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ABSTRACT

Climate change and sustainable development goals make green energy (the development of environmentally related technologies) the main determinant
of economic growth in the Fragile Five economies. In this study, the determinants of green innovation in the Fragile Five economies (Brazil, India,
Indonesia, South Africa, and Turkey) during the period 2002-2020 are examined through panel data analysis. The empirical findings show that in the
short run, increases in output encourage demand-driven innovation. In the long run, however, fixed capital investments, the stringency of environmental
policies, and the level of human capital are indicated to be effective on green innovation. While in India, income growth and fixed capital investments
feed innovation, in the Turkish economy, energy efficiency and renewable energy investments provide support. In Indonesia and South Africa,
human capital strengthens the capacity for knowledge absorption and supports innovation. In Brazil, on the other hand, due to income growth being
directed towards traditional energy-intensive sectors, the green innovation process slows down. According to the empirical findings, the stringency of
environmental policies may suppress green innovation in the short term by increasing compliance costs, but in the long term, in line with the Porter
hypothesis, it may stimulate green innovation. For these reasons, in the Fragile Five economies, it is necessary to direct physical capital toward green

technologies through green financing instruments and to reduce firms’ compliance costs with predictable environmental policies.

Keywords: Green Energy, Human Development, Fixed Capital Investment, Environmental Policy Stringency

JEL Classifications: O13, 033, P48

1. INTRODUCTION

The spread of technologies that take environmental quality into
account plays a leading role in the process of achieving the
sustainable development goals of the 21* century. In recent years,
policies aimed at reducing the carbon footprint have demonstrated
the importance given to environmental quality. For this reason,
technological innovations that prioritize environmental quality are
advancing into the depths of the macroeconomy in many respects. In
this study, the determinants of the development of technologies that
give importance to environmental quality in the fragile five (hereafter
FF) economies during the period 2010-2020 are examined. Despite
their high growth potential, FF economies have been placed into
a specific classification due to structural problems such as internal
political instability, fragility in external economic relations, and high

debt ratios. Therefore, identifying the determinants of technological
developments that direct environmental quality in FF economies
aims to fill an important gap both for low-income economies and
for global environmental sustainability. On this basis, it has been
determined that there is a significant gap in the literature. While
studies examining the determinants of environmental quality are
widespread in the EU or OECD economies, they are quite limited in
the FF economies. However, FF economies are situated at the very
center of environmental policies and technological transformation
due to both their high carbon emissions and their high growth rates
(Shahbaz et al., 2013). Another reason for examining FF economies
is that, due to their high openness ratios, they are directly affected
by global commodity and energy shocks. This phenomenon makes
capital movements and policy adjustments more prominent in the
process of environmental technology development.
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Classical economics limits the factors of production to labor,
capital, and natural resources, while Neo-Classical economics
asserts that with technological progress, capital per worker and
output will decline. With endogenous growth models, it has been
argued that knowledge, innovation, and R&D investments are the
fundamental motivations of the economic growth process. Thus,
alongside theoretical and empirical developments in economic
theory, ideas regarding the integration of environmentally
friendly technologies into the growth process have come to the
forefront. Empirical studies on energy economics attempt to
explain the development of environmental technologies through
the Environmental Kuznets Curve, while more recent research
suggests that with the advancement of environmental technologies,
environmental degradation can be controlled even at low income
levels (Popp, 2002; Johnstone et al., 2010). The variables used
in the empirical model have strong economic underpinnings.
Gross fixed capital investments are considered the main source
of growth in both Classical and Neo-Classical economics.
Through endogenous growth models (Lucas, 1988; Romer, 1990),
the cumulative effect of human capital and the technological
adaptation capacity of the labor force are emphasized. According
to Porter and Van der Linde (1995), the environmental policy
stringency index creates a strong positive effect on technological
innovations by measuring the rigidity of institutional regulations
aimed at improving environmental quality. Finally, GDP per
capita is included in the model as a proxy variable for market
demand, and income growth positively affects the demand for
environmentally friendly products, leading firms to adopt more
innovative technologies. Ultimately, this study aims to make a
unique contribution to the empirical literature by testing the Porter
hypothesis in the context of FF economies, examining whether
environmental policies influence technological innovations.
Although there are many empirical studies on this hypothesis in
the literature, this study draws a more comprehensive framework
by incorporating not only environmental policy stringency but also
human capital and fixed capital investments into the model. Panel
data methods are preferred in the empirical analyses. In this way,
more robust estimates with higher degrees of freedom are achieved
by utilizing both time series and cross-sections. Therefore, cross-
sectional dependence (hereafter CSD), panel unit root (hereafter
PUR), panel cointegration, causality, and parameter estimations
will first be carried out. Among these methods, heterogeneity
and CSD in FF economies will be taken into account to model
different macroeconomic dynamics. In summary, the contribution
of this study to the energy economics literature is: (i) To examine
the development of environmental technologies in FF economies,
(i1) to consider heterogeneity with panel data methods, (iii) to
reveal the effects of fixed capital investments and human capital
within the framework of the knowledge production function, and
(iv) to determine the impact of environmental policy stringency
on environmental technology production.

