, 0.695)
Sovereign 10‑year yield (%) −0.0018 0.0118 −0.153 0.879 (−0.025, 0.022)
Model diagnostics: Dependent variable: ln (1 + Investment); Estimator: Two‑way Fixed Effects (Entity and Time); Covariance estimator: Driscoll‑Kraay (Robust); Observations: 600 (30 
countries × 20 years); F‑statistic (robust): ≈ 11.2 P < 0.001; R2 (Within): ≈ 0.21 R2 (Overall): ≈ −0.18

Table 5: Dynamic panel (system‑GMM) estimation results
Variable Coefficient Standard error z‑statistic P‑value
ln (1+Investment)ₜ₋₁ 0.412 0.093 4.429 0.000***
ln (1+Green bonds) 0.052 0.028 1.857 0.063*
ln (1+ESG loans) −0.029 0.033 −0.879 0.380
AI ındex (0‑1) −1.743 0.498 −3.498 0.001***
Carbon price (USD/tCO2) −0.0039 0.0012 −3.250 0.001***
Policy ındex (combined) −0.064 0.071 −0.901 0.368
GDP per Capita (PPP, 2020 USD) 1.98×10⁻⁶ 1.81×10⁻⁶ 1.094 0.274
Fuel price (USD/MWh) 0.0031 0.0015 2.024 0.043**
CO2 emissions (Mt) 0.0005 0.0002 2.500 0.012**
Diagnostics: #Groups=30; #Obs=570; Instruments (collapsed) = 48; Instruments/Groups=1.6 (<2, OK). Hansen J=17.84 (P=0.412); AR (1) P=0.000; AR (2) P=0.316. Lag depth: 
Gmmstyle (L2‑L3); Windmeijer correction applied
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System-GMM Windmeijer correction and all described 
specification in terms of instrument collapse to address 
proliferation of instrument with lagged levels and differences of 
dependent variable were in L2-L3 window as described was used. 
Endogeneity resolving specification deals with state dependence 
and potential simultaneity of financial variables and investment 
results which are described in the investment paper.

The lagged dependent variable is positively signed and significant 
which confirms persistence in investment validating the dynamic 
specification. AI intensity consistently remains negatively 
correlated with renewable investment which is in line with the 
transitional adjustment dynamics in the fixed effects model. The 
results of Hansen and AR(2) tests substantiate the conclusions 
on the validity of instruments and the lack of serial correlation. 
All results reiterate the interdependence of investment inertia in 
the short run with the level of technological sophistication and 
the stringency of carbon regulation (Blundell and Bond, 1998; 
Arellano and Bover, 1995).

In addition to the main model, energy efficiency was investigated 
as a second dependent variable. Table 6 presents the results.

Green bonds positively impact energy efficiency since they 
focus on financial resources directed toward environmentally 
cleaner adoptive systems. Carbon prices and AI intensity are 
still negatively signed, indicating inefficiencies in transitions and 
adjustments along the lines of the investment model. The findings 
illustrate the coexistence of financial and technological inputs.

5.3.3. Robustness to heterogeneity and cross-sectional 
dependence (DCCE, MG, PMG)
In the context of heterogeneity of slopes and unobserved common 
shocks, the dynamic common correlated effects (DCCE), mean 
group (MG), and pooled mean group (PMG) estimators were used. 
The patterns of sign and significance of the key coefficients for 
the different estimators are presented in Table 7.

5.4. Machine-Learning Predictive Analysis: SHAP-
Based Feature Attribution
To follow up on the fixed effects estimations, explainable-AI 
diagnostics were conducted on the GBM and XGBoost models 
employing SHAP (SHapley Additive exPlanations). SHAP allows 
for an additive game-theoretic decomposition of predictions and 
provides both global importance (mean absolute SHAP values) 
and the distribution of marginal effects across observations 
(summary/beeswarm plots). In this case, a rolling, time-aware 
validation scheme was retained to avoid temporal leakage in this 
panel setting (Lundberg and Lee, 2017; Lundberg et al., 2020; 
Chen and Guestrin, 2016; Roberts et al., 2017).

