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ABSTRACT

An integrated empirical framework was put in place in order to study the combined impacts of artificial intelligence (Al), green finance (GF), and tools
of environmental policies on renewable energy investments and their efficiency on a global scale. The hybrid approach of combining econometric
estimators i.e. two-way fixed effects, system-GMM, Mean/pooled mean group and dynamic common correlated effects was employed with Explainable
machine learning (XGBoost with SHAP) to assess the model. For the period of the 2005-2024 study, a balanced macro panel composed of 30 OECD
and emerging economies was utilized, and it was assessed that with regard to Al readiness, most of the time it acted as a complementary catalyst,
augmenting the effectiveness of finance and policies, rather than an autonomous driving force. In the framework of Al intensity and carbon pricing,
Al appears with a negative sign in the short run, which unfolds as transitional adjustment costs. These results are reversed when the interaction terms
GF x Al and PolicyxAl are included; these terms are positive and statistically significant, meaning that an increase in digital capacity strengthens
policy transmission. System-GMM results confirmed persistent investment dynamics through significant lag dependence, and the sign pattern for core
variables was preserved in robustness checks (DCCE/MG/PMG). On the efficiency margin, green bonds exhibit a positive association, whereas short
run Al and carbon price frictions remain. The SHAP diagnostics confirm the econometric findings and consider investment inertia and the pressures
of transitions (emissions and fuel prices) as key contributors, while Al works with context-dependent complementarities. To conclude, the digital
governance with the type of green-finance and the reliable policies in place will promote investment in renewables and improve energy efficiency.

Keywords: Artificial Intelligence, Green Finance, Carbon Pricing, Renewable Investment, Energy Efficiency
JEL Classifications: Q42, Q58, G28, 033, C33

1. INTRODUCTION

The shift towards renewable energy is now part of vital factors
driving change in the financial world. In the last 10 years, the
balance of investment in low-carbon sectors has changed as a result
of financial innovation, regulatory changes, and advancements in
technology. In 2024, the world spent over $3 trillion on energy,
$2 trillion of it on renewable energy technologies (IEA, 2024).
In addition to decarbonization goals, a change in structural goals
of the world economy to market climate risks and technology

opportunities is evident (IRENA, 2024). Since the economic
trade shocks caused by climate change have boosted the value
of resilient and sustainable energy systems, there is a clear and
growing economic imperative for sustainable energy systems.

In this transition, different financial mechanisms have been
important. Green finance—gleaned from green bonds,
sustainability-linked loans, and environmental, social and
governance (ESG) instruments—has made capital more available
for projects concerning renewable energy and energy efficiency.

This Journal is licensed under a Creative Commons Attribution 4.0 International License

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 2 *




Ozyesil, et al.: Artificial Intelligence-Driven Financial Strategies for Renewable Energy Transition: A Cross-Country Analysis of Efficiency, Investment, and Policy Implication

Research shows that green bond issuance improves a firm’s
environmental and market performance (Flammer, 2021), while
secondary markets feature a persistent “greenium,” suggesting a
strong preference for green assets (Zerbib, 2019). Policies such
as carbon pricing, feed-in tariffs, and even technology innovation
have proved effective in managing environmental externalities
(Calel and Dechezleprétre, 2016; Couture and Gagnon, 2010).
Still, the financial and policy instruments described do not work on
their own. Their impact relies heavily on a country’s technological
capability and governance frameworks that are powered by
advanced data systems.

Artificial intelligence has become one of the general-purpose
technologies that has the potential to transform an entire
ecosystem. By enabling the efficient allocation of resources and
adaptable policies through the processing of vast amounts of
data and improved decision-making, Al allows the forecasting
of AI’s economic impacts and the allocation of resources more
responsively. Yet, the literature on the economics of Al posits that
the primary source of the temporary productivity losses incurred
during the Al transition adoption phase results from the learning
and restructuring of capital (Aghion et al., 2017). After the initial
phase, Al enhances the productive complementarities that interlink
technology and the triad of finance, policy, and state economic
performance through advanced risk assessment, automated
compliance, and environmental performance assessment (Vinuesa
et al., 2020). Accordingly, countries that are more advanced in Al
adoption will convert more of the efficiency and real investment
benefits stemming from green finance and regulations.

Although there is an increasing number of studies on green finance
and literature on policies directed towards the environment, there
is a lack of empirical studies that examine the interplay of these
areas with Al capabilities in promoting investment in renewables.
A majority of studies continue to examine the constituent parts; that
is, the effects of policy on innovation or the effects of finance on
the mobilization of capital, without realizing the possible role of
digital capabilities in the interaction of the two. This is important
in light of the differences among countries in terms of the quality of
institutions, digital infrastructure, and the governance effectiveness
(Oxford Insights, 2024). Therefore, the understanding of these
various linkages is critical to the formulation of policy that captures
the potential of digital technology in harmonizing sustainable
finance with financial and environmental regulatory policies.

In this context, the current research builds and conducts an
empirical test on an integrated framework combining Al,
green finance, and environmental policies across 30 OECD
and developing countries from 2005 to 2024. This research
employs a hybrid empirical strategy that combines machine
learning—specifically the XGBoost model and the SHAP-based
interpretability framework to understand model outputs (Chen and
Guestrin, 2016)—and several econometric techniques (two-way
fixed effects, System-GMM, and Dynamic Common Correlated
Effects (DCCE) approaches). By including the cross-term
interactions (Al x GF, Al x Policy), this research assesses the
extent to which Al readiness acts as a moderator on the financial
and policy instruments of investment and efficiency in renewables.

By doing so, this research contributes to the literature on a digital-
financial-policy nexus in the renewable energy transition by
shifting the analytical framework from linear, disconnected models
to more comprehensive and integrated perspectives.

2. CONCEPTUAL FRAMEWORK

This study’s conceptual framework centers on the interplay of
artificial intelligence (AI), green finance (GF), and environmental
policy tools for enabling and optimizing sustainable investment.
Theoretically, Al can be viewed as a general-purpose technology
that augments decision-making and efficiency due to sophisticated
data processing and forecasting (Brynjolfsson et al., 2019).
However, the immediate impact might be neutral or even
unfavorable due to transitional adjustment costs—such as
difficulties with integration, changes in organizational structures,
and learning curve challenges (Aghion et al., 2017). Over a
prolonged timeframe, Al drives productivity and synergistic
complements with the financial and policy frameworks.
This relationship aligns with the theory of technological
complementarities (Aghion et al., 2019).

As a green finance channel, green finance contributes to lowering
the cost of capital for renewable investments and financing
environmentally sustainable projects, thus promoting cleaner
technology adoption (Flammer, 2021). This mechanism is
primarily facilitated by green bonds and ESG-linked instruments,
as they certify environmental performance and corporate
accountability by sending investor signals (Zerbib, 2019; Tang and
Zhang, 2020). When paired with Al-enabled financial analytics,
the efficiency of capital allocation can be optimized even further,
as predictive algorithms identify high-impact green projects and
evaluate risk-adjusted returns with greater accuracy.

Before discussing climate-related investments, one must analyze
the fine details that determine how environmental policies shape the
climate for investments and innovations. Economic mechanisms
that help with innovation, investments, and innovation directed
towards emissions reductions, as observed with the influence of
carbon taxes (Calel and Dechezleprétre, 2016).

