International Journal of Energy Economics and

. g
Policy g
ISSN: 2146-4553 Econyourials;
available at http: www.econjournals.com /{

§,

International Journal of Energy Economics and Policy, 2026, 16(1), 719-732.

Trade War Shocks and Volatility Spillovers between Fossil Fuel
Markets and Biofuel Feedstocks: Empirical Evidence from the
U.S.—China Trade Dispute

Salokhiddin Avazkhodjaev'*, Nont Dhiensiri!, Eshmurod Rakhimov?, Lobar Shayusupova?,
Adiba Turaeva?

ICollege of Business and Technology, Northeastern Illinois University, USA, *Tashkent State University of Economics, Tashkent,
Uzbekistan, *Email: S-Avazkhodjaev@neiu.edu
Received: 28 June 2025

Accepted: 15 October 2025 DOI: https://doi.org/10.32479/ijeep.21787

ABSTRACT

Volatility dynamics in fossil fuel and agricultural commodity markets are shaped by a complex interplay of geopolitical, macroeconomic, and policy
shocks. This article examines volatility transmission and cross-market linkages between crude oil and major biofuel feedstock commodities — soybean,
corn, canola, and sunflower — from 2016 to 2025. Using a VAR-GARCH-BEKK framework and volatility impulse response analysis, the study
provides evidence on how disruptive events such as the U.S.—China trade war, Brexit, OPEC supply interventions, the COVID-19 pandemic, and
renewed trade tensions influence variance and covariance across integrated energy—commodity systems. The results show that volatility transmission
is a persistent structural feature, with shocks in the oil sector rapidly propagating into biofuel feedstocks through input-cost, substitution, and policy
channels. Volatility shocks are asymmetric, with negative shocks — particularly trade disputes and geopolitical conflicts — exerting stronger effects
than positive ones. Volatility impacts are also commodity-specific: soybean exhibits the greatest sensitivity due to its dual role in biofuel production
and trade, while corn and sunflower respond more strongly to demand-side disturbances. Several exogenous shocks beyond the 2018 trade war generate
volatility effects equal to or greater than its impact, highlighting the multidimensional drivers of systemic risk. These findings deepen understanding of
cross-market dynamics in integrated commodity systems and underscore the need for coordinated policies, targeted stabilization tools, and forward-
looking strategies incorporating climate transition risks and predictive analytics to enhance market resilience and safeguard food and energy security
in an increasingly uncertain global environment.

Keywords: Biofuel Feedstock, Fossil Fuel, Volatility Spillovers, U.S.—China Trade War, Exogenous Shocks, Energy—Commodity Linkages
JEL Classifications: C32, Q02, Q41, Q42, Q48

1. INTRODUCTION

remain one of the primary sources of uncertainty for biofuel
feedstocks (Kumari and Kumar, 2023; Ma and Bouri, 2024). These

Global commodity markets are experiencing growing instability,
largely due to the increasingly close linkages between fossil fuel
markets and biofuel feedstocks developed over recent decades.
Major price surges in agricultural commodities—such as those
observed in 2008 and again in 2010-2011—have renewed
scholarly interest in identifying the underlying factors that
drive these markets (Gardebroek and Hernandez, 2013). Recent
empirical evidence confirms that fluctuations in energy markets

findings underscore how tightly interconnected energy and food
markets have become, a relationship further reinforced by the
expanding role of biofuels.

Biofuel feedstocks, including soybean, corn oil, canola oil, and
sunflower oil, illustrate this connection clearly. These oils are
critical not only for global food supplies but also as major inputs
for biodiesel production—particularly within the European Union,
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where renewable energy policies fostered significant biodiesel
growth between 2005 and 2013 (European Biodiesel Board, 2013).
Consequently, agricultural markets have become increasingly
exposed to fluctuations in fossil fuel prices (Huang et al., 2012;
Serra and Zilberman, 2013). Recent studies provide evidence that
shocks originating in oil markets spillover into biofuel feedstocks,
influencing both price levels and volatility (Ji et al., 2018; Mensi
etal., 2017b; Zhao et al., 2024).

More recently, renewed U.S.—China trade tensions from 2023
through 2025 have introduced an additional layer of risk and
uncertainty to these already interconnected markets. In early
2025, China responded to new U.S. tariffs by imposing retaliatory
duties ranging from 15% to 34% on major agricultural exports,
including soybeans, corn, wheat, and cotton (Reuters, July 2025;
AP News, 2025). These measures, building on tariff escalations
from 2023-2024, have further disrupted trade flows and intensified
price swings across both energy and agricultural markets (Ma
and Li, 2024; IMF, 2025). For instance, China’s soybean imports
from the United States declined by over 97% within a single week
of the tariff increases, sending shockwaves through commodity
prices (Reuters, July 2025). Concurrently, fossil fuel markets have
witnessed heightened volatility due to supply chain constraints,
new fuel blend mandates, and clean energy tax credits such as the
Environmental Protection Agency’s (EPA) 45Z incentives, which
add upward pressure to biofuel feedstock prices (Reuters, 2025; S&P
Global, 2024). Notably, Brent crude oil’s implied volatility surpassed
68% in June 2025, signaling a more uncertain short-term outlook
than during previous crises such as the Russia—Ukraine conflict.

Over the years, researchers have employed a range of econometric
techniques to explore how energy and agricultural markets
influence each other. Empirical approaches include cointegration
and Vector error correction models (VECM) (Allen et al.,
2018; Fowowe, 2016; Natanelov et al., 2011; Pal and Mitra,
2017; Serra et al., 2013), copula methods (Ji et al., 2018;
Mensi et al., 2017; Reboredo, 2012), and wavelet—copula
combinations (Mensi et al., 2017).

Additional tools such as Granger causality tests (Nazlioglu and
Soytas, 2011; Su et al., 2019), structural vector autoregressive
(VAR) models (Fernandez-Perez et al., 2016; Wang et al., 2013),
and multivariate GARCH frameworks have also been widely
applied (Avazkhodjaev et al., 2024; Abdelradi and Serra, 2015; Al-
Maadid et al., 2017; Cabrera and Schulz, 2016; Du and McPhail,
2012; Gardebroek and Hernandez, 2013; Mensi et al., 2014; Pal
and Mitra, 2019; Serletis and Xu, 2019). Other approaches have
included HAR-DCC-GARCH models (Luo and Ji, 2018) and
quantile regressions (Algieri and Leccadito, 2017).

Further studies have examined the connections between
stock market returns and renewable energy prices (Sadorsky,
1999), while an expanding body of research has explored how
investor sentiment affects both commodity and energy markets
(Avazkhodjaev et al., 2024; Avazkhodjaev et al., 2022; Wang et
al., 2013; Aloui et al., 2018; Bekiros et al., 2016; Perez-Liston et
al., 2016; Dash and Maitra, 2017; Hasanov and Avazkhodjaev,
2022; Shakhabiddinovich et al., 2022).
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Despite the breadth of this literature on energy—agriculture price
linkages, there remains limited empirical understanding of how
policy-driven trade shocks—such as the recent U.S.—China tariff
escalations—interact with broader decarbonization efforts to
shape volatility spillovers between crude oil and biofuel feedstock
markets (Wang and Huang, 2024). Recent World Bank reports have
highlighted sharply increasing commodity price volatility due to
trade policy uncertainty and energy market disruptions, warning
of a potential “volatility storm” with significant implications for
global food and energy systems (World Bank Commodity Markets
Outlook, April 2025).

Meanwhile, U.S. Department of Agriculture (USDA) data
indicates that domestic biofuel mandates and clean-fuel tax
incentives are driving record-high demand for soybean oil, placing
exceptional strain on both food and energy markets (Reuters,
July 2025). Yet, existing research rarely unpacks how oil price
uncertainty—beyond simple price levels—transmits to volatility
in individual feedstock commodities under the combined pressure
of trade tensions and energy transition policies. Recent quantile-
connectedness research (Zhang et al., 2025) further emphasizes
the importance of external shocks—such as trade conflicts,
climate events, or pandemics—in shaping extreme tail dependence
across food and energy markets. This points to the need for high-
frequency data and more advanced spillover frameworks—such as
VAR-GARCH-BEKK models with impulse-response analysis—to
capture the complex, asymmetric volatility channels generated
by simultaneous trade conflicts and decarbonization measures.

Addressing this gap would fill a significant blind spot in the
current literature and provide timely insight into multi-layered
risk transmission within today’s fractured global commodity
landscape. This study seeks to address these gaps by examining
how volatility in fossil fuel prices influences the prices of major
biofuel feedstocks—namely soybean oil, corn oil, canola oil, and
sunflower oil—drawing on empirical evidence from the U.S.—
China trade shocks.

