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ABSTRACT

Climate change and sustainable development goals make green energy (the development of environmentally related technologies) the main determinant 
of economic growth in the Fragile Five economies. In this study, the determinants of green innovation in the Fragile Five economies (Brazil, India, 
Indonesia, South Africa, and Turkey) during the period 2002-2020 are examined through panel data analysis. The empirical findings show that in the 
short run, increases in output encourage demand-driven innovation. In the long run, however, fixed capital investments, the stringency of environmental 
policies, and the level of human capital are indicated to be effective on green innovation. While in India, income growth and fixed capital investments 
feed innovation, in the Turkish economy, energy efficiency and renewable energy investments provide support. In Indonesia and South Africa, 
human capital strengthens the capacity for knowledge absorption and supports innovation. In Brazil, on the other hand, due to income growth being 
directed towards traditional energy-intensive sectors, the green innovation process slows down. According to the empirical findings, the stringency of 
environmental policies may suppress green innovation in the short term by increasing compliance costs, but in the long term, in line with the Porter 
hypothesis, it may stimulate green innovation. For these reasons, in the Fragile Five economies, it is necessary to direct physical capital toward green 
technologies through green financing instruments and to reduce firms’ compliance costs with predictable environmental policies.

Keywords: Green Energy, Human Development, Fixed Capital Investment, Environmental Policy Stringency 
JEL Classifications: O13, O33, P48

1. INTRODUCTION

The spread of technologies that take environmental quality into 
account plays a leading role in the process of achieving the 
sustainable development goals of the 21st century. In recent years, 
policies aimed at reducing the carbon footprint have demonstrated 
the importance given to environmental quality. For this reason, 
technological innovations that prioritize environmental quality are 
advancing into the depths of the macroeconomy in many respects. In 
this study, the determinants of the development of technologies that 
give importance to environmental quality in the fragile five (hereafter 
FF) economies during the period 2010-2020 are examined. Despite 
their high growth potential, FF economies have been placed into 
a specific classification due to structural problems such as internal 
political instability, fragility in external economic relations, and high 

debt ratios. Therefore, identifying the determinants of technological 
developments that direct environmental quality in FF economies 
aims to fill an important gap both for low-income economies and 
for global environmental sustainability. On this basis, it has been 
determined that there is a significant gap in the literature. While 
studies examining the determinants of environmental quality are 
widespread in the EU or OECD economies, they are quite limited in 
the FF economies. However, FF economies are situated at the very 
center of environmental policies and technological transformation 
due to both their high carbon emissions and their high growth rates 
(Shahbaz et al., 2013). Another reason for examining FF economies 
is that, due to their high openness ratios, they are directly affected 
by global commodity and energy shocks. This phenomenon makes 
capital movements and policy adjustments more prominent in the 
process of environmental technology development.
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Classical economics limits the factors of production to labor, 
capital, and natural resources, while Neo-Classical economics 
asserts that with technological progress, capital per worker and 
output will decline. With endogenous growth models, it has been 
argued that knowledge, innovation, and R&D investments are the 
fundamental motivations of the economic growth process. Thus, 
alongside theoretical and empirical developments in economic 
theory, ideas regarding the integration of environmentally 
friendly technologies into the growth process have come to the 
forefront. Empirical studies on energy economics attempt to 
explain the development of environmental technologies through 
the Environmental Kuznets Curve, while more recent research 
suggests that with the advancement of environmental technologies, 
environmental degradation can be controlled even at low income 
levels (Popp, 2002; Johnstone et al., 2010). The variables used 
in the empirical model have strong economic underpinnings. 
Gross fixed capital investments are considered the main source 
of growth in both Classical and Neo-Classical economics. 
Through endogenous growth models (Lucas, 1988; Romer, 1990), 
the cumulative effect of human capital and the technological 
adaptation capacity of the labor force are emphasized. According 
to Porter and Van der Linde (1995), the environmental policy 
stringency index creates a strong positive effect on technological 
innovations by measuring the rigidity of institutional regulations 
aimed at improving environmental quality. Finally, GDP per 
capita is included in the model as a proxy variable for market 
demand, and income growth positively affects the demand for 
environmentally friendly products, leading firms to adopt more 
innovative technologies. Ultimately, this study aims to make a 
unique contribution to the empirical literature by testing the Porter 
hypothesis in the context of FF economies, examining whether 
environmental policies influence technological innovations. 
Although there are many empirical studies on this hypothesis in 
the literature, this study draws a more comprehensive framework 
by incorporating not only environmental policy stringency but also 
human capital and fixed capital investments into the model. Panel 
data methods are preferred in the empirical analyses. In this way, 
more robust estimates with higher degrees of freedom are achieved 
by utilizing both time series and cross-sections. Therefore, cross-
sectional dependence (hereafter CSD), panel unit root (hereafter 
PUR), panel cointegration, causality, and parameter estimations 
will first be carried out. Among these methods, heterogeneity 
and CSD in FF economies will be taken into account to model 
different macroeconomic dynamics. In summary, the contribution 
of this study to the energy economics literature is: (i) To examine 
the development of environmental technologies in FF economies, 
(ii)  to consider heterogeneity with panel data methods, (iii) to 
reveal the effects of fixed capital investments and human capital 
within the framework of the knowledge production function, and 
(iv) to determine the impact of environmental policy stringency 
on environmental technology production.