2. THEORETICAL BACKGROUND AND
LITERATURE REVIEW

In its simplest form, the model in this study is expressed as:

Gl =, + B,GFCI + ,GDPPC + B,EPS + B,HDI + ¢, (1)

Since it takes environmentally related technological output
(hereafter GI) as the dependent variable, it can also be considered
a knowledge production function (hereafter KPF). This is because
cumulative knowledge accumulation and innovative production
emerge as guiding forces. According to the classical KPF,
economic actors are assumed to generate new knowledge stocks
through R&D, human capital (hereafter HDI), and gross fixed
capital investments (hereafter GFCI). In this context, GI assumes
the role of green knowledge output. The main argument of the
KPF is that knowledge production is shaped both by supply-push
factors (R&D, HDI, GFCT) and demand-pull factors (GDP, market
size). In equation (1), GFCI is the complementary capital input
of knowledge production. GFCI encompasses a large set ranging
from physical infrastructure, production scale, digital equipment,
to logistical infrastructure. HDI, on the other hand, represents
the cumulative knowledge stock of the KPF and its absorptive
capacity. EPS directs the composition of knowledge production
toward the green domain through induced technical change. GDP
reflects the demand-pull pressure on innovation by influencing
the expected returns of R&D activities through market demand.
The log-linear structure of regression (1) allows us to obtain scale
elasticities and, consequently, semi-elasticities in knowledge
production. The sign of the coefficient 5, for GFCI may vary across
cross-sections and therefore can be either positive or negative. If
capital accumulation supports green innovation, then g, > 0. If,
however, due to misallocation of resources and scale-substitution
effects, resources flow into polluting capital, then f, <0. In
economies with higher GDP levels, larger market size and demand
conditions suggest that 5, < 0. Since EPS increases the cost of
polluting technologies through price signals and standards, thereby
channeling resources into green technologies, f, is expected to be
positive ;>0 (Ambec et al., 2013). Finally, because HDI enhances
productivity both in generating new ideas and adapting existing
knowledge, f, is also expected to be positive 5,> 0.

One of the most debated issues in economic theory is the
marginal productivity of the returns to the factors of production.
While Neo-Classical economics refers to diminishing returns,
with the inclusion of innovation, knowledge, environmental
and institutional quality into the production process through
endogenous growth models, the concept of “at least constant
returns” has emerged. The marginal productivity of GFCI varies
according to the sectoral capital/output ratio. Tone and Sahoo
(2003) state that because GFCI is indivisible, marginal productivity
is low in small-scale firms but high in large-scale firms. Assuming
that small-scale firms in FF economies have low sectoral densities,
it can be said that their marginal productivity is low. Therefore,
the contribution of GFCI in FF economies remains more limited.
On the other hand, the marginal productivities of knowledge,
innovation, and R&D have a structure different from other
production factors. According to Lo6f and Heshmati (2002), firms
exhibit heterogeneous responses in the process of incorporating
knowledge into production. Cohen and Klepper (1996) argue that
large-scale firms achieve higher returns from innovation outputs
due to their larger volume of production. Acs and Audretsch
(1987), however, argue that small-scale firms are able to engage
in more innovative and creative innovations. Considering these
studies, it is observed that GI differs according to firm size. GDP,
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which is used as a proxy variable for market demand volume, plays
a critical role in determining marginal productivity. According to
Scherer (1965) and Schmookler (1966), the innovation process is
driven by market size and, therefore, demand. For this reason, in
economies with high GDPPC, the demand-pull channel is valid.
In economies with high HDI capacity, the labor force adapts to
work more quickly and the average stock of knowledge in society
increases more rapidly. According to Cohen and Levinthal (1990),
the effect of HDI on GI occurs through both productivity and
knowledge spillovers. EPS has both direct and indirect effects on
marginal productivity. Porter and van der Linde (1995) and Ambec
et al. (2013) argue that EPS creates a positive long-term impact
on firms’ level of competitiveness. Johnstone et al. (2010) state
that green energy policies have a positive effect on green patent
production, while Ghisetti and Pontoni (2015) argue that these
policies create nonlinear heterogeneous effects on innovation
outputs. Costantini et al. (2017) claim that these policies are both
demand-pull and technology-push. Finally, the energy economics
literature suggests that the effect of EPS on GI creates different
and nonlinear impacts for each cross-section. Ozbay (2024) and
Murtas (2025) claim that R&D expenditures and HDI have a
positive effect on GI and that this effect is heterogeneous. The
claim of heterogeneity is also voiced by Acs et al. (1994) and
Jaffe et al. (1993), noting that spatial differences affect knowledge
spillovers. To summarize, the impact of GFCI, GDP, HDI, and
EPS on GI varies both according to economies of scale and to
the production structure of the country. While GFCI and GDP
create stronger effects in developed economies, HDI and GFCI
come to the fore in developing economies. The effect of EPS on
GI, within the framework of the Porter hypothesis, positively
influences innovation in the long term, while in the short term it
creates heterogeneous effects across cross-sections.