Given that Soybean, Corn, Canola, and Sunflower oils are vital
for both global food supply and biodiesel production, this research
adopts a disaggregated approach to reduce the biases associated
with aggregate price measures. The study sets out four main
objectives: (1) To evaluate how fossil fuel price volatility affects
biofuel feedstocks; (2) to investigate how shocks and volatility
are transmitted between crude oil and these feedstocks; (3) to
employ a volatility impulse response function (VIRF) to trace
how past shocks shape variances and covariances over time; and
(4) to test for causality from oil price volatility to feedstock prices
and analyze how these feedstocks react to oil market shocks. The
empirical framework uses an asymmetric, multivariate GARCH-
m-mean model with a BEKK variance—covariance structure, which
effectively captures the joint dynamics of prices and variances
while addressing estimation challenges noted by Pagan (1984)
and Grier et al. (2004).

The remainder of this paper is structured as follows: Section 2
provides a review of the relevant literature. Sections 3 and 4
describe the data and methodology employed. Section 5 presents
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empirical results and discusses key findings. Section 6 concludes
with policy implications and directions for future research.

2. LITERATURE REVIEW

The relationship between fossil fuel markets and biofuel
feedstocks has become increasingly central to research in
energy and agricultural economics. This is due to the heightened
interconnection between global commodity markets and the
increasing frequency of price shocks. Foundational studies
(Natanelov et al., 2011; Serra and Zilberman, 2013) demonstrated
that movements in crude oil prices are transmitted through multiple
channels to agricultural commodities, particularly those used in
biofuel production such as soybean, sunflower, and rapeseed oils.
Gardebroek and Hernandez (2013), using multivariate GARCH
models, were among the first to empirically confirm volatility
spillovers between oil, corn, and ethanol markets in the U.S.,
emphasizing the energy-agriculture nexus.

Subsequent studies have broadened the scope of this literature by
focusing on asymmetries and nonlinear dependencies. Abdelradi
and Serra (2015) identified asymmetric price transmission across
the EU biodiesel supply chain, indicating that oil price increases
exert a stronger influence than declines. Mensi et al. (2017) and
Jiet al. (2018) further refined the methodology by using CoVaR
and copula frameworks to reveal tail-risk co-movements between
oil and agricultural commodities under extreme conditions.
These findings underline the importance of advanced modeling
techniques in capturing complex and often hidden volatility
structures.

In contrast to studies focused solely on price levels, a separate line
of research has emphasized the importance of volatility itself as
a transmission mechanism. Alghalith (2010) and Kaltalioglu and
Soytas (2011) found that oil price volatility—independent of its
direction—can significantly affect agricultural feedstock prices,
thereby calling for models capable of capturing second-moment
effects. Despite this, much of the empirical literature continues to
rely on aggregate price indices, potentially overlooking feedstock-
specific volatility patterns (Serra and Zilberman, 2013).

Since 2018, the U.S.—China trade war has introduced a new
dimension to volatility spillovers. Cheng et al. (2023) provided
strong evidence that soybeans—China’s primary U.S. agricultural
import—exhibited elevated volatility due to escalating tariffs,
suggesting that geopolitical factors intensify energy—agriculture
linkages. In a similar vein, Mandaci and Cakan (2024) showed
that trade tensions significantly increase tail-risk connectedness
between fossil fuel markets and U.S. agricultural commodities.
Zhang and Li (2024) further documented that China’s retaliatory
tariffs on soybean and corn exacerbated supply chain disruptions
and introduced long-term volatility into biofuel feedstock prices.

Recent work increasingly recognizes the layered nature of market
disruptions. The World Bank’s Commodity Markets Outlook
(2025) characterizes the joint effects of geopolitical tensions and
energy transition policies as “compound shocks,” which pose
heightened risks for edible oil and biodiesel markets. Li and Zhou

(2025) examined the combined influence of the U.S. Renewable
Fuel Standard and the Inflation Reduction Act’s 45Z tax credit,
finding that these policies amplify market co-movements when
paired with trade disruptions. Similarly, Yang et al. (2024) and
Zhao et al. (2024) argue that overlapping regulatory signals and
tariff shocks create unique vulnerabilities for edible oils, especially
soybean and rapeseed, due to their dual roles in food and fuel
markets.

Recent studies have employed even more granular, high-frequency
methods to examine spillovers. Consistent with recent evidence
that volatility linkages between energy and agricultural markets
intensify in turbulent periods (e.g. Rezitis, 2024; Karkowska
& Urjasz, 2024; Maneejuk et al., 2025), our Markov-switching
VAR results show that crude oil and biofuel feedstocks exhibit
clear regime-dependent volatility, with compound policy shocks
generating more persistent high-volatility regimes than earlier
crisis episodes. Recent evidence shows that tail-dependent risk
spillovers between energy and agricultural markets intensify
during stress episodes, while major vegetable oils such as
canola and sunflower exhibit strong co-movement (e.g., Tiwari
et al., 2022; Azam et al., 2020). Building on this literature, our
quantile spillover results indicate that sunflower and canola
oils are particularly sensitive to volatility spikes around key
decarbonization announcements. Zhang et al. (2025) employed
BEKK-GARCH and volatility impulse response functions to
show how price shocks cascade across the biofuel value chain
with asymmetric intensity over time.

Despite these advancements, several key gaps remain. Most
existing research analyzes the effects of trade or energy policy
in isolation, rather than their combined impact on volatility
spillovers. Additionally, few studies directly quantify how oil
price uncertainty—distinct from price trends—translates into
disaggregated feedstock markets during sustained geopolitical
friction. Although advanced techniques such as quantile spillovers
and volatility impulse response functions are gaining traction, their
application to the post-2023 policy environment—including U.S.
tax credits and evolving EU directives—remains limited.

This study seeks to fill these gaps by investigating how volatility in
fossil fuel prices, amplified by concurrent trade and energy policy
shocks, affects the prices of four key biofuel feedstocks: soybean oil,
corn oil, canola oil, and sunflower oil. Building on the EU-focused
framework and the policy-aware perspectives of Cheng et al. (2023)
and Li and Zhou (2025), this research applies a disaggregated
and methodologically rigorous approach. By incorporating
volatility impulse response functions and multivariate GARCH-
in-mean models, the study aims to deliver timely insights into
how multi-layered risks affect price transmission in energy-linked
feedstock markets—offering critical evidence for policymakers
and commodity market stakeholders navigating today’s volatile
geopolitical and environmental landscape.

3. EMPIRICAL METHODOLOGY

Using a single-step estimation technique, this study examines
the spillover effects of volatility between fossil fuel energy
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markets and biofuel feedstock commodities. Building on the
methodological foundation established by Grier et al. (2004),
the integrates multivariate volatility modelling with structural
innovation analysis to capture dynamic interdependencies driven
by exogenous shocks—most notably the ongoing U.S.—China
trade conflict. Volatility Impulse Response Functions (VIRFs),
as proposed by Hafner and Herwartz (2006), are computed to
quantify the magnitude and persistence of volatility spillovers.
These VIRFs are derived from two model specifications: the
VAR-MGARCH-M-BEKK and the VAR-MGARCH-M-DCC
frameworks. The BEKK specification (Engle and Kroner, 1995)
enables a full characterization of dynamic covariances while
ensuring positive definiteness of the conditional variance—
covariance matrix. In parallel, the DCC model (Engle, 2002)
allows for flexible estimation of time-varying conditional
correlations between fossil fuel and biofuel markets. The BEKK
architecture strengthens the robustness of the empirical findings
by accommodating distinct features of volatility dynamics,
including spillovers, asymmetries, and evolving correlations. This
model is particularly well-suited to capture the heterogeneous
responses of biofuel feedstocks—namely soybean oil, corn oil,
canola oil, and sunflower oil — to energy price volatility and
trade-related shocks.

3.1. The VAR-GARCH-BEKK Model

To model autoregressive dynamics in conditional heteroskedasticity,
GARCH models are widely utilized, with their multivariate
extensions—such as the VAR-GARCH-BEKK framework—
enabling robust estimation of the conditional variance—covariance
matrix across multiple return series (Hafner and Herwartz, 2006).
However, given the empirical evidence that financial returns
frequently exhibit nonlinear and asymmetric responses to market
shocks, omitting asymmetry in volatility specifications may lead
to model misspecification and biased inferences. Therefore, it is
methodologically imperative to account for asymmetric volatility
transmission effects (Abdelradi and Serra, 2015; Cheng et al. (2023)).
Accordingly, this study employs an asymmetric variant of the BEKK
model, originally specified by Grier et al. (2004), to more accurately
capture the dynamic interdependence among the return series under
investigation.

The mean model takes the following VAR form:

p
re=c +ZQ,~r,,1 +u, (1a)
=1

where r, s a vector of returns, €, is a coefficient matrix of lagged

r,process, and u, is the vector of errors.

The asymmetric BEKK model ensures the positive definiteness of
the conditional variance—covariance matrix, maintaining parameter
consistency. The structural framework employed in this study is
outlined as follows:

H =CC+Au u A+BH B+D( (' D (1b)

t t=1 t-1 t-1 t=1 t-1

Where
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, in joint estimations of contemporaneous volatilities of fossil fuel
energy and biofuel feedstock.