2. THEORETICAL BACKGROUND AND 
LITERATURE REVIEW

In its simplest form, the model in this study is expressed as:

GIt = β0 + β1GFCI + β2GDPPC + β3EPS + β4HDI + εt� (1)

Since it takes environmentally related technological output 
(hereafter GI) as the dependent variable, it can also be considered 
a knowledge production function (hereafter KPF). This is because 
cumulative knowledge accumulation and innovative production 
emerge as guiding forces. According to the classical KPF, 
economic actors are assumed to generate new knowledge stocks 
through R&D, human capital (hereafter HDI), and gross fixed 
capital investments (hereafter GFCI). In this context, GI assumes 
the role of green knowledge output. The main argument of the 
KPF is that knowledge production is shaped both by supply-push 
factors (R&D, HDI, GFCI) and demand-pull factors (GDP, market 
size). In equation (1), GFCI is the complementary capital input 
of knowledge production. GFCI encompasses a large set ranging 
from physical infrastructure, production scale, digital equipment, 
to logistical infrastructure. HDI, on the other hand, represents 
the cumulative knowledge stock of the KPF and its absorptive 
capacity. EPS directs the composition of knowledge production 
toward the green domain through induced technical change. GDP 
reflects the demand-pull pressure on innovation by influencing 
the expected returns of R&D activities through market demand. 
The log-linear structure of regression (1) allows us to obtain scale 
elasticities and, consequently, semi-elasticities in knowledge 
production. The sign of the coefficient β1 for GFCI may vary across 
cross-sections and therefore can be either positive or negative. If 
capital accumulation supports green innovation, then β1 > 0. If, 
however, due to misallocation of resources and scale-substitution 
effects, resources flow into polluting capital, then β1 < 0. In 
economies with higher GDP levels, larger market size and demand 
conditions suggest that β2 < 0. Since EPS increases the cost of 
polluting technologies through price signals and standards, thereby 
channeling resources into green technologies, β3 is expected to be 
positive β3 > 0 (Ambec et al., 2013). Finally, because HDI enhances 
productivity both in generating new ideas and adapting existing 
knowledge, β4 is also expected to be positive β4 > 0.

One of the most debated issues in economic theory is the 
marginal productivity of the returns to the factors of production. 
While Neo-Classical economics refers to diminishing returns, 
with the inclusion of innovation, knowledge, environmental 
and institutional quality into the production process through 
endogenous growth models, the concept of “at least constant 
returns” has emerged. The marginal productivity of GFCI varies 
according to the sectoral capital/output ratio. Tone and Sahoo 
(2003) state that because GFCI is indivisible, marginal productivity 
is low in small-scale firms but high in large-scale firms. Assuming 
that small-scale firms in FF economies have low sectoral densities, 
it can be said that their marginal productivity is low. Therefore, 
the contribution of GFCI in FF economies remains more limited. 
On the other hand, the marginal productivities of knowledge, 
innovation, and R&D have a structure different from other 
production factors. According to Lööf and Heshmati (2002), firms 
exhibit heterogeneous responses in the process of incorporating 
knowledge into production. Cohen and Klepper (1996) argue that 
large-scale firms achieve higher returns from innovation outputs 
due to their larger volume of production. Acs and Audretsch 
(1987), however, argue that small-scale firms are able to engage 
in more innovative and creative innovations. Considering these 
studies, it is observed that GI differs according to firm size. GDP, 
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which is used as a proxy variable for market demand volume, plays 
a critical role in determining marginal productivity. According to 
Scherer (1965) and Schmookler (1966), the innovation process is 
driven by market size and, therefore, demand. For this reason, in 
economies with high GDPPC, the demand-pull channel is valid. 
In economies with high HDI capacity, the labor force adapts to 
work more quickly and the average stock of knowledge in society 
increases more rapidly. According to Cohen and Levinthal (1990), 
the effect of HDI on GI occurs through both productivity and 
knowledge spillovers. EPS has both direct and indirect effects on 
marginal productivity. Porter and van der Linde (1995) and Ambec 
et al. (2013) argue that EPS creates a positive long-term impact 
on firms’ level of competitiveness. Johnstone et al. (2010) state 
that green energy policies have a positive effect on green patent 
production, while Ghisetti and Pontoni (2015) argue that these 
policies create nonlinear heterogeneous effects on innovation 
outputs. Costantini et al. (2017) claim that these policies are both 
demand-pull and technology-push. Finally, the energy economics 
literature suggests that the effect of EPS on GI creates different 
and nonlinear impacts for each cross-section. Özbay (2024) and 
Murtas (2025) claim that R&D expenditures and HDI have a 
positive effect on GI and that this effect is heterogeneous. The 
claim of heterogeneity is also voiced by Acs et al. (1994) and 
Jaffe et al. (1993), noting that spatial differences affect knowledge 
spillovers. To summarize, the impact of GFCI, GDP, HDI, and 
EPS on GI varies both according to economies of scale and to 
the production structure of the country. While GFCI and GDP 
create stronger effects in developed economies, HDI and GFCI 
come to the fore in developing economies. The effect of EPS on 
GI, within the framework of the Porter hypothesis, positively 
influences innovation in the long term, while in the short term it 
creates heterogeneous effects across cross-sections.