The relationship between the three variables, Al, GF, and Policy,
has the potential for profound synergistic relationships. In the case
of artificial intelligence, the interplay of the financial and policy
elements of the three variables. For countries that are ready and
made advancements with Al and have strong institutions, strong
economic growth coupled with robust policies for investments
will come from the synergistic relationship from Al X GF and
Al x Policy. In under developed countries, the loose legal
framework and lack of advanced digital infrastructure will make
the synergistic relationship between Al and Policy very small.

This framework assumes that Al transitions from being its own
influence and detached technology to an influence that can
augment technology. Missing, and most likely neglected, context
to the framework are nonlinear relationships along with threshold
determinants. For example, the lack of strong cohesive policies
and Al will lead to underwhelming returns.
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3. LITERATURE REVIEW

3.1. Environmental Policy and Technological Change
The effect of policies on the development of clean innovation
has been widely reported. According to Acemoglu et al. (2012),
policies that offer price incentives foster “directed technological
change,” whereby innovation is diverted from fossil fuels to
renewables. Calel and Dechezleprétre (2016) observed similar
results when considering firms covered by the EU Emissions
Trading System (ETS) as they increased patenting activity for
low-carbon innovations. Recently, Colmer et al. (2025) provided
further firm-level evidence that reinforced market-based policies
through carbon pricing, which achieves significant emission
reductions with no adverse effect on competitiveness. Sweden
also provided evidence of the effectiveness of carbon tax policies
by significantly decreasing firm-level CO: intensity (Martinsson
et al., 2024).

3.2. Green Finance and Capital Allocation

Extensive research on Green Finance confirms its potential in
integrating sustainability objectives within capital markets.
Flammer (2021) argues that the market valuation of companies
that issue green bonds increases alongside improvements in their
environmental performance. Tang and Zhang (2020) noted that
stakeholders respond positively to the announcement of green
bonds, while Zerbib (2019) found evidence of a green premium,
meaning that investors are willing to pay a higher price for green
certified bonds and accept a lower yield. Collectively, the evidence
suggests that the financial sustainability instruments available
in the market today help alleviate financing tension, improve
market transparency, and promote the development of sustainable
innovation. Furthermore, Mazzucato and Semieniuk (2018)
demonstrated that different financing structures and sources have
a strong impact on the direction of the growing renewable energy.

3.3. Artificial Intelligence as a Catalyst for Sustainable
Investment

In recent years, Al has been seen as a positive technological
innovation in creating value in financial decision-making, as
well as in the achievement of positive results in an organization’s
sustainability efforts. While productivity dividends remain the
impact of Al on prediction, efficiency, and resource allocation as
noted by Brynjolfsson et al. (2019) may take time to realize due to
several adaptation costs. On the Al’s impact to SDG (Sustainable
Development Goals) achievement, Vinuesa et al. (2020) articulated
how Al enhances data and its monitoring for several SDGs which
includes SDG 7 (affordable and clean energy) and SDG 13
(Climate Action). Al-based technologies in the financial sector are
becoming commonplace as tools for credit scoring, ESG analytics,
and investment screening which are focused on the reduction of
asymmetries and the advancement of green innovation financing.

3.4. Methodological Advances: Integrating
Explainable AI and Econometrics

The combination of explainable ML and econometrics is helping
to model complex nonlinear multi-factor relationships. Friedman
(2001) pioneered works on gradient boosting machines (GBM),
and later on, Chen and Guestrin (2016) built XGBoost, which

is a scalable algorithm designed for heterogeneous panel data.
Lundberg et al. (2020) developed SHAP (shapley additive
explanations) to explain Al and advanced interpretability more
and introduced the decomposition of feature effects which
helps visualize marginal contributions. These methods are
particularly useful for examining the role of Al as a moderator in
green investment models since they capture complex nonlinear
relationships across countries and diverse policy regimes.

3.5. Research Gaps

While there is more literature on the subject, there are still several
gaps. First, the empirical study of the integrated dynamics of Al,
GF, and policy remains scarce. Second, the cross-country empirical
analysis of AI’s moderating role on the financial and policy
effectiveness constitutes a significant gap. Third, many studies fail
to recognize the nonlinear thresholds where Al readiness pivots the
green finance and policy effectiveness. This study addresses these
gaps and contributes to the literature by combining econometric
modeling and explainable ML to analyze the long-run equilibrium
and the short-run dynamics of these interrelated factors.

3.6. Research Questions and Hypotheses

This study seeks to assess the impact of Al-driven financial
innovations on the transition to renewable energy in relation to
efficiency gains, investments, and policy outcomes across different
nations. AI’s ability to enhance information processing and
decision-making in green finance is likely to be a game changer
in optimizing the speed of sustainable energy systems capital
(Apergis and Payne, 2010; Bhattacharya et al., 2022).

3.7. Research Questions are Provided Below as Folows

e Do Al-supported financial strategies improve renewable
energy efficiency?

e Do these strategies significantly increase renewable investment
inflows?

e Do policy instruments (e.g., carbon pricing, feed-in tariffs)
interact with Al-based finance to amplify their impact on
sustainability outcomes?

Based on these questions, the following hypotheses are proposed:

H,: The interaction between Al adoption and green finance (Al x
GF) positively affects renewable energy efficiency.

H,: Al-derived financial signals (Investment*ML) positively
influence renewable investment flows.

H,: The interaction term (Policy x Al) exerts a positive moderating
effect on renewable investment and efficiency.

4. DATASET AND METHODOLOGY

4.1. Dataset and Variables

The dataset spans the years 2005-2024 and encompasses 30 OECD

and emerging economies based on the availability of data and the

diversity of policies. Each year data was collected from a number

of sources internationally:

e Investments in and capacity for renewable energy - IEA
(2024), IRENA (2024), BloombergNEF (2023).

e Green finance (e.g., Green Bonds, ESG Loans) - Climate
Bonds Initiative (2024) and Refinitiv Eikon.
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e Al adoption - Oxford Insights (2024) Government Al
Readiness Index.

e Energy policies (e.g., carbon pricing, FITs, and R&D
support) - OECD Policy Instruments for the Environment
Database.

e Macroeconomic variables and other controls - World Bank
WDI (2024) and BP Statistical Review (2023).

All finance variables were deflated to 2020 US dollars and World
Bank GDP deflators. Country harmonized values were done through
PPP. Data outliers were winsorized and logarithmic transformations
to skew variables were done using Wooldridge (2019).

The key variables used in the empirical analysis, together with
their definitions, measurement methods, and data sources, are
summarized in Table 1 for clarity and reproducibility.

The inclusion of carbon pricing as a policy instrument is further
supported by empirical evidence demonstrating that the European
Union Emissions Trading System has led to meaningful reductions
in CO: emissions, even during periods of relatively low permit
prices (Bayer and Aklin, 2020).

4.2. Methodology

The empirical model is based on a two-way fixed effects
specification to account for unobserved heterogeneity across
countries and years, indicated in Equation 1 as follows:

Y_it=o_i+y_t+B GF_it+f, Al it+f, (GF_it x Al_it) + 8" X it
+e it (1)

Where Y it represents either renewable energy investment or
energy efficiency, o._iandy_tare country and time effects, and € _it
denotes the error term. The coefficient 8, captures the moderating
effect of Al-driven finance on green finance outcomes. Robustness
is ensured by employing Driscoll-Kraay standard errors.