3. DATAAND METHODOLOGY
This study investigates the factors influencing GI production in

FF economies over the period 2002-2020. The definitions of the
variables are provided in Table 1.

Table 1: Definitions

Development of environment-related InGI OECD
Technologies index

Gross fixed capital formation (% of GDP) GFCI WB
Per capita gross domestic product (GDP) at InGDPPC WB
current prices in US dollars, representing market

demand

Human Capital Index InHDI UNDP
Environmental Policy Stringency Index, InEPS OECD

representing the strictness of environmental policies

Table 2: CSD results

LM 43.524 (0.00)" 17.457 (0.06)°
CD,,, ~7.496 (0.00)* 1.668 (0.04)°
CD ~3.502 (0.00)" ~3.185 (0.00)*
LM,, ~0.816 (0.79) 3.934 (0.00)°

Cross-sectional dependence (CSD) tests developed by Breusch
and Pagan (1980), Pesaran (2004) and Pesaran et al. (2008) are
employed to assess the presence of such dependence. In the Lagrange

Multiplier (hereafter LM) test, LM = TZN_IZLH 2, and
(T—k)p; -1y
M . # (Breusch
adj — \/N(N z Z] l+1 \/g

and Pagan, 1980; Pesaran et al., 2008). In CD tests, test statistics

are calculated as CD,,, = \/N(N 1)2 z, ,+1( Alz—l)

_ 2
and CD = \/ NN 1)2 Zj:iu pj (Pesaran, 2004).

According to Table 2, there is clearly CSD in all variables. In the
production of InGI, economies are directly influenced by each
other. The InGI patent mechanisms developed in one economy
spread to other economies through international trade flows and
foreign investments (Jaffe et al., 1993). Therefore, a GI produced
within the FF can be absorbed by the others. In the context of
InGI, the CSD observed in the FF is consistent with the knowledge
spillovers proposed by Griliches (1992). GFCI is affected by
global economic cycles, since FF economies are dependent on
capital flows and therefore influenced by changes in the interest
rates of reserve currencies. GDPPC is affected by international
trade, income distribution, energy and raw material prices, and
supply/demand shocks, because the process of integration into
international markets has synchronized the FF economies. InEPS
is influenced by global environmental policies. With the policy
convergence hypothesis, Holzinger and Knill (2005) indicate that
steps regarding InGI regulations are taken jointly within the FF.
InHDI is related to global knowledge flows and labor movements.
According to Lucas (1988), HDI is mobile both within a country
and across economies, and this enhances productivity. At the
country level, Brazil is exposed to CSD due to fluctuations in
commodity prices, while Indonesia’s dependence on energy
prices leads to CSD. In South Africa and Turkey, in addition to
these two situations, financial fragility stemming from openness
has always existed. In India, knowledge flows are integrated with
other economies due to R&D and service exports in the software
sector. In summary, the main reason for the emergence of CSD in
the variables is the synchronized impact of global supply/demand
shocks, knowledge and technology spillovers, and convergence
in environmental policies.

In the panel unit root (hereafter PUR) test proposed by Smith et al.
(2004), the test’s critical values are obtained using the bootstrap
method. This test yields more reliable results in the presence of CSD

within the panel. The test statistics (LM) are LM=N" ZL LM,

24.026 (0.00)"
3.136 (0.00) *
~3.172 (0.00)*
7.708 (0.00)°

30.268 (0.00)*
4.532 (0.00)"
~3.181 (0.00)*
9.170 (0.00)"

21.989 (0.00)"
2.681 (0.00)"
~2.678 (0.00)"
3.156 (0.00)°

“P<0.01, *P<0.05, °P<0.1, LM BP (1980), CD,;and CD Peseran (2004), LM, ;. Calculated by the authors
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and LM is the arithmetic mean of the test statistics. The PANICCA
PUR panel developed by Reese and Westerlund (2016) tests for
unit roots in two different planes: Common components and

idiosyncratic components. In the model y, = A, f, +¢;, unit root

tests are applied tofactor loadings and common factors. Z§ tests
the stationarity of the common components, while P tests the
stationarity of the idiosyncratic components. A and A j tests test

the assumption that all cross sections in the panel have the same
coefficient. In the homogeneity test proposed by Pesaran and

Yamagata (2008), A =+/N NSk d
amagata 5 = — /| an
g 2k

N'S—E(Z;)
Wvar(Zir)

test examines whether the independent variables have an impact
on InGI in the long run. Westerlund (2007; 2008) developed a
cointegration model to test whether the error correction term is