3. DATA AND METHODOLOGY

This study investigates the factors influencing GI production in 
FF economies over the period 2002-2020. The definitions of the 
variables are provided in Table 1.

Cross-sectional dependence (CSD) tests developed by Breusch 
and Pagan (1980), Pesaran (2004) and Pesaran et al. (2008) are 
employed to assess the presence of such dependence. In the Lagrange 
Multiplier (hereafter LM) test, 1 2
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According to Table 2, there is clearly CSD in all variables. In the 
production of lnGI, economies are directly influenced by each 
other. The lnGI patent mechanisms developed in one economy 
spread to other economies through international trade flows and 
foreign investments (Jaffe et al., 1993). Therefore, a GI produced 
within the FF can be absorbed by the others. In the context of 
lnGI, the CSD observed in the FF is consistent with the knowledge 
spillovers proposed by Griliches (1992). GFCI is affected by 
global economic cycles, since FF economies are dependent on 
capital flows and therefore influenced by changes in the interest 
rates of reserve currencies. GDPPC is affected by international 
trade, income distribution, energy and raw material prices, and 
supply/demand shocks, because the process of integration into 
international markets has synchronized the FF economies. lnEPS 
is influenced by global environmental policies. With the policy 
convergence hypothesis, Holzinger and Knill (2005) indicate that 
steps regarding lnGI regulations are taken jointly within the FF. 
lnHDI is related to global knowledge flows and labor movements. 
According to Lucas (1988), HDI is mobile both within a country 
and across economies, and this enhances productivity. At the 
country level, Brazil is exposed to CSD due to fluctuations in 
commodity prices, while Indonesia’s dependence on energy 
prices leads to CSD. In South Africa and Turkey, in addition to 
these two situations, financial fragility stemming from openness 
has always existed. In India, knowledge flows are integrated with 
other economies due to R&D and service exports in the software 
sector. In summary, the main reason for the emergence of CSD in 
the variables is the synchronized impact of global supply/demand 
shocks, knowledge and technology spillovers, and convergence 
in environmental policies.

In the panel unit root (hereafter PUR) test proposed by Smith et al. 
(2004), the test’s critical values are obtained using the bootstrap 
method. This test yields more reliable results in the presence of CSD 
within the panel. The test statistics (LM) are 

N1
ii 1

LM N LM−
=

= ∑  

Table 1: Definitions
Data Symbol Source
Development of environment‑related 
Technologies index

lnGI OECD

Gross fixed capital formation (% of GDP) GFCI WB
Per capita gross domestic product (GDP) at 
current prices in US dollars, representing market 
demand

lnGDPPC WB

Human Capital Index lnHDI UNDP
Environmental Policy Stringency Index, 
representing the strictness of environmental policies

lnEPS OECD

Table 2: CSD results
Tests lnGI GFCI lnGDPPC lnEPS lnHDI
LM 43.524 (0.00)a 17.457 (0.06)c 24.026 (0.00)a 30.268 (0.00)a 21.989 (0.00)a

CDLM −7.496 (0.00)a 1.668 (0.04)b 3.136 (0.00) a 4.532 (0.00)a 2.681 (0.00)a

CD −3.502 (0.00)a −3.185 (0.00)a −3.172 (0.00)a −3.181 (0.00)a −2.678 (0.00)a

LMadj −0.816 (0.79) 3.934 (0.00)a 7.708 (0.00)a 9.170 (0.00)a 3.156 (0.00)a

aP<0.01, bP<0.05, cP<0.1, LM BP (1980), CDLM and CD Peseran (2004), LMadj. Calculated by the authors



Gülcü, et al.: From Energy to Information: Green Knowledge Production Function in Fragile Five Economies

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026122

and LM is the arithmetic mean of the test statistics. The PANICCA 
PUR panel developed by Reese and Westerlund (2016) tests for 
unit roots in two different planes: Common components and 

idiosyncratic components. In the model y f eit i t it� �λ
`

 unit root 
tests are applied tofactor loadings and common factors. c
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the stationarity of the common components, while c
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the assumption that all cross sections in the panel have the same 
coefficient. In the homogeneity test proposed by Pesaran and 
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there is no cointegration in the model. In the Durbin-Hausman 
panel cointegration test proposed by Westerlund (2008), the 
DHg test statistic assumes that the autoregressive parameters 
are heterogeneous, while the DHp test statistic assumes that 
the autoregressive parameters are homogeneous. Accordingly, 
the test statistics are ( )2n T 2