For strong inference, the Driscoll-Kraay heteroskedasticity and
autocorrelation-consistent standard errors were implemented
(Driscoll and Kraay, 1998). Pesaran’s CD test was used for cross-
sectional dependence, and Levin et al. (2002) and Imet al. (2003)
were used for panel stationarity. The long-term relationships
were confirmed using Pedroni (1999) and Westerlund (2007)
cointegration tests.

A System-GMM estimator (Arellano and Bover, 1995; Blundell

and Bond, 1998) was used to tackle endogeneity, dynamic effects,
and persistence:

Table 1: Variables and measurement

Y_it=pY_it-1+a _i+y t+B,GF_it+ B AL it+f, (GF_it x
AL it) + X it+u it 2)

Lagged dependent variables were used as instruments. Instrument
proliferation was mitigated using the collapse option, with Hansen
P-values maintained between 0.1 and 0.9 to ensure validity. AR(2)
tests confirmed the absence of second-order autocorrelation.

Robustness was further validated through mean group (MG) and
pooled mean group (PMG) estimations (Pesaran et al., 1999),
dynamic common correlated effects (DCCE) (Chudik and Pesaran,
2015), and Panel Quantile Regressions to assess heterogeneity
across country groups.

The ML model complements the econometric specification
by enhancing predictive accuracy and robustness across
heterogeneous country samples.

Given the potential for multicollinearity in models combining
macro-financial, policy, and technological variables, diagnostic
checks were carefully considered in line with established
approaches for detecting and mitigating collinearity in multivariate
empirical frameworks (Dormann et al., 2013).

To complement econometric estimation, an Al-based predictive
framework was integrated. Gradient Boosting Machine (Friedman,
2001) and XGBoost (Chen and Guestrin, 2016) algorithms were
trained to predict next-period renewable investment (Investment )
using financial, policy, and macroeconomic predictors. Temporal
cross-validation employed a rolling-origin scheme (60/20/20 split),
ensuring no data leakage. Hyperparameter optimization followed
arandom search procedure, and model performance was evaluated
using RMSE, MAPE, and R? metrics.

Model interpretability was achieved using SHAP values (Lundberg
and Lee, 2017), enabling decomposition of predicted outcomes by
feature importance. Partial dependence plots (PDPs) visualized
marginal effects of Al and policy interactions.

Figure 1 presents the conceptual framework of the study,
illustrating the hypothesized transmission mechanism through
which artificial intelligence adoption influences renewable energy
investment and efficiency indirectly via green finance, while
accounting for the moderating role of policy interaction.

The diagnostic and robustness analyses were conducted to
ensure the validity and stability of the empirical results. Cross-
sectional dependence was first examined using Pesaran’s CD
test, which indicated significant interdependencies among

Symbol Variable (EN) Measurement Source
Investment it Renewable energy mvestment Annual RE investment (billion USD) IEA, BNEF
Efficiencyit Energy efficiency mdex GDP per unit of energy consumption WDI

GFit Green finance index Weighted z-score of green bond issuance and ESG loans CBI, Refinitiv
Alit Al adoption index Composite readiness score (0-1) Oxford Insights
Policyit Policy nstrument Carbon price (USD/tCO,) or FIT intensity index OECD

Xit Controls GDP per capita, CO, emissions, energy import dependency WDI, BP

Monetary variables are expressed in constant 2020 USD (PPP-adjusted); extreme values are winsorized at the 19-99™ percentiles
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countries, confirming the need for robust covariance estimators
(Pesaran, 2004). Panel unit root tests following Levin et al.
(2002) and Im et al. (2003) revealed mixed stationarity properties
across variables, leading to the application of first-difference
transformations for non-stationary series. The existence of a long-
run equilibrium relationship between artificial intelligence, green
finance, and renewable energy outcomes was subsequently verified

Figure 1: Conceptual research model

Al Adoption Index

Green Finance

Policy
Interaction

Renewable Energy
Investment / Efficiency

Arrows denote hypothesized positive relationships; dashed lines
indicate policy moderation through carbon pricing and renewable
incentives

Table 2: Descriptive statistics

through the Pedroni (1999) and Westerlund (2007) cointegration
tests, both of which confirmed statistically significant long-term
associations. To address potential endogeneity, Hansen and
Sargan tests were employed to assess the validity and relevance of
instruments within the System-GMM framework, while Arellano-
Bond AR(2) diagnostics confirmed the absence of second-order
serial correlation (Arellano and Bover, 1995; Blundell and Bond,
1998). Furthermore, alternative estimators such as the mean
group (MQG), pooled mean group (PMG), and Dynamic Common
Correlated Effects (DCCE) methods were implemented to account
for heterogeneity and common shocks across panels (Pesaran
et al., 1999; Chudik and Pesaran, 2015). Finally, re-estimations
excluding outliers and using alternative subsamples yielded
consistent coefficient signs and significance levels, reinforcing
the robustness and reliability of the empirical findings.

5. TEST RESULTS

5.1. Descriptive Statistics

The descriptive statistics regarding the variables utilized in the
empirical analysis are summarized in Table 2. These statistics are
the starting point in gaining an understanding of the distributional
properties, central tendencies, and the dispersion of the data for 30
countries between the years 2005 and 2024. These parameters need
to be summarized and described to evaluate data norm, to check
for outliers and to analyze if properly variable transformation
and standardization techniques were applied in the data set prior
to the econometric modeling (Wooldridge, 2019; Gujarati and
Porter, 2020). To determine the presence of any abnormality, the
analysis of skewness, kurtosis, and the Jarque-Bera stats were
applied, considering that abnormality may impact the reliability
of inference for the panel estimations (Baltagi, 2021).

The descriptive statistics point out to the considerable heterogeneity
regarding the investments in the renewable energy sector, with an
average of 80.88 bln USD in investments and 123.5 bln USD
in investments for the standard deviation, an evidence for the
huge cross-sectional dispersion that is observed in the global
investments (IEA, 2024). The logarithmic transformation of the
investments (Inlp Investment) showed near normal properties

Variable Obs. Mean  Standard deviation Min Max Skew. Kurt. Jarque-Bera P-value
Investment (USD2020, billion) 600 80.88 123.50 0.43 881.09 3.56  14.85 0.000
In (1+Investment) 600 3.69 1.24 0.35 6.78 -0.13 -0.01 0.408
Efficiency Index 600 88.79 16.51 61.57 128.86 0.18 -1.17 0.000
Green Bonds (USD2020, billion) 600 14.37 33.28 0.00 292.56 485  29.10 0.000
In (1+Green Bonds) 600 1.66 1.35 0.00 5.68 0.69 -0.32 0.000
ESG loans (USD2020, billion) 600 3.50 6.66 0.01 58.45 3.81 18.58 0.000
In (1+ESG loans) 600 0.97 0.92 0.00 4.09 1.03  0.27 0.000
Al index (0-1) 600 0.49 0.13 0.23 0.85 0.10 —-0.62 0.005
Carbon price (USD/tCO:) 600 16.56 25.16 0.00 97.88 .15  —0.14 0.000
Feed-in Tariff index (0-2) 600 0.55 0.76 0.00 2.00 0.96 —0.60 0.000
Policy mdex (combined) 600 0.33 0.41 0.00 1.28 0.67 -1.24 0.000
GDP per Capita (PPP, 2020 USD) 600 44,032.5 22,236.4 10,223.3 134,582.5 1.00  0.83 0.000
CO, emissions (Mt) 600  410.51 358.86 13.39 1,871.72  1.50  2.34 0.000
Energy import dependency (%) 600 40.87 17.31 11.75 69.55 -0.02 -1.26 0.000
Fuel price (Industrial, USD/MWh) 600  103.68 29.38 52.43 207.63 0.79  0.26 0.000
FX volatility index 600 0.17 0.07 0.03 0.32 -0.04 -1.29 0.000
Sovereign 10Y Yield (%) 600 6.62 3.11 0.17 12.15 -0.09 -1.30 0.000
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(skewness = —0.13; P > 0.05), confirming the success of the
transformation applied to reduce the impact of the heavy-tailed
distribution.