S

are obtained. The cointegration

zero. 0 (L) Ayy =8y + 8t +0; [Yit 1 B Xit 1)"‘%( )G +Eies
there is no cointegration in the model. In the Durbin-Hausman
panel cointegration test proposed by Westerlund (2008), the
DH, test statistic assumes that the autoregressive parameters
are heterogeneous, while the DH, test statistic assumes that
the autoregressive parameters are homogeneous Accordingly,

the test statistics are DH, Z (¢ ¢) th2 &, and

DH, =5, (6-4) X7 3" &

Table 3 presents the PUR, CSD, and panel cointegration results The
InGI variable is stationary at level in the Smith et al. (2004) PUR
test, while in the PANICCA PUR test it becomes stationary when
the first difference is taken. GFCI, on the other hand, is stationary in
the constant model of the Smith et al. (2004) PUR test, but carries
a unit root in the trend model. The other variables are difference-
stationary in the PUR test presented in Panel A. Different results
are obtained in the PANICCA test. These differences are due
to GFCI having a unit root in the first difference with the trend
model and HDI being 1(2). As a result, considering the economic
shocks experienced by the fragile five economies and the different
powers of the tests, it is assumed that the variables included in
the model have long memory and that all variables are I(1). In the
CSD and delta tests, the alternative hypotheses are accepted, and
it is observed that the slope parameters differ among the fragile
five economies. In the LM bootstrap and Durbin-Hausmann panel
cointegration tests, it is found that the variables move together in
the long run and exert an effect on one another. These findings
are consistent with the long-term knowledge equilibrium of the
KPF. The cointegrated relationship shows that the model follows
a common knowledge growth path in the long run.

In the panel vector autoregression (PVAR) model, the panel
error correction model (PVECM) is established by including
the error correction parameters $&;_1, $r€i1, B, Pa€irn
and #5&; :

AlnGI=51i+z B AInGI,_, Z O AGFCI,,_,

k
+2, O AIGDPPC; _, + Zp:] 8,45, MNEPS,,_, +

k ~
ZFI 8,5, AIHDL,_, +$hé,_; +v, 2)

k k
AInGFCI = &,, + Zp:1 81y AINGFCI,,_, + Zp:l SpipAGL,,_,

k k
+Zp:1 83,y AINGDPPC,,_, + Zp:l 84y AINEPS,_, > +

k ~
Zp=1 Or5ipAIMHDI_ ), + &0y + vy, 3)

k
AInGDPPC =83+ 83,,,AlnGDPPC,_, +
.

k
z p=l 5321pAGIit—p

k
Z,,=1 O34y AINEPS,,_,

k
+ Zp:l 33 AINGFCI,,_, +

+ i vy,

4)

k
+> S AlnHDI,

k
AInEPS = 5, + Z S AINEPS, _, Zp:1 SiipAGL,_,

k
+Zp:1 43y AINGFCI,,_, + Z,,:] S44ipAINGDPC,_, +

k A
Z el OysipAINHDI;,_, + Pu&;y_y + vy, ®)

AInHDI = 55, + Z 851, MnHDI,,

k
Slip + Zp:l 552ipAGIit—p

k
+Z,,:1 S53ipAINGFCI,,_, + ZP:I 834 AMINGDPPC,,_, +

k )
Z,,:] SssipMNEPS,,_, +§sé,y_y +v5, 6)

In this (7) model, the null hypotheses for short-term causality are
k
E  012ppAGFCI;,_, =0 from GFCI to InGI,
p=

k
> 813, AlnGDPPC,_, =0 from nGDPPC to InGI,
p=1 p u=p

k
Z 814 AInEPS,,_, =0 from InEPS to InGI,

Z ElslpAlnHDI =0 from InHDI to InGI, this indicates no

it—p
causality. The alternative hypotheses are Z 5121PAGF Cl,_ ,#0

it—p
from GFCI to InGI, Z 813, AInGDPPC, _,
InGDPPC to InGl, Z 51 4ipAIMEPS;,_ , # 0 from InEPS to InGI,
Z 815, AlnHDI,

it—p

#0 from

#0 from InHDI to InGI, this indicates
causality. In the long run ¢&;_; =0 indicates no causality from
GFCI, InGDPPC, InEPS and InHDI to InGI as a whole.

Table 4 presents the short and long run panel causality results.
In the short run, causality is found only from InGDPPC to InGlI,
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Table 3: PUR, CSD, Delta tests, cointegration

InGI
GFCI —2.061 0.08° -1.986 0.62
InGDPPC -1.276 0.68 —1.582 0.89
InEPS -0.985 0.81 -1.572 0.90
InHDI -1.721 0.24 —0.465 0.99
First difference
InGI —4.890 0.00? —4.897 0.00*
GFCI -3.823 0.00* -3.937 0.00?
InGDPPC —-4.213 0.00? -4.197 0.00?
InEPS —6.610 0.00° -6.599 0.00*