g i i i it 1i 1 t 2
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Table 3 presents the PUR, CSD, and panel cointegration results The 
lnGI variable is stationary at level in the Smith et al. (2004) PUR 
test, while in the PANICCA PUR test it becomes stationary when 
the first difference is taken. GFCI, on the other hand, is stationary in 
the constant model of the Smith et al. (2004) PUR test, but carries 
a unit root in the trend model. The other variables are difference-
stationary in the PUR test presented in Panel A. Different results 
are obtained in the PANICCA test. These differences are due 
to GFCI having a unit root in the first difference with the trend 
model and HDI being I(2). As a result, considering the economic 
shocks experienced by the fragile five economies and the different 
powers of the tests, it is assumed that the variables included in 
the model have long memory and that all variables are I(1). In the 
CSD and delta tests, the alternative hypotheses are accepted, and 
it is observed that the slope parameters differ among the fragile 
five economies. In the LM bootstrap and Durbin-Hausmann panel 
cointegration tests, it is found that the variables move together in 
the long run and exert an effect on one another. These findings 
are consistent with the long-term knowledge equilibrium of the 
KPF. The cointegrated relationship shows that the model follows 
a common knowledge growth path in the long run.

In the panel vector autoregression (PVAR) model, the panel 
error correction model (PVECM) is established by including 
the error correction parameters 1 1ˆφ ε −it , 2 1ˆφ ε −it , 3 1ˆφ ε −it , 4 1ˆφ ε −it  
and 5 1ˆφ ε −it :
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In this (7) model, the null hypotheses for short-term causality are 
�121

0ip it pp

k
GFCI� ��� �  from GFCI to lnGI,

�131
0ip it pp

k
lnGDPPC� ��� �  from lnGDPPC to lnGI,

�141
0ip it pp

k
lnEPS� ��� �  from lnEPS to lnGI,

�151
0ip it pp

k
lnHDI� ��� �  from lnHDI to lnGI, this indicates no 

causality. The alternative hypotheses are �121
0ip it pp

k
GFCI� ��� �  

from GFCI to lnGI, �131
0ip it pp

k
lnGDPPC� ��� �  from 

lnGDPPC to lnGI, �141
0ip it pp

k
lnEPS� ��� �  from lnEPS to lnGI, 

�151
0ip it pp

k
lnHDI� ��� �  from lnHDI to lnGI, this indicates 

causality. In the long run 1 1ˆ 0φ ε − =it  indicates no causality from 
GFCI, lnGDPPC, lnEPS and lnHDI to lnGI as a whole.

Table 4 presents the short and long run panel causality results. 
In the short run, causality is found only from lnGDPPC to lnGI, 
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Table 3: PUR, CSD, Delta tests, cointegration
Panel A. Smith et al. (2004) “bootstrap” PUR

Variable Constant Constant and Trend
Levels Statistic Bootstrap (P‑value) Statistic Bootstrap (P‑value)
lnGI −2.919 0.00a −3.879 0.00a

GFCI −2.061 0.08c −1.986 0.62
lnGDPPC −1.276 0.68 −1.582 0.89
lnEPS −0.985 0.81 −1.572 0.90
lnHDI −1.721 0.24 −0.465 0.99
First difference

lnGI −4.890 0.00a −4.897 0.00a

GFCI −3.823 0.00a −3.937 0.00a

lnGDPPC −4.213 0.00a −4.197 0.00a

lnEPS −6.610 0.00a −6.599 0.00a

lnHDI −2.603 0.00a −2.684 0.02b

Panel B. PANICCA PUR
Variable Constant Constant and Trend
Levels Statistic Asymptotic (P‑value) Statistic Asymptotic (P‑value)
lnGI c

êZ 1.043 0.14 1.716 0.04b

c
êP 14.665 0.14 17.686 0.06

GFCI c
êZ −1.557 0.94 −1.238 0.89

c
êP 2.033 0.98 4.461 0.92

lnGDPPC c
êZ −1.319 0.90 0.160 0.43

c
êP 4.101 0.94 10.718 0.37

lnEPS c
êZ −2.082 0.98 0.723 0.23

c
êP 0.684 0.99 13.233 0.21

lnHDI c
êZ −1.567 0.94 −1.781 0.96

c
êP 2.99 0.98 2.031 0.99

First difference
lnGI c

êZ 4.050 0.00a 3.087 0.00a

c
êP 28.116 0.00a 23.806 0.00a

GFCI c
êZ 1.652 0.04b 0.544 0.29

c
êP 17.389 0.06c 12.433 0.25

lnGDPPC c
êZ 6.708 0.00a 3.419 0.00a

c
êP 40.010 0.00a 25.612 0.00a

lnEPS c
êZ 2.123 0.00a 3.930 0.00a

c
êP 19.498 0.00a 27.578 0.00a

lnHDI c
êZ −0.042 0.51 −1.485 0.91

c
êP 9.811 0.45 3.356 0.97

Panel C. CSD and Delta Tests
CSD Tests Statistic Asymptotic (P‑value) Bootstrap (P‑value)
LM 416.841 0.00a ‑
CDLM 7.618 0.00a ‑
CD 13.945 0.00a ‑