The distributions of green bond issuances and volumes of ESG
loans show disproportionate right-skewness and leptokurtosis,
indicating a few countries, mostly advanced economies, driving
flows of green finance. This is consistent with findings that
geographies of green financial markets are concentrated in high-
income countries (Bhattacharya et al., 2022; Zerbib, 2019). The Al
readiness index also shows similar, although moderate, dispersion
(mean = 0.49; 6 =0.13), reflecting the cross-country asymmetries
in digital and institutional frameworks (Oxford Insights, 2024).

CO: emission ranges exhibit plausible extremes, and the variances
are very high. While imports of dependent energy are structurally
framed around the 40.9% average, globally, emissions are framed
around the 410 Mt average with a maximum of 1,872 Mt (World
Bank, 2024). Jarque-Bera test outcomes validate the non-normality of
anumber of economic and environmental variables and the adopted
use of Driscoll-Kraay covariance (Driscoll and Kraay, 1998).

5.2. Correlation Analysis

The correlation heatmap outlines the preliminary check regarding
the study’s numeric variables within the correlation framework
and highlights the need for more check-the-mechanism correlation

multicollinearity multicollinearity and blocks moving together
policy-finance variables seamlessly prior to the deployment of
the fixed effects along with dynamic panel estimators. Definitions
and transformations of the variables along with study periods
spanning 2005-2024 across 30 countries are explained in detail
within the manuscript.

As illustrated in Figure 2, the correlation heatmap offers a
preliminary diagnostic assessment of pairwise relationships
among the study variables, indicating moderate correlations across
selected financial and policy indicators while alleviating concerns
regarding excessive multicollinearity.

Renewable investment shows a clear persistence. The
Ing(1+Investment) and its lag shows extreme correlation(<0.99)
which justifies the need for specifications in state dependence to
mitigate dynamic panel bias using the System GMM approach
along the lag instruments (Arellano and Bover 1995, Blundell and
Bond 1998). The GreenBond interrelationship with other variables
(level, Ing(1+GreenBond), the green bond z-score, the ESG-loan
z-score and the weighted GF index) has strong correlation (r often
>0.70, reaching ~ 0.85-0.86 between composite and components)
indicative of redundancies and risk of high multicollinearity. The
composite of each construct with clear setting of bounds for the
variance to restrict inflation is preferred, considering the limits of
the “rule-of-thumb” diagnostics (O’Brien, 2007).

Figure 2: Correlation heatmap of numeric variables
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I noticed how closely aligned certain policies are with one another:
For example the Carbon Price and the combined Policy Index have
correlation values of 0.87, indicating the policies are likely passed
together. To limit collinearity, orthogonalization (e.g., residualizing
the combined index on carbon price) or will likely be needed and
be more beneficial than collinearity preserving information. Jolliffe
(2002) discusses dimension reduction techniques like PCA which
may provide additional value by removing collinearity. When it
comes global shocks that are not observed and cause common
movements across different time series, utilizing the (D)CCE
estimator along with robust covariance methods will be beneficial
(Chudik and Pesaran, 2015).

The correlation with finance and investment for Al index is of
lower value compared to other indicators (|r| <0.30) and that
can be explained by the varied speed of different systems and
the multi-channel nature of Al (and the Al ecosystem). Fixed
effects and interaction terms in the panel model provide a clearer
picture of the effect than simple bivariate correlations. Policy
and macroeconomic time series are likely heavy-tailed and in the
absence of differencing/cointegration will likely cause spurious
correlation. The correlation will likely be spurious high due to
the trending nature of the variables/time series for the specific
Granger and Newbold (1974) example. The specific unit-root
and cointegration strategy combined with Driscoll-Kraay on the
manuscript handles these points (Driscoll and Kraay, 1998; Levin
et al., 2002; Im et al., 2003; Westerlund, 2007).

5.3. Econometric Estimation Results: Two-Way Fixed
Effects Analysis

The findings from estimating the two-way fixed effects model,
describing the primary drivers behind the investments on
renewable energy for the period 2005-2024, is shown in Table 3.
This model calculates the unit effects on financial, policy, and
technological variables, which entails using robust Driscoll-Kraay
standard errors for estimating the correlations and dependencies,
as well as the heteroskedasticity in the serial and cross sectional
macro panel Driscoll and Kraay, 1998. This model is useful in
analyzing the combined effect of policy tools, Al intensity, and
green financial instruments, on renewable energy investments, on
which there is still very limited literature, despite the incorporation
of technological innovations and green finance in growth-oriented
energy transition model (Apergis and Payne, 2010; Bhattacharya

et al., 2022).

As for the goodness-of-fit, note that the negative overall R? scores
do not indicate poor fit of the model because of the fixed effects
and should not be viewed in any normal way. It should not be
interpreted as the normal fit. The inference is done through the
within R? and robust F-statistics (Wooldridge, 2019).

The findings in Table 3 indicate that Al intensity holds a strong
negative relation to renewable investment (B =-2.015, P<0.001).
This negative effect may be attributed to transitional costs
and adjustment frictions in the digital transformation process,
particularly in cases where the economy is primarily focused on
the short-term benefits of Al investments that transform capital
and labor structures, as opposed to the long-term efficiency gains
(Aghion et al., 2019). The short-term negative effect of digital
technologies is embedded in the theory of technological diffusion.
Acemoglu and Restrepo (2019) attributed such short-term negative
effects to incomplete absorptive capacity and a lack of coordinated
institutional structures.

The compliance and transition costs in carbon-heavy economies
can explain the strong negative effect of carbon price on renewable
investment as well (f = —0.0046, P < 0.001). These findings are
consistent with the previous research that suggests carbon pricing
might lead to a negative structural sensitivity of investments in the
short run, which is only reversible after the economy structurally
adapts to the use of cleaner technologies (Greenstone et al., 2022).

On the other hand, industrial fuel prices positively correlate to
renewables investments (f = 0.0033, P = 0.039), which shows
that price pressures within conventional energy industries serve as
signals to invest in renewables (IEA, 2024). This price-investment
relationship fits the substitution principle in energy economics,
which argues that diversification into renewables happens faster
when fossil fuel prices rise.