5.4.1. Gradient boosting machine (GBM): Global and local 
SHAP results
Figure 3 presents the SHAP summary plot, illustrating the relative 
importance and directional impact of explanatory variables on 
renewable energy investment, with lagged investment, CO₂ 
emissions, efficiency, and artificial intelligence adoption emerging 
as the most influential predictors.

Figure 4 reports the global feature importance based on mean 
absolute SHAP values, demonstrating that investment persistence 
(ln1p_Investment_lag1) overwhelmingly dominates model 
predictions, followed by CO₂ emissions, energy efficiency, and 
artificial intelligence adoption.

The pronounced state dependence is best exemplified with a global 
perspective, where the dominant lag of investment is displayed 
tightly with a summary plot, thereby showing a systematic cross-

Table 6: Two‑Way fixed effects model for energy efficiency 
(Robust SEs)
Variable Coefficient Standard 

error
t‑statistic P‑value

ln (1+Green 
bonds)

0.061 0.025 2.442 0.015 **

ln (1+ESG loans) 0.022 0.031 0.710 0.478
AI ındex (0‑1) −1.244 0.429 −2.898 0.004***
Carbon price 
(USD/tCO2)

−0.0028 0.0009 −3.111 0.002***

GDP per Capita 
(PPP, 2020 USD)

2.03×10⁻6 1.72×10⁻6 1.180 0.238

Table 7: Robustness summary across DCCE, MG, and 
PMG
Variable DCCE MG PMG
AI ındex (0‑1) (−)** (−)* (−)**
Carbon price (−)** (−)** (−)**
Fuel price (+)* (+)* (+)**
CO2 emissions (+)** (+)** (+)**
Green bonds (ln1p) (~) (~) (+)*
(+)/(−) sign; *, ** denote P<0.10, P<0.05. “~” = not significant

Figure 3: Mean(|SHAP|) feature importance values for GBM model
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Figure 6: SHAP summary (beeswarm) plot for XGBoost model

Figure 5: Mean(|SHAP|) feature importance values for XGBoost 
model

Figure 4: SHAP summary (beeswarm) plot for GBM model

country effect. Of the non-lag drivers, CO2 emissions remains the 
highest and, on average, is tied to positive SHAP values, illustrating 
the capital mobilized in economically carbon-embedded systems 
with transition pressure. Contributions of headline volumes in 
green finance are, once emissions and persistence are accounted 
for, minor as the policy and capabilities needed for real investment 
are absent, indicating that emission issuance without policy 
integration will not result in real investment (Lundberg et al., 
2020; Roberts et al., 2017).

5.4.2. XGBoost: Global and local SHAP results
Figure 5 displays the SHAP summary plot derived from the 
XGBoost model, confirming the robustness of the feature 
importance structure observed earlier, with lagged investment, 
CO₂ emissions, and artificial intelligence adoption exerting the 
strongest directional impacts on predicted renewable energy 
investment.

Figure 6 presents the global feature importance based on mean 
absolute SHAP values obtained from the XGBoost model, further 
confirming the dominant role of investment persistence, followed 
by CO₂ emissions, artificial intelligence adoption, and efficiency-
related indicators.

The corroborated pattern displays ln(1+Investment)_t−1 is the 
primary predictor. Heterogeneous signs within the AI index across 
its value range suggest context-dependent and possibly non-linear 
effects of the AI index as it enters the upper tier, both of which are 
consistent with the technology-transition literature’s (Acemoglu 
and Restrepo, 2019) short-run adjustment frictions and longer-run 
efficiency gains. Macro-financial variables (e.g. sovereign yields, 
efficiency index) are modest, contouring but remaining secondary 

to persistence and emissions, which is corroborated by the GBM 
and XGBoost as it strengthens the inference that transition pressure 
and persistence are dominant drivers while finance and AI operate 
through conditional channels that the econometric models explore.
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Cross-model nuance. Although the fixed-effects estimates and 
GBM SHAP contributions suggest the relationship between CO2 
emissions and investment (transition pressure) is positive, the 
XGBoost partial dependence shows a slight and negative slope for 
the lower emissions range. This is a consequence of distributional 
heterogeneity and the interaction frameworks and dynamics that 
tree ensembles captured. Thus, global SHAP and panel estimates 
should be regarded as the best representation of average effects, 
and PGP as local sensitivity (Lundberg et al., 2020).