(Contd...)
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whereas in the long run, causality is found from GFCI, lnGDPPC, 
lnEPS, and lnHDI as a whole toward lnGI. In this model, where 
lnGI is the dependent variable, short-run disequilibria are corrected 
within 0.71 years. The causality from lnGDPPC demonstrates the 
validity of the demand-pull model. Economies with high income 
levels increase the demand for products generated with green 
energy. Thus, by benefiting from economies of scale and optimal 
risk management, they enhance the expected returns of R&D 
expenditures. The short-run causality from lnGDPPC (demand 
shock) to lnGI (innovation output) reflects the short/long-run 
components of the Porter hypothesis (from lnEPS to lnGI), 
as well as the delayed impact of lnHDI on production process 
innovations (Love and Zicchino, 2006). The differences between 
short- and long-run causality indicate that within the KPF, different 
channels operate under adaptive expectations and discrete-time 
assumptions. Consequently, short-run causality aligns with the 
demand-pull innovation hypothesis. According to Schmookler 
(1966) and Scherer (1965), a high level of output has a positive 
effect on innovation outputs. In economies with high output 
levels, demand for green products is strong, leading firms to turn 
toward lnGI. Long-run causality, on the other hand, reveals the 
multi-component structure of the KPF. This finding is consistent 
with Özbay (2024) and Murtas (2025). In the short run, causality 
is found from lnGDPPC and lnEPS to GFCI, while in the long 

run, causality exists as a whole from lnGI, lnGDPPC, lnEPS, and 
lnHDI toward GFCI. In this model, where GFCI is the dependent 
variable, short-run disequilibria are corrected within 0.24 years.

The long-run causality toward GFCI indicates the effectiveness 
of the “feedback mechanism.” According to Love and Zicchino 
(2006), with financial development, the investment behavior 
of economic agents becomes more dynamic and shifts toward 
alternative financial instruments. Therefore, instruments aimed at 
financing green energy are prioritized by households. Although 
there is short-run causality from lnGI to lnGDPPC, no causality 
relationship is detected in the long run. The absence of long-run 
causality, despite its presence in the short run, suggests that the 
positive effects arising in the innovation–growth relationship 
diminish over time. Although the economic literature identifies 
innovation as the fundamental determinant of growth in the long 
run, in the case of the FF economies, it reveals that some challenges 
exist in the adaptation of the labor force to technology. In the short 
run, causality is found from GFCI to lnEPS, while in the long run, 
causality exists from lnGI, GFCI, lnGDPPC, and lnHDI toward 
lnEPS. In this model, where lnEPS is the dependent variable, short-
run disequilibria are corrected within 4.87 years. High lnEPS ratios 
can redirect the foundations of the KPF toward clean technologies. 
Legal standards and public policies such as taxes/subsidies aimed 

Table 3: (Continued)
Panel C. CSD and Delta Tests

Models Statistic Asymptotic (P‑value) Bootstrap (P‑value)
LMadj 6.617 0.00a ‑
∆ 0.914 0.08a ‑

∆adj
1.465 0.04b ‑

Panel D. LM bootstrap ( LMN
++ ) Panel Cointegration 

Constant 3.159 0.80 0.00a

Constant and trend 8.007 0.80 0.00a

Panel E. Durbin Hausmann Cointegration 
Constant DHg 6.598 0.99

DHp 10.323 0.99
Constant and trend DHg 16.085 0.99

DHp 26.597 0.99
H0: Cointegration in LM bootsrap, H0: no cointegration Durbin and Hausmann panel cointegration tests. The maximum lag length 4, 5000 bootstrap distributions. aP<0.01, bP<0.05, 
cP<0.1. Calculated by the authors.

Table 4: Short and long run causality
Variables Short run (PVAR) Long run (PVECM)

∆(lnGI) ∆(GFCI) ∆(lnGDPPC) ∆(lnEPS) ∆(lnHDI) ECT(−1)
∆(lnGI) ‑ 5.291 (0.15) 17.055 (0.00)a 0.353 (0.94) 2.761 (0.42)

1 1îtφ ε −

−1.402 [−6.832]a

∆(GFCI) 2.715 (0.43) ‑ 1.500 (0.68) 10.655 (0.01)b 3.316 (0.34)
2 1îtφ ε −

−4.118 [−1.624]c

∆(lnGDPPC) 16.351 (0.00)a 11.698 (0.00)a ‑ 4.976 (0.17) 5.226 (0.15)
3 1îtφ ε −

−0.073 [0.679]
∆(lnEPS) 0.436 (0.93) 10.216 (0.01)b 2.091 (0.55) ‑ 0.493 (0.92)

4 1îtφ ε −

−0.205 [−1.235]c

∆(lnHDI) 4.499 (0.21) 0.662 (0.88) 1.239 (0.74) 6.010 (0.11) ‑
5 1îtφ ε −

−0.007 [−1.326]c

aP<0.01, bP<0.05, cP<0.1, () probability and [] t statistics. Calculated by the authors.
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at developing institutional infrastructure encourage firms’ R&D 
investments. The long-run causality that emerges indicates that 
institutional regulations respond to technological developments. 
Ambec et al. (2013) and Fabrizi et al. (2018) argue in their 
studies that there is a strong link between EPS and the innovation 
process. Finally, while no causality is found toward lnHDI from 
the variables in the model, in the long run causality exists from 
lnGI, GFCI, lnGDPPC, and lnEPS toward lnHDI. In this model, 
where lnHDI is the dependent variable, short-run disequilibria are 
corrected within 142.8 years. In the KPF, HDI is both a productive 
input and the main mechanism of knowledge absorption and 
capture (Cohen and Levinthal, 1990). Economies within the FF 
that have lower initial levels can experience a faster convergence 
process if they possess sufficient levels of HDI (Benhabib and 
Spiegel, 2005). In the FF economies, it is considered that in terms 
of the KPF, regulatory convergence and the spillover effects of 
green knowledge production are significant.