Other macroeconomic variables, like GDP per capita and
sovereign yields, did not have statistical significance, which
suggests that long-term structural factors and financing
conditions might have already been captured by country fixed
effects. In the same vein, the coefficients on green bonds and
ESG loans were positive, but statistically insignificant, which

Table 3: Two-way fixed effects estimation results (robust standard errors)

Variable Coefficient Standard error t-statistic P-value 95% confidence interval
Constant 3.9962 0.4297 9.300 0.000 (3.152, 4.840)

In (1+Green bonds) 0.0416 0.0272 1.528 0.127 (-0.012, 0.095)

In (1+ESG loans) -0.0358 0.0341 -1.050 0.294 (-0.103, 0.031)

Al index (0-1) -2.0153 0.4451 —4.528 0.000 (—2.890, —1.141)
Carbon price (USD/tCOz2) —0.0046 0.0010 —4.714 0.000 (—0.0065, —0.0027)
Policy mndex (combined) -0.0789 0.0676 -1.168 0.244 (-0.212, 0.054)
GDP per Capita (PPP, 2020 USD) 1.74x10°¢ 1.83x10°° 0.950 0.343 (—1.86x107¢, 5.34x107°)
Energy import dependency (%) 0.0089 0.0073 1.215 0.225 (=0.006, 0.023)
Fuel Price (Industrial, USD/MWh) 0.0033 0.0016 2.073 0.039 (0.0002, 0.0064)
FX volatility index -0.1093 0.4249 -0.257 0.797 (—0.944, 0.725)
Sovereign 10-year yield (%) —0.0021 0.0122 —0.170 0.865 (-0.026, 0.022)

Model diagnostics: Dependent variable: In (1+Investment); Estimator: Two-way fixed effects (Entity and time); Covariance estimator: Driscoll-Kraay (Robust); Observations: 600
(30 countriesx20 years); F-statistic (robust): = 10.7 P<0.001; R? (Within): = 0.18 R? (Overall): = —0.19; Poolability F-test: 184.62 P<0.001
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implies that the deepening of finance, by itself, does not lead to
increased real investment without supportive institutional and
technological structures.

The results of this study capture a complex reality: Al and carbon
pricing tools seem to influence investment decisions within
realignment processes in transition, rather than through direct
stimulation. This underscores the need for a coordinated evolution
of technology and regulation to transform available financial
and policy instruments into real investment shifts in renewables
(Acemoglu et al., 2022; IRENA, 2024).

5.3.1. Extended FE with interactions (GF xAl, PolicyxAl)

To test the hypothesized moderations, interaction terms were
included between green finance and Al intensity (GF x Al) and
between policy index and Al intensity (Policy x Al). Table 4
reports the extended fixed-effects specification estimated with
Driscoll-Kraay standard errors.

The results show that Al intensity notably influences the financial
and policy dimensions of renewable investment. Within the
framework of digital-complementarity theory, the augmented
green finance instruments’ effectiveness stems from Al absorptive
potential. This is evident from the interaction’s positive and
significant coefficient, GFXAI ( = 0.118, P < 0.05).

The PolicyxAl (B = 0.074, P < 0.05) interaction also provides
similar insights. Al-driven economies exhibit stronger investment
hinges with well-designed policies. This finding advances the

institutional-complementarity hypothesis, juxtaposing digital
governance with policy coordination to ease transitional frictions
(Acemoglu and Restrepo, 2019; OECD, 2023).

The results indicate that digitization amplifies, not substitutes,
the financial and policy efforts. Such countries will, therefore,
have a comparative advantage in completing renewable energy
transitions.

Nonlinearity checks confirm the hypothesis that as digital
capabilities deepen, frictions will ease. This is shown with a
weak U-shaped pattern when a quadratic term for Al and an
indicator at Al = 0.5 is used while the turning point rests beyond
the 75" percentile.

It can be inferred that a semi-elastic estimate of Fuel Price (0.0033)
means that with increases of 10 USD/MWh, investments of
approximately 3.3% more will be made. On the other hand, with
increases of 10 USD/tCO, on the carbon price, investments of
approximately 4.6% less will be made, which is consistent with
transitional compliance costs.

5.3.2. Dynamic panel analysis (system-GMM results)

The use of a two-step System-GMM estimator to potentially
address endogeneity and dynamic persistence with renewable
investment was apparent with lagged investment terms as
instruments and application of coordinate collapse to mitigate
instrument proliferation. The estimation results are shown in
Table 5.

Table 4: Two-Way fixed effects with interaction terms (Driscoll-Kraay Ses)

Constant 3.9821 0.4412 9.02 0.000 (3.094, 4.870)
Ln (1 + Green bonds) 0.0523 0.0269 1.944 0.052 (=0.0005, 0.105)
Ln (1 + ESG loans) —0.0308 0.0332 -0.928 0.354 (—0.096, 0.034)
AT mdex (0-1) —1.7542 0.4779 -3.67 0.001 (-2.712,-0.796)
Carbon price (USD/tCO,) —0.0049 0.0011 —4.35 0.000 (-0.0071, —0.0027)
Policy index (combined) —0.0667 0.0614 —1.086 0.281 (=0.192, 0.058)
GF x Al 0.1184 0.0452 2.618 0.010 (0.029, 0.207)
Policy x Al 0.0739 0.0338 2.187 0.030 (0.007, 0.141)
GDP per Capita (PPP, 2020 USD) 1.65x10° 1.77 x 10° 0.932 0.352 (-1.93 x10°¢,5.23 x 10°)
Energy mmport dependency (%) 0.0092 0.0071 1.296 0.198 (—0.005, 0.023)
Fuel price (USD/MWh) 0.0035 0.0015 2.333 0.022 (0.0005, 0.0065)
Fx volatility index —0.1172 0.4110 -0.285 0.777 (—0.930, 0.695)
Sovereign 10-year yield (%) —0.0018 0.0118 —0.153 0.879 (-0.025, 0.022)

Model diagnostics: Dependent variable: In (1 + Investment); Estimator: Two-way Fixed Effects (Entity and Time); Covariance estimator: Driscoll-Kraay (Robust); Observations: 600 (30
countries x 20 years); F-statistic (robust): = 11.2 P < 0.001; R? (Within): = 0.21 R? (Overall): = —0.18

Table 5: Dynamic panel (system-GMM) estimation results

In (1+Investment)-1 0.412
In (1+Green bonds) 0.052
In (1+ESG loans) —0.029
Al mndex (0-1) —1.743
Carbon price (USD/tCO,) —0.0039
Policy index (combined) —0.064
GDP per Capita (PPP, 2020 USD) 1.98x10°
Fuel price (USD/MWh) 0.0031
CO, emissions (Mt) 0.0005

0.093 4.429 0.000%**
0.028 1.857 0.063*
0.033 —0.879 0.380
0.498 —3.498 0.001%***
0.0012 —3.250 0.001%***
0.071 —-0.901 0.368
1.81x10°¢ 1.094 0.274
0.0015 2.024 0.043%*
0.0002 2.500 0.012%%*

Diagnostics: #Groups=30; #Obs=570; Instruments (collapsed) = 48; Instruments/Groups=1.6 (<2, OK). Hansen J=17.84 (P=0.412); AR (1) P=0.000; AR (2) P=0.316. Lag depth:

Gmmstyle (L2-L3); Windmeijer correction applied
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System-GMM Windmeijer correction and all described
specification in terms of instrument collapse to address
proliferation of instrument with lagged levels and differences of
dependent variable were in L2-L3 window as described was used.
Endogeneity resolving specification deals with state dependence
and potential simultaneity of financial variables and investment
results which are described in the investment paper.