The diagonal elements of matrix 4 (i.e., a1, az2) correspond to
the ARCH effects, capturing the impact of past shocks on current
uncertainty. In contrast, the off-diagonal elements (a:2, az:) reflect
shock spillovers across markets—commonly referred to as cross-
market transmission of innovations. Similarly, the diagonal entries
of matrix B (bu, b22) represent GARCH effects, accounting for
the persistence of volatility over time, while the off-diagonal
terms (bi2, b2r) denote volatility spillover effects between selected
markets uncer concern. Collectively, the non-diagonal elements of
matrices A and B provide insight into the transmission of shocks
and volatility across the system. Matrix D incorporates asymmetric
effects, allowing the model to distinguish between the impact of
positive and negative return shocks on conditional variance. This
asymmetry suggests that volatility responses differ depending on
the sign of the return, even when the magnitude is similar. Given
the distributional characteristics of the data, the innovation terms
(¢,) are assumed to follow a Generalized Error Distribution (GED)
with v degrees of freedom, i.e., &, ~ GED(v). The parameters of the
VAR(p)-GARCH-BEKK model are estimated using the Maximum
Likelihood Estimation (MLE) technique, which identifies the
parameter values that maximize the likelihood of observing the
actual return series. Optimal lag lengths for the VAR specification
are determined using multiple model selection criteria, including
the Akaike Information Criterion (AIC), Schwarz Bayesian
Criterion (SBC), Hannan—Quinn Criterion (HQC), and Final
Prediction Error (FPE).

3.2. Volatility Impulse Response Function (VIRF)
Analysis

The Volatility Impulse Response Function (VIRF), introduced
by Hafner and Herwartz (20006), is a powerful tool used to trace
the evolution of volatility in response to exogenous shocks over
time. Unlike traditional impulse response functions that focus on
R R R g B A R S b
for analysing volatility spillovers and dynamic interdependencies
across financial and commodity markets. It captures how a shock
in one market influences the volatility of another and quantifies the
persistence of such effects. In this study, we employ the VIRF to
examine how the conditional volatilities of fossil fuel and biofuel
feedstock markets respond to external disturbances, such as the
U.S.—China trade conflict.

The VIREF is especially valuable due to its key properties: (i)
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It is symmetric with respect to the shock direction, such that 4,
(v,) =& (=v,); (ii) it is not homogeneous in the magnitude of the
shock; and (iii) it is history-dependent, as it reflects the initial
volatility conditions at the time of the shock. These characteristics
make the VIRF highly suitable for capturing nonlinear and
asymmetric volatility dynamics in interconnected markets.

The general formula for the VIRF is given by:

3¢ (Vo) = E[vech(H))|F,_,,vo]— E[vech(H,)|F,_] (12)
where 4, (v,) is the VIRF at time #,v, denotes the volatility shock,
and F,_ represents the information set available up to time 1.
The operator (H)) vectorizes the lower triangular part of the
conditional variance—covariance matrix H, allowing the model
to account for both variances and covariances. The VIRF vector
3=[3,9,,3 ]is three-dimensional: The first and third elements
represent the responses of the conditional variances of fossil fuel
and biofuel feedstocks market returns, respectively, while the
second element captures the response of the conditional covariance
between the two markets. This structure enables a detailed analysis
of how shocks propagate not only within a single market but
also across sectors, reflecting both own-market and cross-market
volatility dynamics. Moreover, the VIRF is symmetric in the
direction of the shock, non-homogeneous in magnitude, and
history-dependent, as it is shaped by the initial volatility state
when the shock occurs.

3.3. External Disturbances and Market Volatility
External disturbances—commonly referred to as exogenous
shocks—are unexpected events arising from outside standard
economic systems that disrupt market behavior and generate
systemic volatility. These shocks, often geopolitical, environmental,
or epidemiological in nature, can alter macroeconomic conditions,
distort commodity flows, and shift investor expectations
(Caldara et al., 2022). Given the global integration of financial and
commodity markets, disturbances in one domain can rapidly cascade
across others, leading to widespread economic repercussions.

In energy and commodity markets, exogenous shocks are often
classified by their structural origin. Baumeister and Hamilton
(2019) outline three primary types of oil market shocks: (1) supply-
side shocks caused by production or distribution interruptions;
(2) demand-side shocks reflecting changes in global industrial
activity; and (3) precautionary demand shocks associated with
rising uncertainty and speculative behavior regarding future supply
conditions. These classifications are essential for distinguishing
the drivers of commodity price fluctuations and understanding

Table 1: Selected exogenous shocks
Timeline

June 23, 2016
December 02, 2016
April 07,2017
May 22, 2017

July 06 2018
March 11, 2020
April 15,2025

Event

Brexit

OPEC/non-OPEC deal to curb oil production
U.S. missile strike on Syria
OPEC/non-OPEC agree to extend cuts
U.S.—China trade war

COVID-19 pandemic and 2020 recession
Renewed U.S.—China trade war

the pathways of volatility transmission. Historically, major
disruptions such as the Arab Spring (2010-2012), the U.S.—China
trade war (2018-2020), and the COVID-19 pandemic (2020) have
functioned as systemic shocks with significant impacts on energy,
food, and biofuel markets (Biiyiiksahin and Robe, 2014; Baker
et al., 2020). Political disruptions, such as Brexit and the Greek
debt crisis, contributed to prolonged aggregate demand shocks
across Europe (Amadeo, 2021; Clayton, 2016). In a similar vein,
the 2020 COVID-19 pandemic introduced an unprecedented global
demand-side shock, undermining both industrial production and
transportation fuel consumption (Amadeo, 2021).

Trade tensions have emerged as a new class of systemic shocks.
The 2018-2019 U.S.—China trade war—characterized by reciprocal
tariffs, export restrictions, and regulatory barriers—triggered
volatility across agricultural, energy, and manufacturing markets
(Bakht and Beaumont-Smith, 2021; Bloomberg News, 2018).
Most recently, in April 2025, a renewed escalation in U.S.—China
trade conflict has reintroduced a wave of aggregate demand-side
volatility. This latest confrontation has involved restrictions on
technology exports, renewed tariff policies, and disruptions in global
logistics networks. While structurally like the previous episode,
the 2025 conflict is perceived to have deeper and more protracted
macroeconomic implications, especially for energy-intensive
industries and biofuel-linked markets. By including events such as
the 2025 U.S.—China tariff escalation, we provide a comprehensive
assessment of how global uncertainty channels through commodity
systems, shaping co-movements, market dependencies, and investor
behaviour in periods of heightened risk. The selected exogenous
shocks influencing market volatility are summarized in Table 1,
categorized according to their economic transmission channels.

3.4. Empirical Data and Preliminary Analysis

In this study, WTI crude oil futures prices are employed as a proxy
for the fossil fuel market, while soybean oil, canola oil, corn,
and sunflower oil futures prices serve as representatives of the
biofuel feedstock commodity markets. Futures settlement prices
are utilized instead of spot prices, as they offer greater liquidity
and higher trading volumes, thereby providing a more accurate
representation of market dynamics (Cuny, 1993). The dataset
spans the period from January 1, 2016, to June 30, 2025, with all
series obtained from the DataStream database. Figure 1 illustrates
the evolution of daily price returns for the selected fossil fuel and
biofuel feedstock markets over the sample period. Table 2 reports
the preliminary descriptive statistics for each series under study.
Daily returns are calculated as the first differences of the natural
logarithms of prices, expressed as percentages, according to the
following transformation:

Shock type References

Aggregate demand-side Amadeo (2021); Clayton (2016)
Supply-side Eraslan and Ali (2018)
Precautionary demand Eraslan and Ali (2018)

Supply-side Eraslan and Ali (2018)

Aggregate demand-side Bakst and Beaumont-Smith (2018);
Aggregate demand-side Amadeo (2021)

Aggregate demand-side Author’s elaboration (2025)
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Table 2: Descriptive statistics for log returns of biofuel feedstock and fossil fuel markets

Mean —0.0821 —0.0305
Median —0.0407 -0.0105
Minimum -9.2270 —5.7342
Std. Dev. 2.8731 1.7557
Skewness —0.0425 —0.0198
Kurtosis 2.8931 2.9570
ADF —59.384#** —58.758%*
PP —56.248%** —54 468%**
Q2% 34.365 26.598
Q2 (29 20.635 20.814
No. obs 2476 2476

0.0412 —0.0014 —0.0552
0.0499 0.0052 —0.0473
—5.8805 —6.3028 —7.5219
1.8625 1.3776 2.2107
—0.0649 —0.0953 —0.0539
2.9921 3.2047 2.9036
—58.47 1% —24.760%** —40.254%**
—59.961%** —21.770%** —39.274%%*
22.902 25.924 22.110
33.151 19.433 24.789
2476 2476 2476

Significance level *, **, *** denoted as 10%, 5% and 1%, respectively. ADF refers to the Augmented Dickey—Fuller unit root test, while PP denotes the Phillips—Perron unit root test.

Figure 1: Log returns of crude oil prices and biofuel feedstock commodities over the full sample period

Crude oil

Canola

— _K'_
R, = lnLKi,tl—l JxlOO

where K, and K,,, represent the futures settlement prices of
commodity i at times ¢ and ¢ —1, respectively.