The results presented in Table  5 reveal that the FF economies 
exhibit a highly heterogeneous structure. No causality is found 
from lnGI to GFCI in any of the countries. In economies with 
low per capita income, the fact that innovation outputs do not 
transform into capital accumulation indicates that financial markets 
lack sufficient depth and the marginal propensity to save is low 
(Dosi et al., 2017). Causality from GFCI to lnGI is found only in 
India. This finding is consistent with the Schumpeterian approach, 
which emphasizes that GFCI is a technological prerequisite. 
Similarly, no causality is found from lnGI to lnGDPPC in any 
country, while only in India causality is found from lnGDPPC to 
lnGI. This outcome, observed exclusively in the Indian economy, 
supports the demand-pull innovation model. In India, the increase 
in lnGDPPC enhances the savings tendency of both the public 
and households, thereby raising the demand for environmentally 
friendly products. The absence of this phenomenon in other FF 
economies may be due either to insufficient demand pressure 
or to the fact that the innovation process depends on inflows of 
external resources. In India and Turkey, there is causality from 
lnGI to lnEPS. This finding indicates the validity of the opposite 
of the Porter hypothesis, suggesting that the innovation process 
may influence policy stringency. After 2010 in India and after 2016 
in Turkey, energy efficiency and renewable energy investments 
have been accelerating (Bhattacharya et al., 2016; Çetin and 
Ecevit, 2019). No causality is found from lnEPS to lnGI in any 

FF economy. As Ambec et al. (2013) suggest, environmental 
policies affect innovation not in the short run but in the long run. 
Finally, causality from lnGI to lnHDI is found only in India, while 
in Indonesia and South Africa causality runs from lnHDI to lnGI. 
These findings indicate that the relationship between lnHDI and 
lnGI has a heterogeneous structure across countries. In Indonesia 
and South Africa, lnHDI fosters innovation (Aghion et al., 2009), 
whereas in Turkey and Brazil weak institutional infrastructure 
prevents this relationship (Cirera and Maloney, 2017).

Due to the detection of heterogeneity in slope coefficients and 
differences in the levels of stationarity of the variables, the 
Augmented Mean Group (AMG) and Common Correlated Effects 
(CCE) methods were applied for parameter estimation. The AMG 
estimation is conducted in two stages. The first stage estimates 
� � � � � � �Y X f Dit i i it i t i tt

T
� � � �

�� 2
 and the second stage 

estimates 1
1

ˆ ˆδ δ−
=

= ∑N
AMG ii

N . Where φi is the constant term, Yit 
and Xit are the dependent and independent variables, ft the 
heterogeneous components, and δ̂AMGδ  AMG are the estimators 
(Westerlund and Edgerton, 2008; Eberhardt and Bond, 2009). The 
CCE panel regression method, which accounts for the effects of 
common factors using cross-sectional averages, also prevents 
biased estimates associated with unobservable economic shocks 
that affect all cross-sections (Eberhardt and Bond, 2009). In the 

model y x xit i i it i t it� � � �� � � �
` `

 where MZ  is the projection 
matrix obtained from the cross-sectional mean matrix, the test statistic 

1` `

1 1
β̂

−

= =

   
=    
   
∑ ∑N N

i iCCE i iZ Zi i
X M X X M y  (Pesaran, 2006).

The KPF bases knowledge production on externalities and spillover 
effects (Jaffe et al., 1993; Coe and Helpman, 1995). In the case of 
FF economies, factors such as common economic policy shocks and 
the integration of production processes indicate the existence of a 
common-factor knowledge environment. Therefore, heterogeneous 
panel estimators such as CCE and AMG, which take into account 
multiple factors, estimate parameters unbiasedly by controlling 
for unobservable factors (Eberhardt and Bond, 2009; Westerlund 
and Edgerton, 2008). According to Table 6, in the AMG and CCE 
tests, when GFCI increases by 1% across the entire panel, lnGI 
decreases by 0.008% and 0.02%, respectively, and in the CCE test, 

Table 5: Emirmahmutoğlu and Köse (2011) panel causality test results
Countries Lags lnGI≠>GFCI GFCI≠>lnGI Lags lnGI≠>lnGDPPC lnGDPPC≠>lnGI
Brazil 3 1.987 (0.57) 1.812 (0.61) 3 5.104 (0.16) 2.387 (0.49)
India 3 3.693 (0.29) 8.076 (0.04)b 3 5.120 (0.16) 8.934 (0.03)b

