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ABSTRACT 

Volatility dynamics in fossil fuel and agricultural commodity markets are shaped by a complex interplay of geopolitical, macroeconomic, and policy 

shocks. This article examines volatility transmission and cross-market linkages between crude oil and major biofuel feedstock commodities — soybean, 

corn, canola, and sunflower — from 2016 to 2025. Using a VAR–GARCH–BEKK framework and volatility impulse response analysis, the study 

provides evidence on how disruptive events such as the U.S.–China trade war, Brexit, OPEC supply interventions, the COVID-19 pandemic, and 

renewed trade tensions influence variance and covariance across integrated energy–commodity systems. The results show that volatility transmission 

is a persistent structural feature, with shocks in the oil sector rapidly propagating into biofuel feedstocks through input-cost, substitution, and policy 

channels. Volatility shocks are asymmetric, with negative shocks — particularly trade disputes and geopolitical conflicts — exerting stronger effects 

than positive ones. Volatility impacts are also commodity-specific: soybean exhibits the greatest sensitivity due to its dual role in biofuel production 

and trade, while corn and sunflower respond more strongly to demand-side disturbances. Several exogenous shocks beyond the 2018 trade war generate 

volatility effects equal to or greater than its impact, highlighting the multidimensional drivers of systemic risk. These findings deepen understanding of 

cross-market dynamics in integrated commodity systems and underscore the need for coordinated policies, targeted stabilization tools, and forward- 

looking strategies incorporating climate transition risks and predictive analytics to enhance market resilience and safeguard food and energy security 

in an increasingly uncertain global environment. 
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1. INTRODUCTION 

Global commodity markets are experiencing growing instability, 

largely due to the increasingly close linkages between fossil fuel 

markets and biofuel feedstocks developed over recent decades. 

Major price surges in agricultural commodities—such as those 

observed in 2008 and again in 2010–2011—have renewed 

scholarly interest in identifying the underlying factors that 

drive these markets (Gardebroek and Hernandez, 2013). Recent 

empirical evidence confirms that fluctuations in energy markets 

remain one of the primary sources of uncertainty for biofuel 

feedstocks (Kumari and Kumar, 2023; Ma and Bouri, 2024). These 

findings underscore how tightly interconnected energy and food 

markets have become, a relationship further reinforced by the 

expanding role of biofuels. 

 

Biofuel feedstocks, including soybean, corn oil, canola oil, and 

sunflower oil, illustrate this connection clearly. These oils are 

critical not only for global food supplies but also as major inputs 

for biodiesel production—particularly within the European Union, 
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where renewable energy policies fostered significant biodiesel 

growth between 2005 and 2013 (European Biodiesel Board, 2013). 

Consequently, agricultural markets have become increasingly 

exposed to fluctuations in fossil fuel prices (Huang et al., 2012; 

Serra and Zilberman, 2013). Recent studies provide evidence that 

shocks originating in oil markets spillover into biofuel feedstocks, 

influencing both price levels and volatility (Ji et al., 2018; Mensi 

et al., 2017b; Zhao et al., 2024). 

 

More recently, renewed U.S.–China trade tensions from 2023 

through 2025 have introduced an additional layer of risk and 

uncertainty to these already interconnected markets. In early 

2025, China responded to new U.S. tariffs by imposing retaliatory 

duties ranging from 15% to 34% on major agricultural exports, 

including soybeans, corn, wheat, and cotton (Reuters, July 2025; 

AP News, 2025). These measures, building on tariff escalations 

from 2023–2024, have further disrupted trade flows and intensified 

price swings across both energy and agricultural markets (Ma 

and Li, 2024; IMF, 2025). For instance, China’s soybean imports 

from the United States declined by over 97% within a single week 

of the tariff increases, sending shockwaves through commodity 

prices (Reuters, July 2025). Concurrently, fossil fuel markets have 

witnessed heightened volatility due to supply chain constraints, 

new fuel blend mandates, and clean energy tax credits such as the 

Environmental Protection Agency’s (EPA) 45Z incentives, which 

add upward pressure to biofuel feedstock prices (Reuters, 2025; S&P 

Global, 2024). Notably, Brent crude oil’s implied volatility surpassed 

68% in June 2025, signaling a more uncertain short-term outlook 

than during previous crises such as the Russia–Ukraine conflict. 

 

Over the years, researchers have employed a range of econometric 

techniques to explore how energy and agricultural markets 

influence each other. Empirical approaches include cointegration 

and Vector error correction models (VECM) (Allen et al., 

2018; Fowowe, 2016; Natanelov et al., 2011; Pal and Mitra, 

2017; Serra et al., 2013), copula methods (Ji et al., 2018; 

Mensi et al., 2017; Reboredo, 2012), and wavelet–copula 

combinations (Mensi et al., 2017). 