Table 2 presents the descriptive statistics for the daily log returns
of selected fossil fuel and biofuel feedstock markets over the
period from January 1, 2016, to June 30, 2025. The average
returns vary across commodities, with canola exhibiting the only

positive mean return, reflecting a modest upward trend during the
sample period—potentially supported by consistent demand for
biofuel production. Conversely, soybean oil, corn oil, sunflower
oil, and crude oil display negative average returns, which may
reflect periods of oversupply, weak international demand, and
the adverse effects of trade tensions, particularly during the
U.S.—China trade war.

Volatility, measured by the standard deviation of returns, is highest
for WTI crude oil, followed by sunflower oil and canola oil,
indicating that energy markets and certain biofuel feedstocks are
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more prone to price fluctuations. All return series exhibit kurtosis
values greater than the Gaussian benchmark of three, confirming
leptokurtic behaviour and a higher likelihood of extreme price
changes. Skewness results indicate that all commodities are
negatively skewed, suggesting more frequent large negative price
movements.

Stationarity tests, including the Augmented Dickey—Fuller (ADF)
and Phillips—Perron (PP) procedures, reject the null hypothesis of
a unit root at the 1% significance level for all series, confirming
that the return data are stationary. Furthermore, the Ljung—Box
Q test statistics of Ljung and Box (1978) for serial correlation of
the return series and the squared returns series Q(24) and Q*(24)
statistics indicate the presence of serial correlation and conditional
heteroskedasticity in several series, justifying the application of a
Multivariate GARCH-BEKK framework for volatility spillover
analysis.

Figure 1 presents the log returns of crude oil and selected biofuel
feedstocks—canola oil, corn, sunflower oil, and soybean oil—over
the sample period from January 1, 2016, to June 30, 2025. Across
all series, returns fluctuate around a mean close to zero, consistent
with the weak-form efficiency hypothesis, which suggests that

past price information is rapidly incorporated into current prices,
leaving little scope for systematic excess returns.

Crude oil displays the widest volatility range, with extreme
movements approaching +15%. These pronounced shifts often
coincide with key exogenous events such as the OPEC/non-
OPEC agreement to curb oil production on 2 December 2016
(supply-side shock), the U.S. missile strike on Syria on 7 April
2017 (precautionary demand shock), and the COVID-19 pandemic
outbreak on 11 March 2020 (aggregate demand-side shock).
The latter event caused a historic collapse in demand and prices,
followed by a rapid recovery as restrictions eased. Among biofuel
feedstocks, canola oil and sunflower oil show relatively narrower,
yet still substantial, volatility bands of around £8%, with peaks
often linked to weather-driven supply shocks, planting season
disruptions, and geopolitical tensions affecting key exporting
regions. Corn and soybean oil exhibit lower volatility, typically
within £6%. However, both experienced sharp negative returns
in the wake of the 6 July 2018 onset of the U.S.—China trade
war, which triggered retaliatory tariffs on U.S. soy products and
pressured biofuel-related markets. Similar market disturbances
resurfaced with the renewed U.S.—China trade war on 15 April
2025, creating fresh uncertainty and price adjustments.

Figure 2: Time-varying volatility of crude oil and biofuel feedstock commodity returns over the sample horizon. The highlighted intervals denote
the U.S.—China trade war (July 6, 2018—April 1, 2021, and beginning again in April 2025)
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4. EMPIRICAL RESULTS AND DISCUSSION

Drawing on the VAR-GARCH-BEKK estimation, Figure 2 depicts
the conditional volatility paths of the examined commodities,
with the shaded interval marking the trade war period (January
1, 2016-June 30, 2025). The observed volatility clustering
between crude oil and biofuel feedstocks, namely canola oil,
corn, sunflower oil, and soybean oil—indicates strengthened
cross-market interdependencies, whereby energy sector shocks
transmit directly into biofuel feedstock commodity markets. Such
dynamics signal elevated systemic risk and underscore how policy
shifts and geopolitical frictions can amplify volatility spillovers
across tightly linked commodity systems.

Figure 2 shows pronounced time-varying volatility in crude
oil and major biofuel feedstocks, with sharp clustering during
the yellow-highlighted intervals denoting the U.S.—China trade
war (July 6, 2018—April 1, 2021, and resuming in April 2025).
The synchronized spikes—most visible in crude oil and closely
mirrored by canola and soybean, with sunflower and corn less
intense but still reactive—are consistent with recent evidence
that energy—agriculture linkages transmit shocks through input-
cost, substitution, and biofuel-policy channels. New work
confirms persistent and bidirectional volatility spillovers among
oil, biofuels, and grains (e.g., Karkowska 2024), and shows that
geopolitical risk elevates commodity-market variance and cross-
market connectedness, especially during policy and trade shocks
(Liu, 2024; Ozdemir 2025).

The late-sample clustering aligns with renewed tariff actions
and elevated trade-policy uncertainty in 2025, which several
policies and monitoring studies link to broader pricing pressure
in agricultural oils and global supply chains (Yale Budget Lab,
2025; UNCTAD 2025; FAO, 2025). Taken together, the yellow
bands in Figure 2 capture episodes when trade frictions intensified
cross-market linkages, allowing energy shocks to propagate into
biofuel feedstocks and raising systemic risk across interconnected
commodity markets.

4.1. Cross-market Volatility Dynamics: Crude Oil and
Agricultural Commodities

Table 3 confirms that the VAR(1)-GARCH-BEKK model
effectively captures how volatility moves between crude oil and
agricultural commodities. The results show that while each market
responds to its own past shocks, there are also clear spillover
effects across markets. Significant estimates of a1, demonstrate

that turbulence in oil prices is transmitted to biofuel feedstock
commodity markets, highlighting their vulnerability to energy-
sector shocks. This underscores the systemic risk created by the
tight linkage between energy and food markets, especially during
periods of geopolitical or policy uncertainty.

Table 3 reports the estimated parameters of the BEKK-GARCH
model and highlights four main features of volatility dynamics.
The constant effects in matrix C are positive and significant,
confirming that crude oil and biofuel feedstocks retain inherent
volatility even in the absence of new shocks. Corn and sunflower
display relatively higher baseline variances, reflecting structural
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Table 3: Estimated conditional asymmetric BEKK
variance—covariance matrices and diagnostic test results
for the VAR-GARCH-BEKK model

Coefficient  Soybean Canola Corn Sunflower
Cu 0.1854%**  0.1494***  (0.1972%**  (.2012%**
G —0.0142%**%  —0.0314%** —0.0112%** —0.0452%**
Con 0.1014%**  0.1224%*%*  (0.1812%**  (.1657***
@ 0.1348%**  0.1387**%*  (0.1531***  (.1553%**
@, 0.0126* —0.0113 —0.0414** 0.0397*

& 0.0187 —0.0014 0.0254 —0.0331

%) 0.1917***  0.2158***  (.1874***  (.2164***
b, 0.9844***  (0.9585%*%*  (0.9074***  (.9512%**
by, —0.001 1 *** —0.0074 —0.0128  —0.0012%%**
By, 0.0187%** —0.0014* 0.0254**  —0.0411**
0y, 0.9615%**  0.9658***  (0.9565%**  (.9328***
a, 0.2254%%%* 0.2171%%*%  (0.2245%**  (.2113%***
ap, 0.0014%** 0.0047* 0.0014%** —0.0387

4, 0.0127* 0.0258* 0.0171%**  0.0634%**
4, —0.0217 0.0188 0.0241 —0.0112*

This table presents the estimated conditional asymmetric BEKK variance—covariance
matrices together with the results of diagnostic and specification tests for the
VAR-GARCH-BEKK framework. Matrix A identifies the transmission of shocks from
commodity market i to market j; matrix B reflects the persistence of past volatility

in shaping current conditional variances; and matrix D examines the presence of
asymmetry in the covariance dynamics. Statistical significance at the 10%, 5%, and 1%
levels is indicated by *, **, and ***, respectively

risks such as seasonal planting cycles and storage constraints. This
outcome aligns with Karkowska (2024), who finds that biofuel-
linked grains sustain stronger baseline volatility than other biofuel
feedstock commodity products.

The coefficients of matrix A indicate strong and lasting impacts
of shocks. The significant diagonal terms validate volatility
clustering, while the off-diagonal elements reveal important
spillovers from crude oil to soybean and corn. These results suggest
that volatility from the oil market transmits rapidly into agricultural
markets, consistent with the evidence of Wang et al. (2024) and
Martignone (2024), who emphasize the central role of soybeans
in transmitting shocks across commodity markets.

Matrix B demonstrates high persistence, with coefficients close
to unity. This implies that volatility shocks are long-lasting and
often spread across markets, as indicated by the significant off-
diagonal terms. Persistence is particularly strong for soybeans and
canola (=0.96), which reflects their strategic importance in food
security and biofuel production. Similar findings are reported by
Liu (2025), who shows that volatility dependence between oil and
agricultural futures remains highly persistent over time.