The lagged dependent variable is positively signed and significant
which confirms persistence in investment validating the dynamic
specification. Al intensity consistently remains negatively
correlated with renewable investment which is in line with the
transitional adjustment dynamics in the fixed effects model. The
results of Hansen and AR(2) tests substantiate the conclusions
on the validity of instruments and the lack of serial correlation.
All results reiterate the interdependence of investment inertia in
the short run with the level of technological sophistication and
the stringency of carbon regulation (Blundell and Bond, 1998;
Arellano and Bover, 1995).

In addition to the main model, energy efficiency was investigated
as a second dependent variable. Table 6 presents the results.

Green bonds positively impact energy efficiency since they
focus on financial resources directed toward environmentally
cleaner adoptive systems. Carbon prices and Al intensity are
still negatively signed, indicating inefficiencies in transitions and
adjustments along the lines of the investment model. The findings
illustrate the coexistence of financial and technological inputs.

5.3.3. Robustness to heterogeneity and cross-sectional
dependence (DCCE, MG, PMG)

In the context of heterogeneity of slopes and unobserved common
shocks, the dynamic common correlated effects (DCCE), mean
group (MG), and pooled mean group (PMG) estimators were used.
The patterns of sign and significance of the key coefficients for
the different estimators are presented in Table 7.

5.4. Machine-Learning Predictive Analysis: SHAP-
Based Feature Attribution

To follow up on the fixed effects estimations, explainable-Al
diagnostics were conducted on the GBM and XGBoost models
employing SHAP (SHapley Additive exPlanations). SHAP allows
for an additive game-theoretic decomposition of predictions and
provides both global importance (mean absolute SHAP values)
and the distribution of marginal effects across observations
(summary/beeswarm plots). In this case, a rolling, time-aware
validation scheme was retained to avoid temporal leakage in this
panel setting (Lundberg and Lee, 2017; Lundberg et al., 2020;
Chen and Guestrin, 2016; Roberts et al., 2017).

5.4.1. Gradient boosting machine (GBM). Global and local
SHAP results

Figure 3 presents the SHAP summary plot, illustrating the relative
importance and directional impact of explanatory variables on
renewable energy investment, with lagged investment, CO-
emissions, efficiency, and artificial intelligence adoption emerging
as the most influential predictors.

Figure 3: Mean(|SHAP|) feature importance values for GBM model
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Table 6: Two-Way fixed effects model for energy efficiency
(Robust SEs)

In (1+Green 0.061 0.025 2442 0.015 **
bonds)

In (1+ESG loans) 0.022 0.031 0.710 0.478
Al index (0-1) —1.244 0.429 —2.898  0.004%**
Carbon price —0.0028 0.0009 =3.111  0.002%%**
(USD/tCO,)

GDP per Capita 2.03x10°¢  1.72x10°¢ 1.180 0.238

(PPP, 2020 USD)

Table 7: Robustness summary across DCCE, MG, and
PMG

Al index (0-1) (—)** (* (=)
Carbon price (-)** () ()**
Fuel price (H)* (H* ()
CO, emissions (H)** (F)** (H)**
Green bonds (Inlp) ~) (~) (H)*
(+)/(-) sign; *, ** denote P<0.10, P<0.05. “~” = not significant

Figure 4 reports the global feature importance based on mean
absolute SHAP values, demonstrating that investment persistence
(Inlp_Investment lagl) overwhelmingly dominates model
predictions, followed by CO: emissions, energy efficiency, and
artificial intelligence adoption.

The pronounced state dependence is best exemplified with a global
perspective, where the dominant lag of investment is displayed
tightly with a summary plot, thereby showing a systematic cross-
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country effect. Of the non-lag drivers, CO, emissions remains the
highest and, on average, is tied to positive SHAP values, illustrating
the capital mobilized in economically carbon-embedded systems
with transition pressure. Contributions of headline volumes in
green finance are, once emissions and persistence are accounted
for, minor as the policy and capabilities needed for real investment
are absent, indicating that emission issuance without policy
integration will not result in real investment (Lundberg et al.,
2020; Roberts et al., 2017).

5.4.2. XGBoost: Global and local SHAP results

Figure 5 displays the SHAP summary plot derived from the
XGBoost model, confirming the robustness of the feature
importance structure observed earlier, with lagged investment,
CO: emissions, and artificial intelligence adoption exerting the
strongest directional impacts on predicted renewable energy
investment.

Figure 6 presents the global feature importance based on mean
absolute SHAP values obtained from the XGBoost model, further
confirming the dominant role of investment persistence, followed
by CO: emissions, artificial intelligence adoption, and efficiency-
related indicators.

The corroborated pattern displays In(1+Investment) t—1 is the
primary predictor. Heterogeneous signs within the Al index across
its value range suggest context-dependent and possibly non-linear
effects of the Al index as it enters the upper tier, both of which are
consistent with the technology-transition literature’s (Acemoglu
and Restrepo, 2019) short-run adjustment frictions and longer-run
efficiency gains. Macro-financial variables (e.g. sovereign yields,
efficiency index) are modest, contouring but remaining secondary

Figure 4: SHAP summary (beeswarm) plot for GBM model
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Figure 5: Mean(|SHAP)|) feature importance values for XGBoost
model
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Figure 6: SHAP summary (beeswarm) plot for XGBoost model
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to persistence and emissions, which is corroborated by the GBM
and XGBoost as it strengthens the inference that transition pressure
and persistence are dominant drivers while finance and Al operate
through conditional channels that the econometric models explore.
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1 In (1+Investment)-1 0.8068 0.7955
2 CO: Emissions (Mt) 0.0343 0.0304
3 AT Index (0-1) 0.0110 0.0239
4 Efficiency Index/ 0.0168 0.0167

Sovereign 10Y Yield (%)

Table 8: Comparative feature importance across GBM and XGBoost models

Past investment exerts the strongest influence, confirming persistence
effects in renewable finance.

Higher emissions correspond to increased investment needs, reflecting
decarbonization responses.

Al intensity contributes to predictive variance, indicating its
moderating role in investment outcomes.

Efficiency and yield factors capture macro-financial sensitivities
influencing green finance flows.

Bold value indicates the highest mean absolute SHAP value within the model, representing the most influential predictor in terms of global feature importance.

Cross-model nuance. Although the fixed-effects estimates and
GBM SHAP contributions suggest the relationship between CO,
emissions and investment (transition pressure) is positive, the
XGBoost partial dependence shows a slight and negative slope for
the lower emissions range. This is a consequence of distributional
heterogeneity and the interaction frameworks and dynamics that
tree ensembles captured. Thus, global SHAP and panel estimates
should be regarded as the best representation of average effects,
and PGP as local sensitivity (Lundberg et al., 2020).

To further confirm the directional and monotonous impact of
features, we constructed partial dependence plots (PDPs) for the
top predictors under both GBM and XGBoost models (Appendix
A, Figures A1-A2), which, as with the other models, indicates the
robustness of the SHAP-based logic.