To further confirm the directional and monotonous impact of 
features, we constructed partial dependence plots (PDPs) for the 
top predictors under both GBM and XGBoost models (Appendix 
A, Figures A1-A2), which, as with the other models, indicates the 
robustness of the SHAP-based logic.

The determinants of predictive variance for the two ensemble 
models has been systematically contrasted, with the findings 
displayed in Table 8. This integration allows for the empirical cross-
model validation of feature constancy, illustrating the underlying 
structural persistence and transition dynamics in the evolving 
predictive models for renewable energy investment (Friedman, 
2001; Lundberg and Lee, 2017; Chen and Guestrin, 2016).

5.4.3. Machine learning model performance
Gradient boosting machine (GBM) and XGBoost models were 
trained to predict renewable investment levels using financial, 
policy, and macroeconomic features. Table  9 presents model 
performance metrics based on rolling-origin cross-validation.

Both ensemble learners demonstrate high predictive accuracy, 
with XGBoost marginally outperforming GBM in terms of R2 
and RMSE. These results validate the robustness of nonlinear 
estimations and highlight the relevance of AI-driven methods for 
forecasting renewable investment trajectories (Friedman, 2001; 
Chen and Guestrin, 2016; Lundberg and Lee, 2017). The strong 
out-of-sample fit corroborates the econometric results, confirming 
the significance of technological, policy, and financial variables 
in shaping renewable finance dynamics.

6. DISCUSSION

The analysis presented in this study assists in advancing the 
understanding of the interaction between digital transformation, 

green finance, and environmental policy, particularly the role of 
artificial intelligence (AI) as a moderating factor in the transition 
to renewable energy. Results from both the econometric and 
machine-learning approaches show that while AI intensity 
is negatively impacting the effectiveness of both renewable 
investment and efficiency, this is an expected outcome of the 
transitional adjustment hypothesis put forth in Aghion et al. 
(2017). It appears that, in the short run, the digital transformation 
process will result in frictions in the economy that will involve 
learning costs, institutional adjustment, and the reallocation of 
capital, all of which will be offset in the medium to long run by 
digital transformation and productivity growth. Complementary 
effects from AI will become apparent in the long run through its 
interaction with finance and policy variables, which will strengthen 
the integration of capital and increase the responsiveness of capital 
to the policy (Brynjolfsson et al., 2019; Vinuesa et al., 2020).

6.1. Comparison with Prior Evidence on Green 
Finance and Technological Efficiency
The positive and significant dimension of the AI × GF interaction 
indicates that a firms’ digital capabilities enhance the impact of 
instruments of Green Finance. This result builds on Flammer 
(2021) and Zerbib (2019) conclusions that focused on the impact 
of green bonds on corporate environmental performance and 
corporate valuation, although the digital context was not included. 
I demonstrate how the AI-powered analytics and green financial 
instruments paired analytics and green financial instruments 
enable more precise allocation of capital and the evaluation of 
risk, thereby supporting the technological complementarities 
(Aghion et al., 2019). This result is also consistent with Tang and 
Zhang (2020), who showed that environmental data transparency 
and credibility shaped investors’ response to green bonds, which 
is a dimension that AI systems can enhance through automated 
verification and monitoring.

Without AI interactions, the main-effect coefficients of the green 
finance variables were statistically weak, indicating that, on its 

Table 8: Comparative feature ımportance across GBM and XGBoost models
Rank Feature Mean Absolute 

SHAP value 
(GBM)

Mean Absolute 
SHAP value 
(XGBoost)

Interpretation

1 ln (1+Investment)ₜ₋₁ 0.8068 0.7955 Past investment exerts the strongest influence, confirming persistence 
effects in renewable finance.

2 CO₂ Emissions (Mt) 0.0343 0.0304 Higher emissions correspond to increased investment needs, reflecting 
decarbonization responses.

3 AI Index (0–1) 0.0110 0.0239 AI intensity contributes to predictive variance, indicating its 
moderating role in investment outcomes.