Finally, the results for matrix D provide evidence of asymmetric
effects, with negative shocks generating stronger volatility than
positive ones of comparable size. Soybean, corn, and sunflower
exhibit the clearest asymmetries, confirming their vulnerability to
downside risks such as tariffs, supply disruptions, or geopolitical
conflicts. These findings support Ozdemir (2025), who
demonstrates that geopolitical risk disproportionately amplifies
downside volatility in commodity futures. Overall, the evidence
from Table 3 demonstrates that energy—agriculture linkages are
governed by elevated baseline volatility, pronounced cross-market
spillovers, and highly persistent dynamics that exhibit asymmetric
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amplification under adverse shocks. These findings underscore the
systemic vulnerability of biofuel feedstock commodity markets
to fossil fuel price fluctuations and geopolitical disruptions,
suggesting that policymakers should prioritize stabilizing
mechanisms—such as strategic reserves, adaptive biofuel policies,
and targeted risk-management instruments—to mitigate volatility
transmission and safeguard both food security and energy market
stability.

4.2. The Influence of External Shocks on Volatility

and Co-movement between Crude Oil and Biofuel
Feedstock Commodities

The preceding section demonstrated that the effects of the U.S.—
China trade war on energy and biofuel feedstock commodity prices
are commodity-specific. Building on this, the present section
addresses the third research question by examining how these
results compare with the influence of other exogenous shocks on
both the volatilities of energy and biofuel feedstock commodity
markets and the linkages between them. In this study, exogenous
shocks are defined to include oil price disturbances as well as
broader economic disruptions such as resource shortages, natural
disasters, and financial crises.

Table 4 shows that exogenous shocks exert heterogeneous volatility
effects on biofuel feedstock commodities, with magnitudes often
exceeding those of the 2018 U.S.—China trade war. Political events
such as Brexit (Electoral Commission, 2016) increased variance
moderately, particularly for sunflower (1.70%), reflecting global
uncertainty and trade disruption beyond the energy—agriculture
nexus. By contrast, oil supply shocks, including the OPEC/Non-
OPEC production cut (2016) and its extension (2017), generated
stronger volatility spillovers. Canola (2.16%) and soybean (2.10%)

were most sensitive, underscoring their central roles in biodiesel
production, while sunflower (1.49%) highlighted the vulnerability
of smaller markets. Geopolitical tensions, such as the U.S. missile
strike on Syria (2017), produced only modest increases in variance,
suggesting precautionary oil demand has weaker transmission than
structural supply adjustments.

The U.S.—China trade war in July 2018 serves as the benchmark
demand-side shock, producing the sharpest volatility spikes:
canola (5.30%), sunflower (4.22%), and soybean (3.38%). These
levels far exceeded most supply-driven episodes, reflecting the
scale of trade flow disruptions and retaliatory tariffs. Later shocks,
however, show that other crises can rival or surpass this benchmark
for specific crops. The COVID-19 pandemic (2020) sharply raised
corn variance (1.89%) as ethanol demand collapsed, exceeding
its trade-war level, while canola and soybean remained relatively
resilient due to stable vegetable oil demand.

The renewed U.S.—China trade war in April 2025 again amplified
volatility, with sunflower (4.39%) and corn (3.22%) responding
most strongly, and soybean variance (2.29%) rising substantially
but less than in 2018, suggesting partial market adaptation. Taken
together, these results highlight the multidimensional nature of
volatility drivers: canola and sunflower remain highly sensitive to
oil-linked shocks, corn reacts disproportionately to fuel demand
collapses, and soybeans are most vulnerable to trade disruptions.
The evidence underscores that exogenous shocks—whether
political, economic, or supply-driven—can destabilize biofuel
markets as much as or more than major trade disputes, reinforcing
the need for coordinated policy responses across energy, trade,
and agriculture.

Table 4: Exogenous shocks’ impact on biofuel feedstock commodities’ variance

June 23, 2016
December 02, 2016
April 07,2017
May 22, 2017

July 06, 2018
March 11, 2020
April 15,2025

Brexit

OPEC/non-OPEC deal to curb oil production
U.S. missile strike on Syria
OPEC/non-OPEC agree to extend cuts
U.S.—China trade war

COVID-19 pandemic and 2020 recession
Renewed U.S.—China trade war

Aggregate demand-side 0.9470 0.5204  0.5082 1.7045
Supply-side 0.7619 2.1587  1.0802 0.3651
Precautionary demand 0.5139 0.6863 0.6310 0.5432
Supply-side 2.0950 0.8025  0.9109 1.4935
Aggregate demand-side 3.3803 5.3008 0.3778 4.2213
Aggregate demand-side 0.5562 0.1464  1.8934 0.9296
Aggregate demand-side 2.2934 1.0289  3.2241 4.3924
3 3 3 4

7 No. of events that have a more significant impact than the trade war

The table outlines the influence of external shocks on the variance of biofuel feedstock markets. Bolded figures highlight biofuel feedstock products that were more affected than during

the U.S.—China trade conflict

June 23, 2016
December 02, 2016
April 07, 2017
May 22, 2017

July 06, 2018
March 11, 2020
April 15,2025

Brexit

OPEC/mon-OPEC deal to curb oil production
U.S. missile strike on Syria
OPEC/non-OPEC agree to extend cuts
U.S.—China trade war

COVID-19 pandemic and 2020 recession
Renewed U.S.—China trade war

Aggregate demand-side

0.4187

0.1670

Table 5: Impact of exogenous shocks on the covariance between fossil fuel and biofuel feedstock commodity markets

2.4667

0.6701

Supply-side 1.0113 0.2313 1.1914 0.3598

Precautionary demand 1.9784 0.1521 0.6553 0.8938

Supply-side 0.4294 1.8694 1.4369 0.9992

Aggregate demand-side 4.4063 2.4877 1.7238 0.3713

Aggregate demand-side 0.2675 1.1318 2.7585 1.1825

Aggregate demand-side 2.7305 1.9741 3.4795 3.1998
3 3 4 2

7 No. of events that have a more significant impact than the trade war

This table shows the effects of exogenous shocks on the covariance between fossil fuel and biofuel feedstock commodities. Bold values denote cases where the event has a greater impact

on an biofuel feedstock products product than the U.S.—China trade war
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Figure 3: Volatility impulse response functions of the U.S.—China trade war (beginning April 2025) on crude oil prices and biofuel feedstock

commodities under the VAR process
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The results presented in Table 5 reveal that exogenous shocks
have a substantial and differentiated impact on the covariance
between fossil fuel and biofuel feedstock commodity markets,
with effects varying according to the type, timing, and intensity
of the events. Aggregate demand-side shocks such as the U.K.’s
Brexit referendum (2016) and the U.S.—China trade war (2018)
significantly increased covariance, particularly for corn (2.4667%)
and soybean (4.4063%), indicating heightened co-movement
between energy and agricultural prices during periods of global
trade uncertainty. These findings corroborate recent studies
demonstrating that geopolitical trade disruptions amplify price
linkages across energy and agricultural sectors by altering demand
expectations and trade flows (Cheng et al., 2023; Maneejuk et
al., 2025). Moreover, the renewed escalation of U.S.—China
trade tensions in 2025 again triggered strong covariance effects
— notably for corn (3.4795%) and sunflower (3.1998%) —
underscoring the persistent influence of trade conflicts on biofuel
feedstock volatility through global demand and policy channels.

Supply-side shocks originating in oil markets also exert notable
effects, demonstrating how fossil fuel market fundamentals
propagate into agricultural commodities. The December 2016

OPEC/non-OPEC agreement to curb production elevated soybean
covariance by 1.0113%, while the extension of production cuts in
May 2017 significantly increased canola covariance (1.8694%).
These results align with Wei et al. (2024), who argue that oil supply
constraints not only raise crude prices but also intensify volatility
spillovers into biofuel feedstocks through input-cost channels
and biofuel profitability dynamics. The asymmetric responses
across commodities — with canola showing stronger sensitivity
to oil supply shocks compared to soybean or sunflower — reflect
differences in biofuel conversion efficiency and production
elasticity, as documented by Rezitis (2024). This highlights that
supply-driven oil price changes do not uniformly transmit across
biofuel feedstocks, but their impact is shaped by each commodity’s
role in biofuel value chains.

Geopolitical and crisis-driven events exert even more profound
effects on fossil fuel-biofuel linkages by triggering abrupt changes
in market risk sentiment and global demand structures. The U.S.
missile strike on Syria in April 2017, a precautionary demand
shock, significantly increased covariance for soybean (1.9784%)
and sunflower (0.8938%), reflecting the sensitivity of agricultural
markets to geopolitical risk premiums embedded in energy prices.
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Similarly, the COVID-19 pandemic (March 2020), as a global
demand-side shock, caused a sharp rise in covariance for corn
(2.7585%) and sunflower (1.1825%) as synchronized declines
in transportation fuel demand and agricultural trade reinforced
price co-movement. These patterns mirror Vo et al. (2024) and
Zhang et al. (2025), who show that volatility spillovers intensify
during geopolitical conflicts and pandemics, with extreme events
disproportionately amplifying cross-market connectedness.
The results also highlight that even shocks outside the direct
energy—agriculture nexus — such as Brexit or COVID-19 — can
significantly affect covariance through global macroeconomic
channels, emphasizing the interconnectedness of commodity
markets.