InHDI —2.603 0.00* —2.684 0.02°

InGI c 1.043 0.14 1.716 0.04°
S
o 14.665 0.14 17.686 0.06
€
GFCI 7 —1.557 0.94 -1.238 0.89
o 2.033 0.98 4.461 0.92
€
InGDPPC 7 -1.319 0.90 0.160 0.43
c 4.101 0.94 10.718 0.37
€
InEPS z —2.082 0.98 0.723 0.23
< 0.684 0.99 13.233 0.21
€
InHDI c —1.567 0.94 —1.781 0.96
S
o 2.99 0.98 2.031 0.99
€
First difference
InGI 7 4.050 0.00? 3.087 0.00?
< 28.116 0.00? 23.806 0.00?
€
GFCI c 1.652 0.04° 0.544 0.29
S
o 17.389 0.06° 12.433 0.25
€
InGDPPC 78 6.708 0.00? 3.419 0.00?
o 40.010 0.00? 25.612 0.00?
€
InEPS 7 2.123 0.00? 3.930 0.00?
< 19.498 0.00? 27.578 0.00?
€
InHDI 7 —0.042 0.51 —1.485 0.91
< 9.811 0.45 3.356 0.97
€
LM 416.841 0.00? -
CD,y 7.618 0.00? -
CD 13.945 0.00? -
(Contd...)
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Table 3: (Continued)

LM, 6.617 0.00*
i 0.914 0.08°
- 1.465 0.04°
Aug

3.159 0.80
8.007 0.80

Constant

Constant and trend

0.00*
0.00*

Constant DH 6.598 0.99
DH' 10.323 0.99
Constant and trend DH‘: 16.085 0.99
DH, 26.597 0.99

H,: Cointegration in LM bootsrap, H,: no cointegration Durbin and Hausmann panel cointegration tests. The maximum lag length 4, 5000 bootstrap distributions. *P<0.01, °P<0.05,

°P<0.1. Calculated by the authors.

Table 4: Short and long run causality

A(InGI) 5.291 (0.15) 17.055 (0.00y: 0.353 (0.94) 2.761 (0.42) Bo
i

~1.402 [-6.832]
A(GFCI) 2.715 (0.43) - 1.500 (0.68) 10.655 (0.01)° 3.316 (0.34) bis
it—

~4.118 [-1.624]
A(InGDPPC) 16.351 (0.00): 11.698 (0.00)" - 4.976 (0.17) 5.226 (0.15) b
i

~0.073 [0.679]
A(InEPS) 0.436 (0.93) 10.216 (0.01)° 2.091 (0.55) - 0.493 (0.92) b
it—

~0.205 [~1.235]
A(InHDI) 4.499 (0.21) 0.662 (0.88) 1.239 (0.74) 6.010 (0.11) - b
it—

~0.007 [~1.326]

“P<0.01, *P<0.05, °P<0.1, () probability and [] t statistics. Calculated by the authors.

whereas in the long run, causality is found from GFCI, InGDPPC,
InEPS, and InHDI as a whole toward InGI. In this model, where
InGl is the dependent variable, short-run disequilibria are corrected
within 0.71 years. The causality from InGDPPC demonstrates the
validity of the demand-pull model. Economies with high income
levels increase the demand for products generated with green
energy. Thus, by benefiting from economies of scale and optimal
risk management, they enhance the expected returns of R&D
expenditures. The short-run causality from InGDPPC (demand
shock) to InGI (innovation output) reflects the short/long-run
components of the Porter hypothesis (from InEPS to InGI),
as well as the delayed impact of InHDI on production process
innovations (Love and Zicchino, 2006). The differences between
short- and long-run causality indicate that within the KPF, different
channels operate under adaptive expectations and discrete-time
assumptions. Consequently, short-run causality aligns with the
demand-pull innovation hypothesis. According to Schmookler
(1966) and Scherer (1965), a high level of output has a positive
effect on innovation outputs. In economies with high output
levels, demand for green products is strong, leading firms to turn
toward InGI. Long-run causality, on the other hand, reveals the
multi-component structure of the KPF. This finding is consistent
with Ozbay (2024) and Murtas (2025). In the short run, causality
is found from InGDPPC and InEPS to GFCI, while in the long

run, causality exists as a whole from InGI, InGDPPC, InEPS, and
InHDI toward GFCI. In this model, where GFCI is the dependent
variable, short-run disequilibria are corrected within 0.24 years.