Indonesia 3 5.787 (0.12) 3.772 (0.28) 1 0.596 (0.43) 1.631 (0.20)
South Africa 1 0.482 (0.48) 0.172 (0.99) 2 3.030 (0.21) 1.014 (0.60)
Turkiye 1 1.089 (0.29) 0.193 (0.66) 3 1.91 (0.61) 5.192 (0.15)
Fisher Stat. 11.608 (0.31) 10.540 (0.39) 12.876 (0.23) 16.309 (0.09)c

Countries Lags lnGI≠>lnEPS lnEPS≠>lnGI Lags lnGI≠>lnHDI lnHDI≠>lnGI
Brazil 3 0.436 (0.93) 4.226 (0.23) 3 1.710 (0.63) 5.511 (0.13)
India 3 6.670 (0.08)c 2.220 (0.52) 3 7.512 (0.05)c 5.553 (0.13
Indonesia 1 0.002 (0.95) 0.205 (0.65) 2 2.266 (0.32) 6.205 (0.04)b

South Africa 1 0.124 (0.72) 0.232 (0.62) 2 3.844 (0.14) 10.314 (0.00)a

Turkiye 3 8.209 (0.04)b 3.340 (0.34) 1 2.304 (0.12) 0.519 (0.47)
Fisher Stat. 12.189 (0.27) 8.078 (0.62) 16.837 (0.07)c 25.984 (0.00)a

aP<0.01, bP<0.05, cP<0.1. Calculated by the authors.
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Table 6: CCE and AMG parameters estimators
Panel A. AMG estimation

Countries Constant GFCI lnGDPPC lnEPS lnHDI
Brazil 3.449 (0.03)b −0.020 (0.35) −0.618 (0.06)c −0.343 (0.07)c 1.536 (0.06)c

India −1.140 (0.55) −0.008 (0.10) 0.413 (0.33) −0.488 (0.28) −0.693 (0.81)
Indonesia 1.408 (0.39) 0.0003 (0.98) −0.571 (0.18) 0.233 (0.46) −2.410 (0.50)
South Africa 0.389 (0.67) −0.003 (0.83) −0.163 (0.54) −0.047 (0.75) −1.626 (0.18)
Turkey 0.928 ((0.44) −0.009 (0.55) −0.111 (0.74) −0.562 (0.19) 2.275 (0.31)
Panel 1.007 (0.17) −0.008 (0.02)b −0.210 (0.26) −0.241 (0.10) 0.816 (0.61)

Panel B. CCE estimation
Brazil −1.235 (0.78) −0.022 (0.37) −0.788 (0.07)c −0.229 (0.34) 4.442 (0.64)
India −0.435 (0.87) −0.021 (0.18) −0.418 (0.62) −0.211 (0.74) 3.792 (0.66)
Indonesia −6.625 (0.12) 0.018 (0.43) −0.754 (0.16) −0.614 (0.26) −14.001 (0.14)
South Africa 3.432 (0.21) −0.060 (0.02)b −1.085 (0.09)c 0.711 (0.70) −1.657 (0.00)a

Turkey −1.679 (0.75) −0.017 (0.39) −0.594 (0.38) −0.724 (0.29) 1.864 (0.31)
Panel −1.308 (0.41) −0.02 (0.09)c −0.728 (0.00)a −0.341 (0.01)b 1.445 (0.79)
aP<0.01, bP<0.05, cP<0.1. Calculated by the authors.

it decreases by 0.06% in South Africa. GFCI affects the KPF in three 
ways. First, it provides complementary infrastructure for the R&D 
process. Second, it increases the average stock of knowledge in 
society through diffusion. Finally, it facilitates access to economies 
of scale for green technologies (Hall and Lerner, 2010). However, 
being locked into polluting capital can make the transition to green 
knowledge difficult in the short run. The parameter determines 
which of these effects is valid. As mentioned earlier in the literature 
review, in the KPF, knowledge production is influenced both by 
internal R&D activities and by positive externalities and technology 
shocks. This empirical finding shows that GFCI, rather than directly 
contributing to innovation, in the short run concentrates on polluting 
sectors. In particular, the negative effect observed in South Africa 
shows that GFCI is persistently dependent on traditional energy. 
According to Hall and Lerner (2010), GFCI affects the KPF through 
three channels: providing infrastructure, increasing knowledge 
spillovers, and achieving economies of scale. However, in the 
case of polluting capital lock-in, these effects work in the opposite 
direction. According to the AMG test, when lnGDPPC increases 
by 1% in Brazil, lnGI decreases by 0.618%. According to the CCE 
test, when lnGDPPC increases by 1%, lnGI decreases by 0.788% in 
Brazil and 1.085% in South Africa. This is due to the fact that in the 
Brazilian and South African economies, increasing firm revenues 
are directed toward consumption-oriented traditional sectors rather 
than production with green innovation. According to the AMG test, 
when lnEPS increases by 1% in Brazil, lnGI decreases by 0.343%. 
In the CCE test, across the entire panel, when lnEPS increases 
by 1%, lnGI decreases by 0.341%. This finding shows that in the 
short run, regulations aimed at improving environmental quality 
suppress innovation due to increased compliance costs (Ambec 
et al., 2013). However, the long-term predictions of the Porter 
hypothesis suggest that this situation may be reversed. Finally, 
according to the AMG test, when lnHDI increases by 1% in Brazil, 
lnGI increases by 1.536%, while in the CCE test, when lnHDI 
increases by 1% in South Africa, lnGI decreases by 1.657%. This 
empirical finding is consistent with Cohen and Levinthal’s (1990) 
“absorptive capacity” approach, since the marginal productivity of 
the labor force supported by technological development increases. 
On the other hand, in South Africa, the negative effect of lnHDI 
may be due to its adaptation to different service sectors rather than 
innovation.