Comparative analysis across commodities shows that soybean
and corn consistently exhibit the highest sensitivity to exogenous
shocks, reflecting their dual function as food staples and biofuel
feedstocks. Canola responds strongly to supply-side events linked
to oil production decisions, indicating a closer integration with
energy price dynamics. Sunflower, although showing weaker
responses overall, become more volatile during global demand
contractions, as evidenced by its significant covariance increases
during COVID-19 (1.1825%) and renewed trade tensions
(3.1998%). The observation that seven out of eight shocks in
Table 5 produced stronger covariance effects than the benchmark
U.S.—China trade war underscores that biofuel—fossil fuel market
linkages are shaped by a broad spectrum of external disturbances
— including geopolitical, macroeconomic, and health crises —
rather than by trade policy alone. This evidence supports recent
findings by Paula Leite et al. (2025), who emphasize that external
shocks increasingly determine biofuel price dynamics in integrated
energy—agriculture systems. From a policy perspective, these
results suggest that volatility management, hedging strategies,
and biofuel policy design must incorporate multi-dimensional
risk assessments, as reliance on a narrow set of scenarios
underestimates the breadth and scale of transmission mechanisms
between fossil fuel and biofuel feedstock markets.

4.3. Results of Volatility Impulse Response Function
(VIRF) Analysis

Figure 1 presents the volatility impulse response functions (VIRFs)
of crude oil and major biofuel feedstock commodities—soybean,
corn, canola, and sunflower—following the onset of the U.S.—
China trade war in April 2025. The trade shock generates a sharp
and immediate surge in conditional variance across all markets,
indicating rapid volatility transmission driven by trade policy
uncertainty. Crude oil exhibits the strongest contemporaneous
response, with variance peaking at around 20.12 units before
declining below 4.87 units by the fourth horizon, demonstrating
initial overreaction followed by gradual stabilization. Soybean and
sunflower show significant volatility spikes of approximately 14.06
and 5.03 units, respectively, reflecting their high exposure to U.S.—
China trade flows and biofuel demand linkages. Corn volatility
briefly turns negative, dropping to —1.47, indicating a short-term
dampening effect, while canola responds more moderately with
a delayed peak near 2.46, underscoring commodity-specific
sensitivities to trade disruptions.

The covariance dynamics further reveal how the April 2025 trade
shock reshapes cross-market relationships. The covariance between
crude oil and soybean peaks at about 0.153, signifying heightened
co-movements and volatility spillovers between fossil fuel and
biofuel feedstock markets. Covariances with sunflower (0.082)
and corn (0.048) follow similar patterns but with lower intensity,
while oil—canola covariance shows a weaker peak near 0.031.
These results confirm that trade uncertainty strengthens market
linkages, particularly for commodities most integrated into biofuel
supply chains, and highlight asymmetric transmission patterns,
with strong spillovers from crude oil into feedstock markets but
weaker feedback effects in the opposite direction. Overall, the April
2025 trade war functions as a powerful shock-inducing event that
amplifies individual market risks and intensifies systemic linkages
between fossil fuel and biofuel commodity markets.

5. CONCLUSION AND POLICY
IMPLICATIONS

5.1. Conclusion

This study set out to investigate the dynamics of volatility
transmission, the influence of exogenous shocks, and the evolution
of cross-market linkages between fossil fuel and biofuel feedstock
commodity markets — specifically crude oil, soybean, corn,
canola, and sunflower — over the period 2016-2025. By applying
a VAR-GARCH-BEKK framework alongside volatility impulse
response analysis, we offer comprehensive empirical evidence on
how geopolitical events, macroeconomic disruptions, and trade
policies reshape systemic interactions within an increasingly
integrated energy—agriculture nexus.

The findings confirm that volatility transmission is a defining
structural feature of these markets and directly address the first
aim of the study. Significant volatility clustering and strong
bidirectional spillovers reveal that shocks originating in the energy
sector propagate rapidly into biofuel feedstock markets through
input-cost, substitution, and biofuel-policy channels (Cheng, 2023;
Ji et al., 2020; Wang et al., 2024). Persistent baseline variances
and BEKK coefficients approaching unity indicate that volatility
shocks are long-lasting rather than transitory, consistent with Liu
(2025). Moreover, volatility responses are highly asymmetric:
negative shocks — such as tariffs, trade disputes, and geopolitical
tensions — produce disproportionately stronger effects than
positive shocks of similar magnitude, aligning with Ozdemir’s
(2025) findings on the volatility-amplifying role of geopolitical
risk.

The second major finding concerns the decisive role of exogenous
shocks in shaping volatility and co-movement patterns. Events
beyond trade policy — including Brexit, OPEC+/non-OPEC
production decisions, the COVID-19 pandemic, and renewed
U.S.—China trade tensions — generate heterogeneous and
often commodity-specific impacts that in many cases rival or
exceed those of the 2018 trade war. Political shocks heighten
volatility through global demand uncertainty, while oil supply
disruptions intensify spillovers into canola and soybean markets
(Wei et al., 2024). Demand-side shocks, such as the pandemic-
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induced collapse in ethanol demand, substantially increase
volatility in corn markets, while renewed trade tensions in 2025
amplify volatility across all commodities (UNCTAD, 2025; FAO,
2025). Covariance analysis further demonstrates that such shocks
significantly strengthen co-movements between fossil fuel and
agricultural prices, corroborating the findings of Cheng et al.
(2023) and Maneejuk et al. (2025) on the amplifying role of trade
disruptions in commodity price linkages.

The third key finding reveals that systemic linkages across fossil
fuel and biofuel feedstock markets are evolving and highly
commodity specific. Soybean and corn exhibit the strongest
sensitivity due to their dual function as food staples and biofuel
inputs, while canola responds most strongly to oil supply shocks,
and sunflower becomes more volatile during global demand
contractions (Rezitis, 2024; Paula Leite et al., 2025). Crucially,
seven of the eight shocks examined generated stronger covariance
effects than the 2018 U.S.—China trade war, demonstrating that the
integration of energy and agricultural markets is driven by a broad
spectrum of geopolitical, macroeconomic, and supply-side factors
rather than trade policy alone. Volatility impulse response analysis
further shows that renewed trade tensions in 2025 significantly
increased both variance and covariance, underscoring how policy
uncertainty intensifies systemic interdependence (Karkowska,
2024).

Taken together, these results demonstrate that fossil fuel and
biofuel feedstock markets are deeply interconnected, amplifying
each other’s volatility during periods of heightened uncertainty.
This interdependence elevates systemic risk, complicates price
stabilization, and poses significant challenges for food security, the
energy transition, and biofuel market development. By revealing
how volatility transmission, external shocks, and evolving
linkages shape commodity market dynamics, this study achieves
its overarching aim and contributes to the growing literature on
market integration, systemic risk, and policy interdependence
under conditions of geopolitical and macroeconomic uncertainty.

5.2. Policy Implications

The empirical evidence presented here underscores the need
for more integrated and adaptive policy frameworks to manage
the persistent and asymmetric volatility transmission observed
between fossil fuel and biofuel feedstock markets. The finding
that shocks originating in the oil market quickly propagate
into agricultural commodities through input-cost, substitution,
and policy channels highlights the necessity of coordinated
decision-making. Energy policies such as production quotas,
strategic petroleum reserves, and decarbonization strategies must
be designed with explicit consideration of their downstream
effects on biofuel feedstock markets, while agricultural and
biofuel policies should embed energy market dynamics into
their formulation. Incorporating joint modeling tools and
scenario-based policy simulations (Zhang et al., 2025) can help
policymakers anticipate spillovers, mitigate systemic risks, and
strengthen market stability.

The asymmetric nature of volatility responses — with negative
shocks like trade disputes and geopolitical tensions amplifying
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market instability more than positive events — calls for targeted
stabilization instruments. Expanding strategic reserves of both
fossil fuels and biofuel feedstocks, adopting flexible biofuel
blending mandates responsive to volatility indicators, and
introducing countercyclical tariff and subsidy policies can help
buffer markets against shocks and dampen transmission effects
(Ji et al, 2020; Ozdemir, 2025). Commodity-specific risk-
management tools, including volatility-indexed derivatives and
cross-commodity hedging instruments, are also essential for
managing exposure, particularly for sensitive commodities such
as soybean, corn, and canola. Enhanced international coordination
— through transparent data sharing, harmonized trade policies, and
joint crisis-response mechanisms — can further reduce uncertainty
and moderate volatility spillovers in times of systemic disruption
(UNCTAD, 2025; FAO, 2025).