The long-run causality toward GFCI indicates the effectiveness
of the “feedback mechanism.” According to Love and Zicchino
(2006), with financial development, the investment behavior
of economic agents becomes more dynamic and shifts toward
alternative financial instruments. Therefore, instruments aimed at
financing green energy are prioritized by households. Although
there is short-run causality from InGI to InGDPPC, no causality
relationship is detected in the long run. The absence of long-run
causality, despite its presence in the short run, suggests that the
positive effects arising in the innovation—growth relationship
diminish over time. Although the economic literature identifies
innovation as the fundamental determinant of growth in the long
run, in the case of the FF economies, it reveals that some challenges
exist in the adaptation of the labor force to technology. In the short
run, causality is found from GFCI to InEPS, while in the long run,
causality exists from InGI, GFCI, InGDPPC, and InHDI toward
InEPS. In this model, where InEPS is the dependent variable, short-
run disequilibria are corrected within 4.87 years. High InEPS ratios
can redirect the foundations of the KPF toward clean technologies.
Legal standards and public policies such as taxes/subsidies aimed
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at developing institutional infrastructure encourage firms’ R&D
investments. The long-run causality that emerges indicates that
institutional regulations respond to technological developments.
Ambec et al. (2013) and Fabrizi et al. (2018) argue in their
studies that there is a strong link between EPS and the innovation
process. Finally, while no causality is found toward InHDI from
the variables in the model, in the long run causality exists from
InGI, GFCI, InGDPPC, and InEPS toward InHDI. In this model,
where InHDI is the dependent variable, short-run disequilibria are
corrected within 142.8 years. In the KPF, HDI is both a productive
input and the main mechanism of knowledge absorption and
capture (Cohen and Levinthal, 1990). Economies within the FF
that have lower initial levels can experience a faster convergence
process if they possess sufficient levels of HDI (Benhabib and
Spiegel, 2005). In the FF economies, it is considered that in terms
of the KPF, regulatory convergence and the spillover effects of
green knowledge production are significant.

The results presented in Table 5 reveal that the FF economies
exhibit a highly heterogeneous structure. No causality is found
from InGI to GFCI in any of the countries. In economies with
low per capita income, the fact that innovation outputs do not
transform into capital accumulation indicates that financial markets
lack sufficient depth and the marginal propensity to save is low
(Dosi et al., 2017). Causality from GFCI to InGl is found only in
India. This finding is consistent with the Schumpeterian approach,
which emphasizes that GFCI is a technological prerequisite.
Similarly, no causality is found from InGI to InGDPPC in any
country, while only in India causality is found from InGDPPC to
InGI. This outcome, observed exclusively in the Indian economy,
supports the demand-pull innovation model. In India, the increase
in InGDPPC enhances the savings tendency of both the public
and households, thereby raising the demand for environmentally
friendly products. The absence of this phenomenon in other FF
economies may be due either to insufficient demand pressure
or to the fact that the innovation process depends on inflows of
external resources. In India and Turkey, there is causality from
InGI to InEPS. This finding indicates the validity of the opposite
of the Porter hypothesis, suggesting that the innovation process
may influence policy stringency. After 2010 in India and after 2016
in Turkey, energy efficiency and renewable energy investments
have been accelerating (Bhattacharya et al., 2016; Cetin and
Ecevit, 2019). No causality is found from InEPS to InGI in any

FF economy. As Ambec et al. (2013) suggest, environmental
policies affect innovation not in the short run but in the long run.
Finally, causality from InGI to InHDI is found only in India, while
in Indonesia and South Africa causality runs from InHDI to InGI.
These findings indicate that the relationship between InHDI and
InGI has a heterogeneous structure across countries. In Indonesia
and South Africa, InHDI fosters innovation (Aghion et al., 2009),
whereas in Turkey and Brazil weak institutional infrastructure
prevents this relationship (Cirera and Maloney, 2017).

Due to the detection of heterogeneity in slope coefficients and
differences in the levels of stationarity of the variables, the
Augmented Mean Group (AMG) and Common Correlated Effects
(CCE) methods were applied for parameter estimation. The AMG
estimation is conducted in two stages. The first stage estimates

6Y, =¢;+0,0X,, +0,f, +Z;T:2 m;0D, and the second stage

. a - N 2 .
estimates & ;6 = N E _ 15i . Where ¢, is the constant term, Y
i=

and X, are the dependent and independent variables, f, the

heterogeneous components, and 89 4,6 AMG are the estimators
(Westerlund and Edgerton, 2008; Eberhardt and Bond, 2009). The
CCE panel regression method, which accounts for the effects of
common factors using cross-sectional averages, also prevents
biased estimates associated with unobservable economic shocks
that affect all cross-sections (Eberhardt and Bond, 2009). In the

model y; =a; + B, x, +7, X, +¢&, where M is the projection
matrix obtained from the cross-sectional mean matrix, the test statistic

. -1 .
~ N N
Becr =(§ L XM X,.] [ZM XiM; yl.) (Pesaran, 2006).