4 Efficiency Index/
Sovereign 10Y Yield (%)

0.0168 0.0167 Efficiency and yield factors capture macro‑financial sensitivities 
influencing green finance flows.

Bold value indicates the highest mean absolute SHAP value within the model, representing the most influential predictor in terms of global feature importance.

Table 9: Machine learning model performance comparison
Metric GBM XGBoost
R2 (Out‑of‑sample) 0.71 0.75
RMSE 0.189 0.171
MAPE (%) 8.34 7.42
Training time (sec) 2.6 3.8
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own, financial deepening may not lead to significant investments 
in renewables. This underlines the reasoning of, for instance, 
Mazzucato and Semieniuk (2018), who stressed that the source and 
structure of finance and not its magnitude determines the outcome 
of technology. This study therefore, suggests that green capital 
becomes transformative only when digital intelligence that can 
optimize the allocation and governance of the capital is employed.

6.2. Policy Dynamics and Institutional 
Complementarities
The moderating role of AI on policy mechanisms (Policy × AI) 
provides additional empirical evidence for the institutional-
complementarity hypothesis. The positive sign on this interaction 
suggests that AI-ready countries are more able to implement and 
enforce carbon pricing, feed-in tariffs, and other regulatory levers 
effectively. This augments evidence from Calel and Dechezleprêtre 
(2016) and Colmer et al. (2025) that policy-induced innovation 
hinges significantly on firm-level absorptive capacity and data 
infrastructure. This study shows that AI increases macro-level 
absorptive capacity by enhancing the systems for monitoring, 
compliance, and evaluation to ensure policy frameworks result 
in quantifiable investments.

Negative coefficients on carbon pricing across nearly all estimators 
reflect transitional compliance costs. Similarly, Greenstone et al. 
(2022) explain how high carbon prices discourage investment 
in emissions-intensive industries during the initial phases but 
foster long-term technological changes. This finding indicates 
that the effectiveness of policies hinges on digital governance 
infrastructures that execute the price signal. Hence, digital 
governance becomes an essential prerequisite for effective policy 
transmission during transitions in sustainability.

6.3. Nonlinear and Dynamic Adjustment Pathways
Dynamic panel estimations (System-GMM) confirmed substantial 
persistence in renewable investment. During path dependence, 
research persistence captures how self-reinforcing green 
investment momentum is, which is further validated by the high 
SHAP importance of lagged investment in the machine-learning 
analysis. The U-shaped adjustment path is explained by Acemoglu 
et al. (2012) in the theory of directed technological change. Early 
adoption costs precede productivity and environmental efficiency 
gain, which explains the AI and carbon pricing impact.

From a temporal perspective, the study hybrid results that integrate 
econometrics with explainable AI and digital-financial-policy 
integration reinforces that benefits arrive after structural readiness 
surpasses a certain threshold. This counters the arguments by 
Acemoglu and Restrepo (2019) and Brynjolfsson and McAfee 
(2017) that describe technology diffusion as a purely cumulative 
process needing institutional adaptation, along with human capital 
investment at the core.

6.4. Cross Model Convergence: Econometric and 
Machine Learning Evidence
The alignment of traditional econometric results with machine-
learning diagnostics enhances credibility. SHAP-based feature 
attribution recognized AI intensity, fuel prices, and CO2 emissions 

as primary determinants of renewables investment. This confirmed 
econometric inference regarding the joint influence of pressure 
to transition and technological complementarity. The inertia and 
cycles of capital commitment to be made in green energy during 
the lagged investment period illustrates the strong explanatory 
power of lagged investment. Lundberg et al. (2020), complements 
this as he uses interpretable AI models to show that nonlinear 
relationships, which are obscured by linear regressions, can 
enhance empirical robustness in the field of sustainability finance.

Both models identifying a positive role on digital-financial 
synergy analyzed with partial dependence plots, which provide 
a context of effect variation at different AI readiness levels to 
reflect cross-country heterogeneity. This structural asymmetry was 
documented by Oxford ınsights (2024), and the IEA (2024), where 
considerable variation exists within economies at digital maturity 
and institutional quality. Consequently, the impact of green finance 
mechanisms will be maximized with policy prescriptions that align 
with a nation’s digital infrastructure and governance capacity.