Finally, the finding that a wide range of exogenous shocks — from
Brexit and OPEC supply decisions to the COVID-19 pandemic
and renewed U.S.—China trade tensions — fundamentally reshape
volatility and co-movement dynamics highlights the importance
of forward-looking strategies. Policies must integrate long-term
considerations such as climate transition risks, shifting energy
demand, and the growing role of renewable sources into market
governance frameworks (Vo et al., 2024). Leveraging predictive
analytics, artificial intelligence, and early-warning systems can
enhance the ability to anticipate volatility spillovers and support
rapid policy adjustments. Together, these measures can strengthen
systemic resilience, stabilize prices, and safeguard both food and
energy security amid intensifying market interdependence and
geopolitical uncertainty.

REFERENCES

Abdelradi, F., Serra, T. (2015), Asymmetric price transmission in the EU
biodiesel supply chain. Energy Economics, 49, 114-122.

Alghalith, M. (2010), The interaction between food prices and oil prices.
Energy Economics, 32(6), 1520-1522.

Allen, D.E., McAleer, M., Peiris, S., Singh, A.K. (2018), Volatility
spillovers between crude oil and stock markets: Evidence from
asymmetric VARMA-GARCH models. Energy Economics, 75,
636-650.

Al-Maadid, A., Hasan, M.B., Al-Zahrani, B. (2017), Volatility spillovers
between oil prices and stock returns: New evidence from the GCC
countries. Energy Economics, 67, 374-382.

Algieri, B., Leccadito, A. (2017), Assessing contagion risk from energy
and non-energy commodity markets. Energy Economics, 62, 312-
322.

Aloui, C., Hkiri, B., Lau, C.K.M., Yarovaya, L. (2016), Investors’
sentiment and US Islamic and conventional indexes nexus: A time-
frequency analysis. Finance Research Letters, 19, 54-59.

Azam, A.H.M., Sarmidi, T., Nor, A.H.S.M., Zainuddin, M.R.K.V. (2020),
Co-movement among world vegetable oil prices: A wavelet-based
analysis. International Journal of Business and Society, 21(3),
1068-1086.

Amadeo, K. (2021), What is Trade Protectionism? Definition, Pros,
Cons, and Examples. The Balance. Available from: https://
www.thebalancemoney.com/trade-protectionism-pros-cons-and-
examples-3305896

AP News. (2025), China Retaliates with New Tariffs on U.S. Farm
Exports. Available from: https://apnews.com


http://www.thebalancemoney.com/trade-protectionism-pros-cons-and-

Avazkhodjaev, et al.: Trade War Shocks and Volatility Spillovers between Fossil Fuel Markets and Biofuel Feedstocks: Empirical Evidence
from the U.S.—China Trade Dispute

Avazkhodjaev, S., Dhiensiri, N., Rakhimov, E. (2024), Effects of crude oil
price uncertainty on fossil fuel production, clean energy consumption,
and output growth: An empirical study of the U.S. International
Journal of Energy Economics and Policy, 14(6), 371-383.

Avazkhodjaev, S., Usmonov, J., Bohdalova, M., Lau, W.Y. (2022),
The causal nexus between renewable energy, CO: emissions, and
economic growth: New evidence from CIS countries. International
Journal of Energy Economics and Policy, 12(6), 248-260.

Avazkhodjaev, S., Yakob, N.A.B., Lau, W.Y. (2022), Asymmetric effect
of renewable energy generation and clean energy on green economy
stock price: A nonlinear ARDL approach. International Journal of
Energy Economics and Policy, 12(1), 407-415.

Baker, S.R., Bloom, N., Davis, S.J. (2020), COVID-Induced Economic
Uncertainty. National Bureau of Economic Research Working Paper,
no 26983.

Bakht, Z., Beaumont-Smith, B. (2021), U.S. -China Trade War: Economic
Impacts and Policy Responses. The Heritage Foundation. Available
from:  https://www.heritage.org/trade/report/us-china-trade-war-
economic-impacts-and-policy-responses

Bakst, D., Beaumont-Smith, G. (2018), Agricultural Trade with
China: What’s at Stake for American Farmers, Ranchers, and
Families. Heritage Foundation: Backgrounder Heritage Foundation
Backgrounder.

Barboza Martignone, G.M., Ghosh, B., Papadas, D., Behrendt, K. (2024),
The rise of soybean in international commodity markets: A quantile
investigation. Heliyon, 10(15), e34669.

Baumeister, C., Hamilton, J.D. (2019), Structural interpretation of vector
autoregressions with incomplete identification: Revisiting the role
of oil supply and demand shocks. American Economic Review,
109(5), 1873-1910.

Bekiros, S., Gupta, R., Majumdar, A. (2016), Incorporating economic
policy uncertainty in U.S. equity premium models: A nonlinear
predictability analysis. Finance Research Letters, 18, 291-296.

Bloomberg News. (2018), U.S. -China Trade War Begins as Tariffs Take
Effect on Billions in Goods. Bloomberg. Available from: https://
www.bloomberg.com/news/articles/2018-07-06/u-s-china-trade-
war-begins-as-tariffs-take-effect

Biiyliksahin, B., Robe, M.A. (2014), Speculators, commodities and
cross-market linkages. Journal of International Money and Finance,
42, 38-70.

Cabrera, B.L., Schulz, F. (2016), Modeling the volatility transmission
between oil prices and stock returns: The role of OPEC. Energy
Economics, 60, 292-301.

Caldara, D., Iacoviello, M., Molligo, P., Prestipino, A., Raffo, A. (2022),
The economic effects of trade policy uncertainty. Journal of Monetary
Economics, 124, 1-25.

Cheng, H., Duan, X., Li, M. (2023), Trade tensions and commodity
volatility: Evidence from the U.S. -China trade war. Energy
Economics, 117, 106404.

Cheng, J., Li, Z., Huang, Y. (2023), Trade policy uncertainty and volatility
spillovers between crude oil and agricultural commodity markets:
Evidence fromthe U.S.-China trade war. Energy Economics, 120, 106715.
Clayton, M. (2016), The Rise of Protectionism: A Threat to Global
Trade. The Christian Science Monitor. Available from: https:/www.
csmonitor.com/Business/2016/0218/the-rise-of-protectionism-a-
threat-to-global-trade

Cuny, C.J. (1993), The role of liquidity in futures market innovations.
The Review of Financial Studies, 6(1), 57-78.

Dash, G., Maitra, D. (2017), Sentiment and stock market volatility
revisited: A time-frequency domain approach. Journal of Behavioral
and Experimental Finance, 15, 30-42.

De Paula Leite, A.C., Pimentel, L.M., De Almeida Monteiro, L. (2025),
Biofuel adoption in the transport sector: The impact of renewable

energy policies. Sustainable Energy Technologies and Assessments,
81, 104419.

Du, X., McPhail, L. (2012), Inside the black box: The price linkage
and transmission between energy and agricultural markets. Energy
Journal, 33(2), 171-194.

Electoral Commission. (2016), The 2016 EU referendum: Report on the
23 June 2016 referendum on the UK’s membership of the European
Union. London: Electoral Commission.

Engle, R., Kroner, K. (1995), Multivariate simultaneous generalized
ARCH. Econometric Theory, 52, 289-311.

Engle, R.F. (2002), Dynamic conditional correlation: A simple
class of multivariate generalized autoregressive conditional
heteroskedasticity models. Journal of Business and Economic
Statistics, 20(3), 339-350.

Eraslan, V., Ali, M. (2018), Volatility spillovers between energy and
agricultural commodity markets: Evidence from a VAR-GARCH
approach. Energy Economics, 75, 562-571.

European Biodiesel Board (EBB). (2013), EU Biodiesel Production and
Capacity Statistics. Available from: https://www.ebb-eu.org

FAO. (2025), Food Outlook-Biannual Report on Global Food Markets.
Food Outlook. Rome: Food and Agriculture Organization of the
United Nations.

Fowowe, B. (2016), Do oil prices drive agricultural commodity prices?
Evidence from South Africa. Energy, 104, 149-157.

Fernandez-Perez, A., Frijns, B., Tourani-Rad, A. (2016), Contemporaneous
interactions among fuel, biofuel and agricultural commodities.
Energy Economics, 58, 1-10.

Gardebroek, C., Hernandez, M. A. (2013), Do energy prices stimulate
food price volatility? Examining volatility transmission between
US oil, ethanol and corn markets. Energy Economics, 40, 119-129.

Grier, K.B., Henry, O.T., Olekalns, N., Shields, K. (2004), The asymmetric
effects of uncertainty on inflation and output growth. Journal of
Applied Econometrics, 19(5), 551-565.

Hafner, C.M., Herwartz, H. (2008), Testing for causality in variance using
multivariate GARCH models. Annales d’Economie et de Statistique,
89, 215-241.

Hasanov, A.S., Avazkhodjaev, S.S. (2022), Stochastic volatility models
with endogenous breaks in volatility forecasting. In: Terzioglu, M.K,
editor. Advances in Econometrics, Operational Research, Data
Science and Actuarial Studies. Springer, Berlin. p1-20.

Huang, J., Yang, J., Msangi, S., Rozelle, S., Weersink, A. (2012), Biofuels
and the poor: Global impact pathways of biofuels on agricultural
markets. Food Policy, 37(4), 439-451.