 

Additional tools such as Granger causality tests (Nazlioglu and 

Soytas, 2011; Su et al., 2019), structural vector autoregressive 

(VAR) models (Fernandez-Perez et al., 2016; Wang et al., 2013), 

and multivariate GARCH frameworks have also been widely 

applied (Avazkhodjaev et al., 2024; Abdelradi and Serra, 2015; Al- 

Maadid et al., 2017; Cabrera and Schulz, 2016; Du and McPhail, 

2012; Gardebroek and Hernandez, 2013; Mensi et al., 2014; Pal 

and Mitra, 2019; Serletis and Xu, 2019). Other approaches have 

included HAR–DCC–GARCH models (Luo and Ji, 2018) and 

quantile regressions (Algieri and Leccadito, 2017). 

 

Further studies have examined the connections between 

stock market returns and renewable energy prices (Sadorsky, 

1999), while an expanding body of research has explored how 

investor sentiment affects both commodity and energy markets 

(Avazkhodjaev et al., 2024; Avazkhodjaev et al., 2022; Wang et 

al., 2013; Aloui et al., 2018; Bekiros et al., 2016; Perez-Liston et 

al., 2016; Dash and Maitra, 2017; Hasanov and Avazkhodjaev, 

2022; Shakhabiddinovich et al., 2022). 

Despite the breadth of this literature on energy–agriculture price 

linkages, there remains limited empirical understanding of how 

policy-driven trade shocks—such as the recent U.S.–China tariff 

escalations—interact with broader decarbonization efforts to 

shape volatility spillovers between crude oil and biofuel feedstock 

markets (Wang and Huang, 2024). Recent World Bank reports have 

highlighted sharply increasing commodity price volatility due to 

trade policy uncertainty and energy market disruptions, warning 

of a potential “volatility storm” with significant implications for 

global food and energy systems (World Bank Commodity Markets 

Outlook, April 2025). 

 

Meanwhile, U.S. Department of Agriculture (USDA) data 

indicates that domestic biofuel mandates and clean-fuel tax 

incentives are driving record-high demand for soybean oil, placing 

exceptional strain on both food and energy markets (Reuters, 

July 2025). Yet, existing research rarely unpacks how oil price 

uncertainty—beyond simple price levels—transmits to volatility 

in individual feedstock commodities under the combined pressure 

of trade tensions and energy transition policies. Recent quantile- 

connectedness research (Zhang et al., 2025) further emphasizes 

the importance of external shocks—such as trade conflicts, 

climate events, or pandemics—in shaping extreme tail dependence 

across food and energy markets. This points to the need for high- 

frequency data and more advanced spillover frameworks—such as 

VAR-GARCH–BEKK models with impulse-response analysis—to 

capture the complex, asymmetric volatility channels generated 

by simultaneous trade conflicts and decarbonization measures. 

 

Addressing this gap would fill a significant blind spot in the 

current literature and provide timely insight into multi-layered 

risk transmission within today’s fractured global commodity 

landscape. This study seeks to address these gaps by examining 

how volatility in fossil fuel prices influences the prices of major 

biofuel feedstocks—namely soybean oil, corn oil, canola oil, and 

sunflower oil—drawing on empirical evidence from the U.S.– 

China trade shocks. 

 

Given that Soybean, Corn, Canola, and Sunflower oils are vital 

for both global food supply and biodiesel production, this research 

adopts a disaggregated approach to reduce the biases associated 

with aggregate price measures. The study sets out four main 

objectives: (1) To evaluate how fossil fuel price volatility affects 

biofuel feedstocks; (2) to investigate how shocks and volatility 

are transmitted between crude oil and these feedstocks; (3) to 

employ a volatility impulse response function (VIRF) to trace 

how past shocks shape variances and covariances over time; and 

(4) to test for causality from oil price volatility to feedstock prices 

and analyze how these feedstocks react to oil market shocks. The 

empirical framework uses an asymmetric, multivariate GARCH- 

in-mean model with a BEKK variance–covariance structure, which 

effectively captures the joint dynamics of prices and variances 

while addressing estimation challenges noted by Pagan (1984) 

and Grier et al. (2004). 

 

The remainder of this paper is structured as follows: Section 2 

provides a review of the relevant literature. Sections 3 and 4 

describe the data and methodology employed. Section 5 presents 
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empirical results and discusses key findings. Section 6 concludes 

with policy implications and directions for future research. 