The KPF bases knowledge production on externalities and spillover
effects (Jaffe et al., 1993; Coe and Helpman, 1995). In the case of
FF economies, factors such as common economic policy shocks and
the integration of production processes indicate the existence of a
common-factor knowledge environment. Therefore, heterogeneous
panel estimators such as CCE and AMG, which take into account
multiple factors, estimate parameters unbiasedly by controlling
for unobservable factors (Eberhardt and Bond, 2009; Westerlund
and Edgerton, 2008). According to Table 6, in the AMG and CCE
tests, when GFCI increases by 1% across the entire panel, InGI
decreases by 0.008% and 0.02%, respectively, and in the CCE test,

Table 5: Emirmahmutoglu and Kose (2011) panel causality test results

Brazil 3 1.987 (0.57) 1.812 (0.61)
India 3 3.693 (0.29) 8.076 (0.04)°
Indonesia 3 5.787 (0.12) 3.772 (0.28)
South Africa 1 0.482 (0.48) 0.172 (0.99)
Turkiye 1 1.089 (0.29) 0.193 (0.66)
Fisher Stat. 11.608 (0.31) 10.540 (0.39)
Brazil 3 0.436 (0.93) 4.226 (0.23)
India 3 6.670 (0.08)° 2.220 (0.52)
Indonesia 1 0.002 (0.95) 0.205 (0.65)
South Africa 1 0.124 (0.72) 0.232 (0.62)
Turkiye 3 8.209 (0.04)° 3.340 (0.34)
Fisher Stat. 12.189 (0.27) 8.078 (0.62)

3 5.104 (0.16) 2.387 (0.49)
3 5.120 (0.16) 8.934 (0.03)°
1 0.596 (0.43) 1.631 (0.20)
2 3.030 (0.21) 1.014 (0.60)
3 1.91 (0.61) 5.192 (0.15)
12.876 (0.23) 16.309 (0.09)°
3 1.710 (0.63) 5.511 (0.13)
3 7.512 (0.05)¢ 5.553(0.13
2 2.266 (0.32) 6.205 (0.04)°
2 3.844 (0.14) 10.314 (0.00)"
1 2.304 (0.12) 0.519 (0.47)
16.837 (0.07) 25.984 (0.00)"

“P<0.01, ®P<0.05, °P<0.1. Calculated by the authors.
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Table 6: CCE and AMG parameters estimators

Brazil 3.449 (0.03)° —0.020 (0.35)
India —1.140(0.55) —0.008 (0.10)
Indonesia 1.408 (0.39) 0.0003 (0.98)
South Africa 0.389 (0.67) —0.003 (0.83)
Turkey 0.928 ((0.44) —0.009 (0.55)
Panel 1.007 (0.17 —0.008 (0.02)"
Brazil —1.235(0.78) —0.022 (0.37)
India —0.435(0.87) —0.021 (0.13)
Indonesia —6.625(0.12) 0.018 (0.43)

South Africa 3.432 (0.21) —0.060 (0.02)°
Turkey —1.679(0.75) —0.017 (0.39)
Panel —1.308 (0.41) —0.02 (0.09)¢

~0.618 (0.06)° ~0.343 (0.07)° 1.536 (0.06)°
0.413 (0.33) ~0.488 (0.28) ~0.693 (0.81)
~0.571 (0.18) 0.233 (0.46) ~2.410 (0.50)
~0.163 (0.54) ~0.047 (0.75) ~1.626 (0.18)
~0.111 (0.74) ~0.562 (0.19) 2.275 (0.31)
—0.210 (0.26 —0.241 (0.10 0.816 (0.61
—0.788 (0.07)° ~0.229 (0.34) 4.442 (0.64)
~0.418 (0.62) ~0.211 (0.74) 3.792 (0.66)
~0.754 (0.16) ~0.614 (0.26) ~14.001 (0.14)
~1.085 (0.09)° 0.711 (0.70) ~1.657 (0.00)*
~0.594 (0.38) ~0.724 (0.29) 1.864 (0.31)
~0.728 (0.00)* ~0.341 (0.01)° 1.445 (0.79)

1P<0.01, *P<0.05, °P<0.1. Calculated by the authors.

it decreases by 0.06% in South Africa. GFCI affects the KPF in three
ways. First, it provides complementary infrastructure for the R&D
process. Second, it increases the average stock of knowledge in
society through diffusion. Finally, it facilitates access to economies
of scale for green technologies (Hall and Lerner, 2010). However,
being locked into polluting capital can make the transition to green
knowledge difficult in the short run. The parameter determines
which of these effects is valid. As mentioned earlier in the literature
review, in the KPF, knowledge production is influenced both by
internal R&D activities and by positive externalities and technology
shocks. This empirical finding shows that GFCI, rather than directly
contributing to innovation, in the short run concentrates on polluting
sectors. In particular, the negative effect observed in South Africa
shows that GFCI is persistently dependent on traditional energy.
According to Hall and Lerner (2010), GFCI affects the KPF through
three channels: providing infrastructure, increasing knowledge
spillovers, and achieving economies of scale. However, in the
case of polluting capital lock-in, these effects work in the opposite
direction. According to the AMG test, when InGDPPC increases
by 1% in Brazil, InGI decreases by 0.618%. According to the CCE
test, when InGDPPC increases by 1%, InGI decreases by 0.788% in
Brazil and 1.085% in South Africa. This is due to the fact that in the
Brazilian and South African economies, increasing firm revenues
are directed toward consumption-oriented traditional sectors rather
than production with green innovation. According to the AMG test,
when InEPS increases by 1% in Brazil, InGI decreases by 0.343%.
In the CCE test, across the entire panel, when InEPS increases
by 1%, InGI decreases by 0.341%. This finding shows that in the
short run, regulations aimed at improving environmental quality
suppress innovation due to increased compliance costs (Ambec
et al., 2013). However, the long-term predictions of the Porter
hypothesis suggest that this situation may be reversed. Finally,
according to the AMG test, when InHDI increases by 1% in Brazil,
InGI increases by 1.536%, while in the CCE test, when InHDI
increases by 1% in South Africa, InGI decreases by 1.657%. This
empirical finding is consistent with Cohen and Levinthal’s (1990)
“absorptive capacity” approach, since the marginal productivity of
the labor force supported by technological development increases.
On the other hand, in South Africa, the negative effect of InHDI
may be due to its adaptation to different service sectors rather than
innovation.