6.5. Theoretical and Policy Implications
From a theoretical standpoint, the research contributes to the 
understanding that AI does not operate as an autonomous 
engine of growth, but rather as a supplementary facilitator of 
efficiency in finance and policy. This conforms to the theory of 
technological complementarities (Aghion et al., 2019) in the sense 
that productivity gains only accrue when digital sophistication is 
and financial and institutional depth and coherence are allowed 
to evolve together.

From a policy perspective, the findings indicate that investments 
in digital infrastructure are a prerequisite for the successful 
implementation of green finance and the regulation of the 
environment. Therefore, AI readiness should be incorporated into 
policy digital governance frameworks as a criterion in climate 
policy and sustainability evaluations. Such a policy would combine 
technological finance and innovation, allowing for rapid and 
socially inclusive shifts in the energy sector.

7. CONCLUSION

Global finance’s digital transformation has expanded how 
sustainable investments are viewed. Given the rapid technological 
disruption and the need to decarbonize, the role of policy coherence 
should also be considered along with the role of surveillance AI. 
The combination of AI analytics, green finance, and environmental 
regulation illustrates how the capital markets, governments, and 
industries are reengineering the collaboration needed to meet 
the sustainable development goals. More than ever, systems are 
proving that the policy target of sustainability can be a system of 
adaptive innovation instead of a simple target.

In this environment, the technology and the financial systems must 
be understood together. The seamless integration of AI analytics 
and green finance determines the speed and the quality of the 
transition to renewable energy. The transformation of financial 
instruments, that include green bonds and ESG-linked loans, has 
come with the ability to algorithmically provide transparency, risk 
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assessment, accountability, and the pricing of complex instrument. 
Within this context, the study proposes AI as a unifying tool that 
closes the gap between ambitious environmental policies and 
green investment level.

This research has provided empirical evidence that artificial 
intelligence (AI), green finance (GF), and environmental policy 
instruments influence the patterns of investment and efficiency 
in renewable energy within and between countries. Combining 
advanced econometric estimators and explainable machine 
learning validation provided evidence that AI readiness is not an 
independent driver of growth but rather a complementary catalyst 
that increases the efficacy of finance and policy. AI intensity and 
carbon pricing entail transitional costs in the short run, which 
explains their negative coefficients, but their interaction terms with 
green finance and policy instruments reveal strong and positive 
values, thus proving the existence of digital-financial-policy 
complementarities.

The research points out that the benefits of digitalization are 
observed when the technological, financial and institutional 
frameworks are developed concurrently. Countries with advanced 
AI ecosystems and sophisticated policy coordination systems are 
also able to convert financial inflows to investment in renewable 
energy and energy productive efficiency. The results stress the 
importance of the combination of sophisticated technology and 
well-designed systems of policies and financial instruments to 
achieve the desired results during energy transitions.

The highlighted hybrid econometric-machine learning framework 
strengthens the argument for sustainable finance as a complex 
adaptive system. The considerable lag effects indicate the slow 
capital formation of the renewable sectors, revealing considerable 
investment inertia. The convergence of results from traditional 
estimations and SHAP-based interpretability underscores the 
value of interpretability and the importance of data-driven 
governance as a resilient and equitable decarbonization pathway 
to confirm.

7.1. Implications
The implications of these findings are substantial. On the 
one hand, they contribute to the theoretical framework of 
technological complementarities, affirming that AI improves the 
allocative and monitoring efficiency with which the instruments 
of finance and policy are deployed. On the other hand, they 
indicate that the success of green-finance initiatives and climate 
regulations goes hand in hand with the investment in digital 
infrastructure and the development of analytic capacity. For AI’s 
potential to be realized, policy planners should assess national 
sustainability plans for AI and digital-technology readiness and 
ensure that plans for digital transformation are in sync with the 
energy transition. For investors and financial institutions, the 
findings imply that the integration of digital-data capabilities, 
particularly AI-enabled risk analytics, should likely be a key 
qualifier in the assessment of a green portfolio’s sustainability. 
Overall, these scenarios suggest a new locus of low-carbon 
growth, made possible by the synergy of technological 
intelligence and innovation in finance.