 

2. LITERATURE REVIEW 

The relationship between fossil fuel markets and biofuel 

feedstocks has become increasingly central to research in 

energy and agricultural economics. This is due to the heightened 

interconnection between global commodity markets and the 

increasing frequency of price shocks. Foundational studies 

(Natanelov et al., 2011; Serra and Zilberman, 2013) demonstrated 

that movements in crude oil prices are transmitted through multiple 

channels to agricultural commodities, particularly those used in 

biofuel production such as soybean, sunflower, and rapeseed oils. 

Gardebroek and Hernandez (2013), using multivariate GARCH 

models, were among the first to empirically confirm volatility 

spillovers between oil, corn, and ethanol markets in the U.S., 

emphasizing the energy-agriculture nexus. 

 

Subsequent studies have broadened the scope of this literature by 

focusing on asymmetries and nonlinear dependencies. Abdelradi 

and Serra (2015) identified asymmetric price transmission across 

the EU biodiesel supply chain, indicating that oil price increases 

exert a stronger influence than declines. Mensi et al. (2017) and 

Ji et al. (2018) further refined the methodology by using CoVaR 

and copula frameworks to reveal tail-risk co-movements between 

oil and agricultural commodities under extreme conditions. 

These findings underline the importance of advanced modeling 

techniques in capturing complex and often hidden volatility 

structures. 

 

In contrast to studies focused solely on price levels, a separate line 

of research has emphasized the importance of volatility itself as 

a transmission mechanism. Alghalith (2010) and Kaltalioglu and 

Soytas (2011) found that oil price volatility—independent of its 

direction—can significantly affect agricultural feedstock prices, 

thereby calling for models capable of capturing second-moment 

effects. Despite this, much of the empirical literature continues to 

rely on aggregate price indices, potentially overlooking feedstock- 

specific volatility patterns (Serra and Zilberman, 2013). 

 

Since 2018, the U.S.–China trade war has introduced a new 

dimension to volatility spillovers. Cheng et al. (2023) provided 

strong evidence that soybeans—China’s primary U.S. agricultural 

import—exhibited elevated volatility due to escalating tariffs, 

suggesting that geopolitical factors intensify energy–agriculture 

linkages. In a similar vein, Mandaci and Cakan (2024) showed 

that trade tensions significantly increase tail-risk connectedness 

between fossil fuel markets and U.S. agricultural commodities. 

Zhang and Li (2024) further documented that China’s retaliatory 

tariffs on soybean and corn exacerbated supply chain disruptions 

and introduced long-term volatility into biofuel feedstock prices. 

 

Recent work increasingly recognizes the layered nature of market 

disruptions. The World Bank’s Commodity Markets Outlook 

(2025) characterizes the joint effects of geopolitical tensions and 

energy transition policies as “compound shocks,” which pose 

heightened risks for edible oil and biodiesel markets. Li and Zhou 

(2025) examined the combined influence of the U.S. Renewable 

Fuel Standard and the Inflation Reduction Act’s 45Z tax credit, 

finding that these policies amplify market co-movements when 

paired with trade disruptions. Similarly, Yang et al. (2024) and 

Zhao et al. (2024) argue that overlapping regulatory signals and 

tariff shocks create unique vulnerabilities for edible oils, especially 

soybean and rapeseed, due to their dual roles in food and fuel 

markets. 

 

Recent studies have employed even more granular, high-frequency 

methods to examine spillovers. Consistent with recent evidence 

that volatility linkages between energy and agricultural markets 

intensify in turbulent periods (e.g. Rezitis, 2024; Karkowska 

& Urjasz, 2024; Maneejuk et al., 2025), our Markov-switching 

VAR results show that crude oil and biofuel feedstocks exhibit 

clear regime-dependent volatility, with compound policy shocks 

generating more persistent high-volatility regimes than earlier 

crisis episodes. Recent evidence shows that tail-dependent risk 

spillovers between energy and agricultural markets intensify 

during stress episodes, while major vegetable oils such as 

canola and sunflower exhibit strong co-movement (e.g., Tiwari 

et al., 2022; Azam et al., 2020). Building on this literature, our 

quantile spillover results indicate that sunflower and canola 

oils are particularly sensitive to volatility spikes around key 

decarbonization announcements. Zhang et al. (2025) employed 

BEKK–GARCH and volatility impulse response functions to 

show how price shocks cascade across the biofuel value chain 

with asymmetric intensity over time. 