4. CONCLUSION

In this study, the effects of demand, physical capital, human capital,
and policy changes on green innovation in the FF economies
during the period 2002-2020 are examined using panel data
analysis. The most significant contribution of the study to the
literature is the integration of demand-pull, supply-push, and
policy effects within the same model. Thus, green innovation is
addressed within the framework of the knowledge production
function, which considers multiple factors. In this context, PVAR
and PVECM are used to capture short- and long-term relationships,
while AMG and CCE methods are employed to account for CSD
and heterogeneity. The reason for detecting CSD is knowledge
spillovers. According to Jaffe et al. (1993) and Griliches (1992),
knowledge flows occur through patents, capital movements,
and core—periphery country relations. Since GFCI is influenced
by financial cycles, InGDPPC by global trade and commodity
prices, InEPS by global environmental policies, and InHDI by
labor mobility, it is considered that CSD emerges. PUR tests show
that the variables included in the model exhibit long memory.
According to this finding, the FF economies are frequently
exposed to shocks during the empirical analysis period. Panel
cointegration tests indicate that the green KPF operates within a
long-term equilibrium mechanism. The fact that in the short run
causality exists only from InGDPPC to InGI confirms the demand-
pull innovation hypothesis proposed by Schmookler (1966) and
Scherer (1965). In the long run, causality as a whole toward InGI
demonstrates the multi-component structure of the KPF. Different
adjustment speeds obtained from the PVECM method indicate that
the institutional adaptation process in the FF economies occurs
over different time horizons. PVAR findings show that in the
short run, InGDPPC and InEPS influence GFCI. In the long run,
however, the relationship between InGDPPC and InGI is observed
to weaken. This weakening relationship is consistent with Cohen
and Levinthal’s (1990) absorptive capacity approach. The impact
of InEPS on InGI in the short run parallels Ambec et al. (2013),
who found that environmental policies affect innovation in the long
run. The impact of InHDI on InGI shows that it is heterogeneous
at the country level. While it creates an increase in absorptive
capacity in the Brazilian economy, it generates a negative effect
in South Africa. Country-level causality tests indicate that in the
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Indian economy, GFCI and InGDPPC affect InGI. This finding is
consistent with Bhattacharya et al. (2016), who argue that green
energy investments support growth. In Turkey and India, InGI
affects InEPS, whereas in Indonesia and South Africa, InHDI
affects InEPS. The reason for this heterogeneous structure is that
the countries have different institutional frameworks. Parameter
estimates reveal that in the short run, GFCI has a negative effect
on InGI, thereby confirming the carbon lock-in hypothesis. The
negative impact of InGDPPC on InGI in the Brazilian and South
African economies shows that economic growth in these economies
originates from traditional energy-intensive sectors. The negative
effect of INEPS on InGI reflects the influence of compliance costs.
The positive and negative effects of InHDI on InGI indicate that
the FF countries have different levels of absorptive capacity. In
conclusion, the FF economies share the combined effects of global
economic shocks, knowledge spillovers, and environmental policy
reflections. Thus, although the short- and long-term adjustment
speeds differ in the FF economies, the reasons for this difference
stem from the institutional structures of the countries.

Some policy implications can be derived from the empirical
results. First, as discussed by Hall and Lerner (2010), in order
to channel GFCI toward green-producing sectors, financial
taxonomy and diversity of green financial instruments should
be ensured. Second, as suggested by Johnstone et al. (2010), in
order to strengthen the demand-pull channel, the public sector
should support green production and consumption. Third, in line
with Cohen and Levinthal (1990), to increase absorptive capacity,
policy packages should be designed to support the labor force
with technology and to accelerate the adaptation process of labor
to technology. Finally, as proposed by Costantini et al. (2017),
national economies should focus on regulations that are aligned
with global environmental policies, aim to reduce uncertainty,
and enhance environmental quality. In future studies, product and
process innovations can be distinguished using sectoral and firm-
level microdata, and financial constraints can be measured at the
firm and sectoral level. In addition, the complementary effects of
energy infrastructures and data on improving institutional quality
should be incorporated into the analyses. Finally, the threshold
value of the carbon pricing mechanism should be determined
through nonlinear models.
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