4. CONCLUSION

In this study, the effects of demand, physical capital, human capital, 
and policy changes on green innovation in the FF economies 
during the period 2002-2020 are examined using panel data 
analysis. The most significant contribution of the study to the 
literature is the integration of demand-pull, supply-push, and 
policy effects within the same model. Thus, green innovation is 
addressed within the framework of the knowledge production 
function, which considers multiple factors. In this context, PVAR 
and PVECM are used to capture short- and long-term relationships, 
while AMG and CCE methods are employed to account for CSD 
and heterogeneity. The reason for detecting CSD is knowledge 
spillovers. According to Jaffe et al. (1993) and Griliches (1992), 
knowledge flows occur through patents, capital movements, 
and core–periphery country relations. Since GFCI is influenced 
by financial cycles, lnGDPPC by global trade and commodity 
prices, lnEPS by global environmental policies, and lnHDI by 
labor mobility, it is considered that CSD emerges. PUR tests show 
that the variables included in the model exhibit long memory. 
According to this finding, the FF economies are frequently 
exposed to shocks during the empirical analysis period. Panel 
cointegration tests indicate that the green KPF operates within a 
long-term equilibrium mechanism. The fact that in the short run 
causality exists only from lnGDPPC to lnGI confirms the demand-
pull innovation hypothesis proposed by Schmookler (1966) and 
Scherer (1965). In the long run, causality as a whole toward lnGI 
demonstrates the multi-component structure of the KPF. Different 
adjustment speeds obtained from the PVECM method indicate that 
the institutional adaptation process in the FF economies occurs 
over different time horizons. PVAR findings show that in the 
short run, lnGDPPC and lnEPS influence GFCI. In the long run, 
however, the relationship between lnGDPPC and lnGI is observed 
to weaken. This weakening relationship is consistent with Cohen 
and Levinthal’s (1990) absorptive capacity approach. The impact 
of lnEPS on lnGI in the short run parallels Ambec et al. (2013), 
who found that environmental policies affect innovation in the long 
run. The impact of lnHDI on lnGI shows that it is heterogeneous 
at the country level. While it creates an increase in absorptive 
capacity in the Brazilian economy, it generates a negative effect 
in South Africa. Country-level causality tests indicate that in the 
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Indian economy, GFCI and lnGDPPC affect lnGI. This finding is 
consistent with Bhattacharya et al. (2016), who argue that green 
energy investments support growth. In Turkey and India, lnGI 
affects lnEPS, whereas in Indonesia and South Africa, lnHDI 
affects lnEPS. The reason for this heterogeneous structure is that 
the countries have different institutional frameworks. Parameter 
estimates reveal that in the short run, GFCI has a negative effect 
on lnGI, thereby confirming the carbon lock-in hypothesis. The 
negative impact of lnGDPPC on lnGI in the Brazilian and South 
African economies shows that economic growth in these economies 
originates from traditional energy-intensive sectors. The negative 
effect of lnEPS on lnGI reflects the influence of compliance costs. 
The positive and negative effects of lnHDI on lnGI indicate that 
the FF countries have different levels of absorptive capacity. In 
conclusion, the FF economies share the combined effects of global 
economic shocks, knowledge spillovers, and environmental policy 
reflections. Thus, although the short- and long-term adjustment 
speeds differ in the FF economies, the reasons for this difference 
stem from the institutional structures of the countries.

Some policy implications can be derived from the empirical 
results. First, as discussed by Hall and Lerner (2010), in order 
to channel GFCI toward green-producing sectors, financial 
taxonomy and diversity of green financial instruments should 
be ensured. Second, as suggested by Johnstone et al. (2010), in 
order to strengthen the demand-pull channel, the public sector 
should support green production and consumption. Third, in line 
with Cohen and Levinthal (1990), to increase absorptive capacity, 
policy packages should be designed to support the labor force 
with technology and to accelerate the adaptation process of labor 
to technology. Finally, as proposed by Costantini et al. (2017), 
national economies should focus on regulations that are aligned 
with global environmental policies, aim to reduce uncertainty, 
and enhance environmental quality. In future studies, product and 
process innovations can be distinguished using sectoral and firm-
level microdata, and financial constraints can be measured at the 
firm and sectoral level. In addition, the complementary effects of 
energy infrastructures and data on improving institutional quality 
should be incorporated into the analyses. Finally, the threshold 
value of the carbon pricing mechanism should be determined 
through nonlinear models.
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