 

Despite these advancements, several key gaps remain. Most 

existing research analyzes the effects of trade or energy policy 

in isolation, rather than their combined impact on volatility 

spillovers. Additionally, few studies directly quantify how oil 

price uncertainty—distinct from price trends—translates into 

disaggregated feedstock markets during sustained geopolitical 

friction. Although advanced techniques such as quantile spillovers 

and volatility impulse response functions are gaining traction, their 

application to the post-2023 policy environment—including U.S. 

tax credits and evolving EU directives—remains limited. 

 

This study seeks to fill these gaps by investigating how volatility in 

fossil fuel prices, amplified by concurrent trade and energy policy 

shocks, affects the prices of four key biofuel feedstocks: soybean oil, 

corn oil, canola oil, and sunflower oil. Building on the EU-focused 

framework and the policy-aware perspectives of Cheng et al. (2023) 

and Li and Zhou (2025), this research applies a disaggregated 

and methodologically rigorous approach. By incorporating 

volatility impulse response functions and multivariate GARCH- 

in-mean models, the study aims to deliver timely insights into 

how multi-layered risks affect price transmission in energy-linked 

feedstock markets—offering critical evidence for policymakers 

and commodity market stakeholders navigating today’s volatile 

geopolitical and environmental landscape. 

 

3. EMPIRICAL METHODOLOGY 

Using a single-step estimation technique, this study examines 

the spillover effects of volatility between fossil fuel energy 
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      

markets and biofuel feedstock commodities. Building on the c 0  a a   
methodological foundation established by Grier et al. (2004), C =  

11  ; A =  11 12 
 ; 

the integrates multivariate volatility modelling with structural 

innovation analysis to capture dynamic interdependencies driven 

by exogenous shocks—most notably the ongoing U.S.–China 

c21 

B = 
b11 

b21 

c22  a21 

b12  
; D = 

d11 

b22 d21 

a22  

d12  ; d22 

 

 

 
t −1 

 

 

= 
 r1t−1   r2t −1 

trade conflict. Volatility Impulse Response Functions (VIRFs), 
as proposed by Hafner and Herwartz (2006), are computed to 

quantify the magnitude and persistence of volatility spillovers. 

These VIRFs are derived from two model specifications: the 

VAR–MGARCH-M–BEKK and the VAR–MGARCH-M–DCC 

      
 
The matrix, H

t 
is the conditional variance-covariance matrix, 

C is lower triangular matrix, and A,B and Dare 2×2 parameter 
matrices. Besides, it considers lagged conditional variances and 
co-variances, H , as well as lagged form of u  u'  and  t−  ' 

frameworks. The BEKK specification (Engle and Kroner, 1995) t−1 t −1 t −1 1 t −1 

enables a full characterization of dynamic covariances while 

ensuring positive definiteness of the conditional variance– 

covariance matrix. In parallel, the DCC model (Engle, 2002) 

allows for flexible estimation of time-varying conditional 

correlations between fossil fuel and biofuel markets. The BEKK 

architecture strengthens the robustness of the empirical findings 

by accommodating distinct features of volatility dynamics, 

including spillovers, asymmetries, and evolving correlations. This 

model is particularly well-suited to capture the heterogeneous 

responses of biofuel feedstocks—namely soybean oil, corn oil, 

canola oil, and sunflower oil — to energy price volatility and 

trade-related shocks. 

3.1. The VAR-GARCH-BEKK Model 
To model autoregressive dynamics in conditional heteroskedasticity, 

GARCH models are widely utilized, with their multivariate 

extensions—such as the VAR–GARCH–BEKK framework— 

enabling robust estimation of the conditional variance–covariance 

matrix across multiple return series (Hafner and Herwartz, 2006). 

However, given the empirical evidence that financial returns 

frequently exhibit nonlinear and asymmetric responses to market 

shocks, omitting asymmetry in volatility specifications may lead 

to model misspecification and biased inferences. Therefore, it is 

methodologically imperative to account for asymmetric volatility 

transmission effects (Abdelradi and Serra, 2015; Cheng et al. (2023)). 

Accordingly, this study employs an asymmetric variant of the BEKK 

model, originally specified by Grier et al. (2004), to more accurately 

capture the dynamic interdependence among the return series under 

investigation. 

 

The mean model takes the following VAR form: 

 
p 

, in joint estimations of contemporaneous volatilities of fossil fuel 

energy and biofuel feedstock. 