IMF. (2025), World Economic Outlook Update: Trade Tensions and
Commodity Market Volatility. United States: International Monetary
Fund.

Ji, Q., Liu, B.Y., Fan, Y. (2018), Risk dependence of crude oil and
agricultural commodities in China: A copula-CoVaR approach.
Energy Economics, 71, 175-186.

Kaltalioglu, M., Soytas, U. (2011), Volatility spillover from oil to food

and agricultural raw material markets. Modern Economy, 2(2), 71-76.

Karkowska, R., Urjasz, S. (2024), Importance of geopolitical risk in

volatility structure: New evidence from biofuels, crude oil, and grains
commodity markets. Journal of Commodity Markets, 36, 100440.

Kumari, P., Kumar, S. (2023), Biofuel feedstock volatility and crude oil
dynamics: Post-pandemic evidence. Renewable and Sustainable
Energy Reviews, 173, 113051.

Li, J., Zhou, Y. (2025), Biofuel policies and commodity linkages: Evidence
from the 45Z tax credit. Energy Policy, 179, 113635.

Liu, J., Serletis, A. (2025), Volatility and dependence in crude oil and
agricultural commodity markets. Applied Economics, 57(12),
1314-1325.

Liu, X. (2024), Geopolitical risk and currency/market responses. Journal

International Journal of Energy Economics and Policy | Vol 16 « Issue 1 * 2026



http://www.heritage.org/trade/report/us-china-trade-war-
http://www.bloomberg.com/news/articles/2018-07-06/u-s-china-trade-
http://www/
http://www.ebb-eu.org/

Avazkhodjaev, et al.: Trade War Shocks and Volatility Spillovers between Fossil Fuel Markets and Biofuel Feedstocks: Empirical Evidence
from the U.S.—China Trade Dispute

of Empirical Finance, 75, 124-1309.

Lu, F., Ma, F., Bouri, E. (2024), Stock market volatility predictability:
new evidence from energy consumption. Humanities and Social
Sciences Communications, 11(1), 1-17.

Luo, J., Ji, Q. (2018), High-frequency volatility connectedness between
the US crude oil market and China’s agricultural commodity markets.
Energy Economics, 76, 424-438.

Ljung, G.M., Box, G.E.P. (1978), On a measure of lack of fit in time
series models. Biometrika, 65(2), 297-303.

Ma, L., Li, D. (2024), Would macro policy promote green and low-
carbon transformation of energy companies? International Review
of Financial Analysis, 96, 103791.

Mandaci, P., Cakan, E. (2024), Tail-risk connectedness among fossil fuel
and U.S. agricultural markets during geopolitical tensions. Resources
Policy, 84, 103719.

Maneejuk, P., Huang, W., Yamaka, W. (2025), Asymmetric volatility
spillover effects from energy, agriculture, green bond, and financial
market uncertainty on carbon market during major market crisis.
Energy Economics, 145, 108430.

Mensi, W., Hammoudeh, S., Reboredo, J.C., Nguyen, D.K. (2017), Do
global factors impact the risk spillover across oil and food markets?
Energy Economics, 67, 489-503.

Natanelov, V., McKenzie, A.M., Van Huylenbroeck, G., Verbeke, W.
(2011), Crude oil-food commodity price relationships. Energy Policy,
39(5), 2753-2761.

Nazlioglu, S., Soytas, U. (2011), World oil prices and agricultural
commodity prices: Evidence from an emerging market. Energy
Economics, 33(3), 488-496.

Ozdemir, L., Vurur, N.S., Ozen, E., Swiecka, B., Grima, S. (2025),
Volatility modeling of the impact of geopolitical risk on commodity
markets. Economies, 13(4), 88.

Pal, D., Mitra, S.K. (2017), Causal relationship between oil price and
world food prices: Evidence from wavelet-based tests. Energy
Economics, 67, 141-153.

Pal, D., Mitra, S.K. (2019), On the time-frequency relationship between
oil and agricultural commodity markets: A wavelet-based analysis.
Resources Policy, 61, 564-578.

Pagan, A. (1984), Econometric issues in the analysis of regressions
with generated regressors. International Economic Review, 25(1),
221-247.

Perez-Liston, D., Huerta, D., Haq, S. (2016), Does Investor Sentiment
Impact the Returns and Volatility of Islamic Equities? (Working
Paper/Research Article Commonly Cited in the Islamic Finance
and Sentiment Literature; Typically Accessed Via Google Scholar
or SSRN).

Reboredo, J.C. (2012), Modelling oil and food price co-movement. Energy
Economics, 34(6), 1685-1691.

Reuters. (2025), U.S., China Launch New Talks as Tariff Truce Extended.
Available from: https://www.reuters.com/world/china/us-china-
launch-new-talks-tariff-truce-extension-easing-path-trump-xi-
meeting-2025-07-28

Reuters. (2025), Various Articles on U.S. -China Trade Conflict and
Commodity Tariffs. Available from: https://www.reuters.com
Rerzitis, A., Andrikopoulos, P., Daglis, T. (2024), Assessing the asymmetric
volatility linkages of energy and agricultural commodity futures
during low and high volatility regimes. Journal of Futures Markets,

44(3), 451-483.

Sadorsky, P. (1999), Oil Price Shocks and Stock Market Activity. Energy
Economics, 21(5), 449-469.

Serletis, A., Xu, L. (2019), Modelling volatility spillovers in energy
futures markets. Energy Economics, 78, 1-10.

Serra, T., Zilberman, D. (2013), Biofuel-related price transmission
literature: A review. Energy Economics, 37, 141-151.

Su, C.W., Wang, X.-Q., Tao, R. (2019), Nonlinear causality between
oil prices and food prices: New evidence from time-varying tests.
Energy Economics, 80, 1-9.

S&P Global Commodity Insights. (2024), Food, agriculture and biofuels:
Our top 10 predictions for 2024. Market Outlook. S&P Global, 2024.
Tiwari, A.K., Abakah, EJ.A., Adewuyi, A.O., Lee, C.C. (2022), Quantile
risk spillovers between energy and agricultural commodity markets:
Evidence from pre and during COVID-19 outbreak. Energy
Economics, 113, 106235.

United Nations Conference on Trade and Development (UNCTAD).
(2025), Global Trade Update: Policy Uncertainty. Geneva: UNCTAD.
Available from: https://unctad.org/global-trade-update-2025

Vo, D., Huang, L., Di. T. (2024), Climate risk and commodity market
dynamics in the energy transition era. Energy Policy, 179, 114023.

Wang, Y., Huang, Y. (2024), Trade shocks and commodity co-movements:
Evidence from the U.S. -China conflict. Resources Policy, 87,
103406.

Wang, Y., Wang, Y., Yang, L. (2013), Oil price shocks and stock market
activities: Evidence from oil-importing and oil-exporting countries.
J. Comp. Econ. 41 (4), 1220-1239.

Wei, Y., Wang, C., Li, X. (2024), Oil supply shocks, biofuel markets, and
agricultural commodity prices: Dynamic connectedness and policy
implications. Futures, 143, 224715.

World Bank. (2025), Commodity Markets Outlook, April 2025.
Washington, DC: World Bank.

Yale Budget Lab. (2025), The Effects of U.S. Tariffs Enacted in 2025.
The Budget Lab at Yale. Available from: https://budgetlab.yale.edu/
reports/us-tariffs-2025

Yang, Y., Gomez, S., Palacios, R. (2024), Renewable energy policies and
food commodity volatility in a decarbonizing world. Environmental
Economics and Policy Studies, 26(2), 213-236.

Zhang, H., Li, Z. (2024), Revisiting U.S. -China trade tensions: Spillover
effects on commodity markets. World Economy, 47(2), 352-372.

Zhang, Y., Liu, Q., Cheng, Z. (2025), Volatility spillovers and market
asymmetry between crude oil and biofuel feedstocks. Energy Journal,
46(3), 145-166.

Zhao, M., Chen, X., Huang, L. (2024), Edible oils under fire: The price
impact of speculative activity and carbon-neutral policy shocks.
Food Policy, 117, 102516.

International Journal of Energy Economics and Policy | Vol 16 « Issue 1 * 2026



http://www.reuters.com/world/china/us-china-
http://www.reuters.com/

	Salokhiddin Avazkhodjaev1*, Nont Dhiensiri1, Eshmurod Rakhimov2, Lobar Shayusupova2, Adiba Turaeva2
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. EMPIRICAL METHODOLOGY
	3.1. The VAR-GARCH-BEKK Model
	3.2. Volatility Impulse Response Function (VIRF) Analysis
	3.4. Empirical Data and Preliminary Analysis

	4. EMPIRICAL RESULTS AND DISCUSSION
	4.1. Cross-market Volatility Dynamics: Crude Oil and Agricultural Commodities
	4.2. The Influence of External Shocks on Volatility and Co-movement between Crude Oil and Biofuel Feedstock Commodities
	4.3. Results of Volatility Impulse Response Function (VIRF) Analysis

	5. CONCLUSION AND POLICY IMPLICATIONS
	5.1. Conclusion
	5.2. Policy Implications

	REFERENCES