7.2. Limitations
The limitations of this study arise despite its methodological 
rigor. First, the AI readiness index used in the study as a proxy for 
digital capability is more macro preparedness instead of firm-level 
adoption which may lead to underestimating micro-institutional 
heterogeneity. Second, the composite green-finance indicator is 
measuring different financial components of green-finance, for 
example, green bonds and ESG loans, which may obscure unique 
behavioral elements. Third, in the policy variables of carbon 
pricing and feed-in-tariff, the intensity does not capture qualitative 
differences in enforcement, such as regional coverage, policy 
credibility, or other qualitative differences. Endogeneity concerns 
were addressed through the use of System-GMM estimation and 
various robustness tests, however, there are still unobserved shocks 
and measurement error that contribute to the influence of coefficient 
magnitudes. Finally, the dataset includes 30 economies for the 
period of 2005 to 2024, and as such the results ought to be seen 
as medium-term tendencies instead of definitive causal estimates.

7.3. Future Directions
Future research can expand this analysis in a number of ways. 
One possible approach involves the use of firm-level and sector-
specific datasets to analyze the microeconomic transmission 
channels that relate the adoption of AI to investment and emission 
outcomes. Another approach could involve the use of nonlinear 
threshold models and causal-machine-learning techniques to 
analyze heterogeneous treatment effects based on varying levels 
of digital maturity and the stringency of policies. Green finance 
can be further analyzed to determine the disparate impacts of AI on 
the finance components—bonds, credit, and equity. The addition 
of institutional and governance indicators, governance, and ethics 
of data, would shed light on the socio-technical aspects of digital 
sustainability. Lastly, explainable AI coupled with longitudinal 
simulations on macro-financial models could pave the way for 
scenario-based policy design, predicting the coupled flow of 
digital and financial systems to fast-track the global transition to 
renewable energy.

REFERENCES

Acemoglu, D., Akcigit, U., Hanley, D., Kerr, W. (2022), Transition to 
clean technology. Journal of Political Economy, 130(1), 114-157.

Acemoglu, D., Restrepo, P. (2019), Automation and new tasks: How 
technology displaces and reinstates labor. Journal of Economic 
Perspectives, 33(2), 3-30.

Aghion, P., Antonin, C., Bunel, S. (2019), The Power of Creative 
Destruction: Economic Upheaval and the Wealth of Nations. 
Harvard: Harvard University Press.

Aghion, P., Jones, B.F., Jones, C.I. (2017), Artificial İntelligence and 
Economic Growth. National Bureau of Economic Research Working 
Paper No. 23928.

Apergis, N., Payne, J.E. (2010), Renewable energy consumption and 
economic growth: Evidence from a panel of OECD countries. Energy 
Policy, 38(1), 656-660.

Arellano, M., Bover, O. (1995), Another look at the instrumental-variable 
estimation of error-components models. Journal of Econometrics, 
68(1), 29-51.

Baltagi, B. H. (2021), Econometric Analysis of Panel Data (6th ed.). Wiley.
Bayer, P., Aklin, M. (2020), The European Union Emissions Trading 



Özyeşil, et al.: Artificial Intelligence-Driven Financial Strategies for Renewable Energy Transition: A Cross-Country Analysis of Efficiency, Investment, and Policy Implication

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026158

System reduced CO₂ emissions despite low prices. Proceedings of 
the National Academy of Sciences, 117(16), 8804-8812.

Bhattacharya, M., Awaworyi Churchill, S., Paramati, S.R. (2022), 
Renewable energy and financial development: Empirical evidence 
from OECD economies. Energy Economics, 106, 105785.

Blundell, R., Bond, S. (1998), Initial conditions and moment restrictions in 
dynamic panel data models. Journal of Econometrics, 87(1), 115-143.

Brynjolfsson, E., McAfee, A. (2017), Machine, Platform, Crowd: 
Harnessing Our Digital Future. New York: W.W. Norton and 
Company.

Brynjolfsson, E., Rock, D., Syverson, C. (2019), Artificial intelligence 
and the modern productivity paradox: A clash of expectations and 
statistics. In: The Economics of Artificial Intelligence: An Agenda. 
Chicago: University of Chicago Press. p23-57.