The determinants of predictive variance for the two ensemble
models has been systematically contrasted, with the findings
displayed in Table 8. This integration allows for the empirical cross-
model validation of feature constancy, illustrating the underlying
structural persistence and transition dynamics in the evolving
predictive models for renewable energy investment (Friedman,
2001; Lundberg and Lee, 2017; Chen and Guestrin, 2016).

5.4.3. Machine learning model performance

Gradient boosting machine (GBM) and XGBoost models were
trained to predict renewable investment levels using financial,
policy, and macroeconomic features. Table 9 presents model
performance metrics based on rolling-origin cross-validation.

Both ensemble learners demonstrate high predictive accuracy,
with XGBoost marginally outperforming GBM in terms of R?
and RMSE. These results validate the robustness of nonlinear
estimations and highlight the relevance of Al-driven methods for
forecasting renewable investment trajectories (Friedman, 2001;
Chen and Guestrin, 2016; Lundberg and Lee, 2017). The strong
out-of-sample fit corroborates the econometric results, confirming
the significance of technological, policy, and financial variables
in shaping renewable finance dynamics.

6. DISCUSSION

The analysis presented in this study assists in advancing the
understanding of the interaction between digital transformation,

Table 9: Machine learning model performance comparison

R? (Out-of-sample) 0.71 0.75
RMSE 0.189 0.171
MAPE (%) 8.34 7.42
Training time (sec) 2.6 3.8

green finance, and environmental policy, particularly the role of
artificial intelligence (Al) as a moderating factor in the transition
to renewable energy. Results from both the econometric and
machine-learning approaches show that while Al intensity
is negatively impacting the effectiveness of both renewable
investment and efficiency, this is an expected outcome of the
transitional adjustment hypothesis put forth in Aghion et al.
(2017). It appears that, in the short run, the digital transformation
process will result in frictions in the economy that will involve
learning costs, institutional adjustment, and the reallocation of
capital, all of which will be offset in the medium to long run by
digital transformation and productivity growth. Complementary
effects from Al will become apparent in the long run through its
interaction with finance and policy variables, which will strengthen
the integration of capital and increase the responsiveness of capital
to the policy (Brynjolfsson et al., 2019; Vinuesa et al., 2020).

6.1. Comparison with Prior Evidence on Green
Finance and Technological Efficiency

The positive and significant dimension of the Al x GF interaction
indicates that a firms’ digital capabilities enhance the impact of
instruments of Green Finance. This result builds on Flammer
(2021) and Zerbib (2019) conclusions that focused on the impact
of green bonds on corporate environmental performance and
corporate valuation, although the digital context was not included.
I demonstrate how the Al-powered analytics and green financial
instruments paired analytics and green financial instruments
enable more precise allocation of capital and the evaluation of
risk, thereby supporting the technological complementarities
(Aghion et al., 2019). This result is also consistent with Tang and
Zhang (2020), who showed that environmental data transparency
and credibility shaped investors’ response to green bonds, which
is a dimension that Al systems can enhance through automated
verification and monitoring.

Without Al interactions, the main-effect coefficients of the green
finance variables were statistically weak, indicating that, on its
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own, financial deepening may not lead to significant investments
in renewables. This underlines the reasoning of, for instance,
Mazzucato and Semieniuk (2018), who stressed that the source and
structure of finance and not its magnitude determines the outcome
of technology. This study therefore, suggests that green capital
becomes transformative only when digital intelligence that can
optimize the allocation and governance of the capital is employed.

6.2. Policy Dynamics and Institutional
Complementarities

The moderating role of Al on policy mechanisms (Policy % Al)
provides additional empirical evidence for the institutional-
complementarity hypothesis. The positive sign on this interaction
suggests that Al-ready countries are more able to implement and
enforce carbon pricing, feed-in tariffs, and other regulatory levers
effectively. This augments evidence from Calel and Dechezleprétre
(2016) and Colmer et al. (2025) that policy-induced innovation
hinges significantly on firm-level absorptive capacity and data
infrastructure. This study shows that Al increases macro-level
absorptive capacity by enhancing the systems for monitoring,
compliance, and evaluation to ensure policy frameworks result
in quantifiable investments.

Negative coefficients on carbon pricing across nearly all estimators
reflect transitional compliance costs. Similarly, Greenstone et al.
(2022) explain how high carbon prices discourage investment
in emissions-intensive industries during the initial phases but
foster long-term technological changes. This finding indicates
that the effectiveness of policies hinges on digital governance
infrastructures that execute the price signal. Hence, digital
governance becomes an essential prerequisite for effective policy
transmission during transitions in sustainability.

6.3. Nonlinear and Dynamic Adjustment Pathways
Dynamic panel estimations (System-GMM) confirmed substantial
persistence in renewable investment. During path dependence,
research persistence captures how self-reinforcing green
investment momentum is, which is further validated by the high
SHAP importance of lagged investment in the machine-learning
analysis. The U-shaped adjustment path is explained by Acemoglu
et al. (2012) in the theory of directed technological change. Early
adoption costs precede productivity and environmental efficiency
gain, which explains the Al and carbon pricing impact.

From a temporal perspective, the study hybrid results that integrate
econometrics with explainable Al and digital-financial-policy
integration reinforces that benefits arrive after structural readiness
surpasses a certain threshold. This counters the arguments by
Acemoglu and Restrepo (2019) and Brynjolfsson and McAfee
(2017) that describe technology diffusion as a purely cumulative
process needing institutional adaptation, along with human capital
investment at the core.

6.4. Cross Model Convergence: Econometric and
Machine Learning Evidence

The alignment of traditional econometric results with machine-
learning diagnostics enhances credibility. SHAP-based feature
attribution recognized Al intensity, fuel prices, and CO, emissions

as primary determinants of renewables investment. This confirmed
econometric inference regarding the joint influence of pressure
to transition and technological complementarity. The inertia and
cycles of capital commitment to be made in green energy during
the lagged investment period illustrates the strong explanatory
power of lagged investment. Lundberg et al. (2020), complements
this as he uses interpretable Al models to show that nonlinear
relationships, which are obscured by linear regressions, can
enhance empirical robustness in the field of sustainability finance.

Both models identifying a positive role on digital-financial
synergy analyzed with partial dependence plots, which provide
a context of effect variation at different Al readiness levels to
reflect cross-country heterogeneity. This structural asymmetry was
documented by Oxford msights (2024), and the IEA (2024), where
considerable variation exists within economies at digital maturity
and institutional quality. Consequently, the impact of green finance
mechanisms will be maximized with policy prescriptions that align
with a nation’s digital infrastructure and governance capacity.

6.5. Theoretical and Policy Implications

From a theoretical standpoint, the research contributes to the
understanding that Al does not operate as an autonomous
engine of growth, but rather as a supplementary facilitator of
efficiency in finance and policy. This conforms to the theory of
technological complementarities (Aghion et al., 2019) in the sense
that productivity gains only accrue when digital sophistication is
and financial and institutional depth and coherence are allowed
to evolve together.