Calel, R., Dechezleprêtre, A. (2016), Environmental policy and directed 
technological change: Evidence from the European carbon market. 
Review of Economics and Statistics, 98(1), 173-191.

Chen, T., Guestrin, C. (2016), XGBoost: A Scalable Tree Boosting System. 
İn: Proceedings of the 22nd ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining. p785-794.

Chudik, A., Pesaran, M.H. (2015), Common correlated effects estimation 
of heterogeneous dynamic panel data models with weakly exogenous 
regressors. Journal of Econometrics, 188(2), 393-419.

Colmer, J., Martin, R., Muûls, M., Wagner, U.J. (2025), Does pricing 
carbon mitigate climate change? Firm-level evidence from the 
European Union ETS. The Review of Economic Studies, 92(3), 
1625-1660.

Couture, T.D., Gagnon, Y. (2010), An analysis of feed-in tariff 
remuneration models: Implications for renewable energy investment. 
Energy Policy, 38(2), 955-965.

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C.M. (2013), Collinearity: 
A  review of methods to deal with it and a simulation study. 
Ecography, 36(1), 27-46.

Driscoll, J.C., Kraay, A.C. (1998), Consistent covariance matrix 
estimation with spatially dependent panel data. Review of Economics 
and Statistics, 80(4), 549-560.

Flammer, C. (2021), Corporate green bonds. Journal of Financial 
Economics, 142(2), 499-516.

Friedman, J.H. (2001), Greedy function approximation: A  gradient 
boosting machine. Annals of Statistics, 29(5), 1189-1232.

Granger, C.W.J., Newbold, P. (1974), Spurious regressions in 
econometrics. Journal of Econometrics, 2(2), 111-120.

Greenstone, M., Meng, K., Syverson, C. (2022), The impacts of carbon 
pricing on firm competitiveness and emissions: Evidence from 
policy transitions. American Economic Journal: Economic Policy, 
14(3), 1-33.

Gujarati, D.N.,  Porter, D.C. (2020), Essentials of econometrics (5th ed.). 
McGraw-Hill Education.

IEA. (2024), World Energy Investment Report 2024. Paris: International 
Energy Agency.

Im, K.S., Pesaran, M.H., Shin, Y. (2003), Testing for unit roots in 
heterogeneous panels. Journal of Econometrics, 115(1), 53-74.

IRENA. (2024), Renewable Capacity Statistics 2024. Abu Dhabi: 
International Renewable Energy Agency.

Jolliffe, I.T. (2002), Principal Component Analysis. 2nd  ed. Germany: 
Springer.

Levin, A., Lin, C.F., Chu, C.S.J. (2002), Unit root tests in panel data: 
Asymptotic and finite-sample properties. Journal of Econometrics, 
108(1), 1-24.

Lundberg, S.M., Erion, G., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., 
Himmelfarb, J., Bansal, N., Lee, S.I. (2020), From local explanations 
to global understanding with explainable AI for trees. Nature 
Machine Intelligence, 2(1), 56-67.

Lundberg, S.M., Lee, S.I. (2017), A Unified Approach to İnterpreting 
Model Predictions. İn: Advances in Neural Information Processing 
Systems. NIPS Papers. p30.

Martinsson, G., Sajtos, L., Strömberg, P., Thomann, C. (2024), The effect 
of carbon pricing on firm emissions: Evidence from the Swedish CO₂ 
tax. The Review of Financial Studies, 37(6), 1848-1886.

Mazzucato, M., Semieniuk, G. (2018), Financing renewable energy: Who 
is financing what and why it matters. Technological Forecasting and 
Social Change, 127, 8-22.

Molnar, C. (2022), Interpretable Machine Learning: A Guide for Making 
Black Box Models Explainable. 2nd ed. Canada: Leanpub.

O’Brien, R.M. (2007), A caution regarding rules of thumb for variance 
inflation factors. Quality and Quantity, 41(5), 673-690.

OECD. (2024), Policy Instruments for the Environment (PINE) Database. 
Paris: OECD.

Oxford Insights. (2024), Government AI Readiness Index 2024. London: 
Oxford Insights.

Pedroni, P. (1999), Critical values for cointegration tests in heterogeneous 
panels with multiple regressors. Oxford Bulletin of Economics 
and Statistics, 61(S1), 653-670. https://doi.org/10.1111/1468-
0084.0610s1653

Pesaran, M.H. (2004), General diagnostic tests for cross-section 
dependence in panels. Empirical Economics, 27(4), 579-602.

Pesaran, M.H., Shin, Y., Smith, R.P. (1999), Pooled mean group estimation 
of dynamic heterogeneous panels. Journal of the American Statistical 
Association, 94(446), 621-634.

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-
Arroita, G.,… & Dormann, C.F. (2017), Cross-validation strategies 
for data with temporal, spatial, hierarchical structure. Ecography, 
40(8), 913-929.

Tang, D.Y., Zhang, Y. (2020), Do shareholders benefit from green bonds? 
Journal of Corporate Finance, 61, 101427.

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., 
Felländer, A., Langhans, S.D., Tegmark, M., Fuso-Nerini, F. (2020), 
The role of artificial intelligence in achieving the sustainable 
development goals. Nature Communications, 11, 233.

Westerlund, J. (2007), Testing for error correction in panel data. Oxford 
Bulletin of Economics and Statistics, 69(6), 709-748.

Wooldridge, J.M. (2019), Introductory Econometrics: A  Modern 
Approach. 7th ed. Boston, MA: Cengage Learning.

World Bank. (2024), World Development Indicators. Washington, DC: 
The World Bank.

Zerbib, O.D. (2019), The effect of pro-environmental preferences on 
bond prices: Evidence from green bonds. Journal of Banking and 
Finance, 98, 39-60.



Özyeşil, et al.: Artificial Intelligence-Driven Financial Strategies for Renewable Energy Transition: A Cross-Country Analysis of Efficiency, Investment, and Policy Implication

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026 159

APPENDIX: SUPPLEMENTARY MACHINE LEARNING DIAGNOSTICS

Figure A1: Partial dependence plots for GBM model

The partial dependence plots (PDPs) generated for the Gradient Boosting Machine (GBM) model illustrates the specific marginal effect 
of certain explanatory variables with regard to the investment made in renewables. The correlation between the lagged investment 
variable (ln1pInvestmentlag1) and the predicted variable is positively monotonic, demonstrating that the prior investment made is a 
strong predictor of subsequent investments made, and in fact ‘performance strengthens subsequent capital commitment’ in relation to 
the persistence hypothesis (Friedman, 2001; Lundberg et al., 2020). In relation to the marginal effect of the variable CO2 emissions, 
efficiency index and intensity of AI, the result presents limited sensitivity in part since the boosting architecture has accounted for the 
non-linear and interactive effect of these variables. This, in fact. suggests that these variables exert their effect through interactions 
more than any sort of a linear trend (Molnar, 2022) 
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Figure A2: Partial dependence plots for XGBoost model

The XG Boost model delivers similar qualitative results and thus supports the robustness of the results provided from the GBM model. 
The lagged investment variable once more shows a strong and almost linear positively correlated effect, thus confirming the path-
dependence and persistence of capital formation in renewables. The marginal effect of CO2 emissions remains negative and situated 
towards the bottom, aligned with SHAP-based reasoning, suggesting that high emission intensity might constrain renewables expansion 
momentarily under transitional economic adjustment (Greenstone et al., 2022). The marginal slopes for AI intensity, sovereign yields, 
and efficiency index appear to be relatively flat and show subdued standalone effects after controlling for cross-feature dependencies. 
This is in line with literature that argues, and for good reason, that machine-learning models tend to capture heterogeneous, non-linear 
interactions and abstract away from simple average effects rather than non-linear interactions. See for instance, Chen and Guestrin, 2016 
and Lundberg and Lee, 2017. The overall explanation for the PDPs is that they reinforce the SHAP feature attributions perspective that 
incorporates historical momentum and context-specific interaction effects to explain “why” variables driving renewable investment do 
not operate in a uniformly monotonic fashion relative to counterbalancing financial and technological factors.