From a policy perspective, the findings indicate that investments
in digital infrastructure are a prerequisite for the successful
implementation of green finance and the regulation of the
environment. Therefore, Al readiness should be incorporated into
policy digital governance frameworks as a criterion in climate
policy and sustainability evaluations. Such a policy would combine
technological finance and innovation, allowing for rapid and
socially inclusive shifts in the energy sector.

7. CONCLUSION

Global finance’s digital transformation has expanded how
sustainable investments are viewed. Given the rapid technological
disruption and the need to decarbonize, the role of policy coherence
should also be considered along with the role of surveillance Al
The combination of Al analytics, green finance, and environmental
regulation illustrates how the capital markets, governments, and
industries are reengineering the collaboration needed to meet
the sustainable development goals. More than ever, systems are
proving that the policy target of sustainability can be a system of
adaptive innovation instead of a simple target.

In this environment, the technology and the financial systems must
be understood together. The seamless integration of Al analytics
and green finance determines the speed and the quality of the
transition to renewable energy. The transformation of financial
instruments, that include green bonds and ESG-linked loans, has
come with the ability to algorithmically provide transparency, risk
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assessment, accountability, and the pricing of complex instrument.
Within this context, the study proposes Al as a unifying tool that
closes the gap between ambitious environmental policies and
green investment level.

This research has provided empirical evidence that artificial
intelligence (Al), green finance (GF), and environmental policy
instruments influence the patterns of investment and efficiency
in renewable energy within and between countries. Combining
advanced econometric estimators and explainable machine
learning validation provided evidence that Al readiness is not an
independent driver of growth but rather a complementary catalyst
that increases the efficacy of finance and policy. Al intensity and
carbon pricing entail transitional costs in the short run, which
explains their negative coefficients, but their interaction terms with
green finance and policy instruments reveal strong and positive
values, thus proving the existence of digital-financial-policy
complementarities.

The research points out that the benefits of digitalization are
observed when the technological, financial and institutional
frameworks are developed concurrently. Countries with advanced
Al ecosystems and sophisticated policy coordination systems are
also able to convert financial inflows to investment in renewable
energy and energy productive efficiency. The results stress the
importance of the combination of sophisticated technology and
well-designed systems of policies and financial instruments to
achieve the desired results during energy transitions.

The highlighted hybrid econometric-machine learning framework
strengthens the argument for sustainable finance as a complex
adaptive system. The considerable lag effects indicate the slow
capital formation of the renewable sectors, revealing considerable
investment inertia. The convergence of results from traditional
estimations and SHAP-based interpretability underscores the
value of interpretability and the importance of data-driven
governance as a resilient and equitable decarbonization pathway
to confirm.

7.1. Implications

The implications of these findings are substantial. On the
one hand, they contribute to the theoretical framework of
technological complementarities, affirming that Al improves the
allocative and monitoring efficiency with which the instruments
of finance and policy are deployed. On the other hand, they
indicate that the success of green-finance initiatives and climate
regulations goes hand in hand with the investment in digital
infrastructure and the development of analytic capacity. For Al’s
potential to be realized, policy planners should assess national
sustainability plans for Al and digital-technology readiness and
ensure that plans for digital transformation are in sync with the
energy transition. For investors and financial institutions, the
findings imply that the integration of digital-data capabilities,
particularly Al-enabled risk analytics, should likely be a key
qualifier in the assessment of a green portfolio’s sustainability.
Overall, these scenarios suggest a new locus of low-carbon
growth, made possible by the synergy of technological
intelligence and innovation in finance.

7.2. Limitations

The limitations of this study arise despite its methodological
rigor. First, the Al readiness index used in the study as a proxy for
digital capability is more macro preparedness instead of firm-level
adoption which may lead to underestimating micro-institutional
heterogeneity. Second, the composite green-finance indicator is
measuring different financial components of green-finance, for
example, green bonds and ESG loans, which may obscure unique
behavioral elements. Third, in the policy variables of carbon
pricing and feed-in-tariff, the intensity does not capture qualitative
differences in enforcement, such as regional coverage, policy
credibility, or other qualitative differences. Endogeneity concerns
were addressed through the use of System-GMM estimation and
various robustness tests, however, there are still unobserved shocks
and measurement error that contribute to the influence of coefficient
magnitudes. Finally, the dataset includes 30 economies for the
period of 2005 to 2024, and as such the results ought to be seen
as medium-term tendencies instead of definitive causal estimates.

7.3. Future Directions

Future research can expand this analysis in a number of ways.
One possible approach involves the use of firm-level and sector-
specific datasets to analyze the microeconomic transmission
channels that relate the adoption of Al to investment and emission
outcomes. Another approach could involve the use of nonlinear
threshold models and causal-machine-learning techniques to
analyze heterogeneous treatment effects based on varying levels
of digital maturity and the stringency of policies. Green finance
can be further analyzed to determine the disparate impacts of Al on
the finance components—bonds, credit, and equity. The addition
of institutional and governance indicators, governance, and ethics
of data, would shed light on the socio-technical aspects of digital
sustainability. Lastly, explainable Al coupled with longitudinal
simulations on macro-financial models could pave the way for
scenario-based policy design, predicting the coupled flow of
digital and financial systems to fast-track the global transition to
renewable energy.
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APPENDIX: SUPPLEMENTARY MACHINE LEARNING DIAGNOSTICS

Figure A1: Partial dependence plots for GBM model
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The partial dependence plots (PDPs) generated for the Gradient Boosting Machine (GBM) model illustrates the specific marginal effect
of certain explanatory variables with regard to the investment made in renewables. The correlation between the lagged investment
variable (InlpInvestmentlagl) and the predicted variable is positively monotonic, demonstrating that the prior investment made is a
strong predictor of subsequent investments made, and in fact ‘performance strengthens subsequent capital commitment’ in relation to
the persistence hypothesis (Friedman, 2001; Lundberg et al., 2020). In relation to the marginal effect of the variable CO, emissions,
efficiency index and intensity of Al the result presents limited sensitivity in part since the boosting architecture has accounted for the
non-linear and interactive effect of these variables. This, in fact. suggests that these variables exert their effect through interactions
more than any sort of a linear trend (Molnar, 2022)
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Figure A2: Partial dependence plots for XGBoost model
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The XG Boost model delivers similar qualitative results and thus supports the robustness of the results provided from the GBM model.
The lagged investment variable once more shows a strong and almost linear positively correlated effect, thus confirming the path-
dependence and persistence of capital formation in renewables. The marginal effect of CO2 emissions remains negative and situated
towards the bottom, aligned with SHAP-based reasoning, suggesting that high emission intensity might constrain renewables expansion
momentarily under transitional economic adjustment (Greenstone et al., 2022). The marginal slopes for Al intensity, sovereign yields,
and efficiency index appear to be relatively flat and show subdued standalone effects after controlling for cross-feature dependencies.
This is in line with literature that argues, and for good reason, that machine-learning models tend to capture heterogeneous, non-linear
interactions and abstract away from simple average effects rather than non-linear interactions. See for instance, Chen and Guestrin, 2016
and Lundberg and Lee, 2017. The overall explanation for the PDPs is that they reinforce the SHAP feature attributions perspective that
incorporates historical momentum and context-specific interaction effects to explain “why” variables driving renewable investment do
not operate in a uniformly monotonic fashion relative to counterbalancing financial and technological factors.
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