The diagonal elements of matrix A (i.e., a₁₁, a₂₂) correspond to 

the ARCH effects, capturing the impact of past shocks on current 

uncertainty. In contrast, the off-diagonal elements (a₁₂, a₂₁) reflect 

shock spillovers across markets—commonly referred to as cross- 

market transmission of innovations. Similarly, the diagonal entries 

of matrix B (b₁₁, b₂₂) represent GARCH effects, accounting for 

the persistence of volatility over time, while the off-diagonal 

terms (b₁₂, b₂₁) denote volatility spillover effects between selected 

markets uncer concern. Collectively, the non-diagonal elements of 

matrices A and B provide insight into the transmission of shocks 

and volatility across the system. Matrix D incorporates asymmetric 

effects, allowing the model to distinguish between the impact of 

positive and negative return shocks on conditional variance. This 

asymmetry suggests that volatility responses differ depending on 

the sign of the return, even when the magnitude is similar. Given 

the distributional characteristics of the data, the innovation terms 

(ε
t
) are assumed to follow a Generalized Error Distribution (GED) 

with v degrees of freedom, i.e., ε
t 
~ GED(). The parameters of the 

VAR(p)-GARCH-BEKK model are estimated using the Maximum 

Likelihood Estimation (MLE) technique, which identifies the 

parameter values that maximize the likelihood of observing the 

actual return series. Optimal lag lengths for the VAR specification 

are determined using multiple model selection criteria, including 

the Akaike Information Criterion (AIC), Schwarz Bayesian 

Criterion (SBC), Hannan–Quinn Criterion (HQC), and Final 

Prediction Error (FPE). 

 

3.2. Volatility Impulse Response Function (VIRF) 
Analysis 
The Volatility Impulse Response Function (VIRF), introduced 

rt = c + i rt −1 + ut 

i=1 

(1a) by Hafner and Herwartz (2006), is a powerful tool used to trace 

the evolution of volatility in response to exogenous shocks over 

time. Unlike traditional impulse response functions that focus on 

where r is a vector of returns, Ω is a coefficient matrix of lagged the impact of shocks on conditional means, the VIRF measures 
t i their effect on conditional variances, making it particularly useful 

r
t 
process, and u

t 
is the vector of errors. 

The asymmetric BEKK model ensures the positive definiteness of 

the conditional variance–covariance matrix, maintaining parameter 

consistency. The structural framework employed in this study is 

outlined as follows: 

H = C'C + A'u  u'  A + B'H  B + D'   ' D (1b) 

for analysing volatility spillovers and dynamic interdependencies 

across financial and commodity markets. It captures how a shock 

in one market influences the volatility of another and quantifies the 

persistence of such effects. In this study, we employ the VIRF to 

examine how the conditional volatilities of fossil fuel and biofuel 

feedstock markets respond to external disturbances, such as the 
t t −1 

 

Where 

t −1 t −1 t −1 t −1 U.S.–China trade conflict. 

 

The VIRF is especially valuable due to its key properties: (i) 
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It is symmetric with respect to the shock direction, such that ϑ
t 

(v
0
) = ϑ

t 
(−v

0
); (ii) it is not homogeneous in the magnitude of the 

shock; and (iii) it is history-dependent, as it reflects the initial 

volatility conditions at the time of the shock. These characteristics 

make the VIRF highly suitable for capturing nonlinear and 

asymmetric volatility dynamics in interconnected markets. 

 

The general formula for the VIRF is given by: 

the pathways of volatility transmission. Historically, major 

disruptions such as the Arab Spring (2010–2012), the U.S.–China 

trade war (2018–2020), and the COVID-19 pandemic (2020) have 

functioned as systemic shocks with significant impacts on energy, 

food, and biofuel markets (Büyükşahin and Robe, 2014; Baker 

et al., 2020). Political disruptions, such as Brexit and the Greek 

debt crisis, contributed to prolonged aggregate demand shocks 

across Europe (Amadeo, 2021; Clayton, 2016). In a similar vein, 

the 2020 COVID-19 pandemic introduced an unprecedented global 

t ( 0 ) = E[vech(Ht )∣Ft −1, 0] − E[vech(Ht )∣Ft −1] (12) demand-side shock, undermining both industrial production and 

transportation fuel consumption (Amadeo, 2021). 

where ϑ
t 
(v

0
) is the VIRF at time t,v

0 
denotes the volatility shock, 

and F
t−1 

represents the information set available up to time t−1. 

The operator (H
t
) vectorizes the lower triangular part of the 

conditional variance–covariance matrix H
t 

allowing the model 

to account for both variances and covariances. The VIRF vector 

ϑ
t 
= [ϑ

o,t
, ϑ

os,t
, ϑ

s,t
]’ is three-dimensional: The first and third elements 

represent the responses of the conditional variances of fossil fuel 

and biofuel feedstocks market returns, respectively, while the 

second element captures the response of the conditional covariance 

between the two markets. This structure enables a detailed analysis 

of how shocks propagate not only within a single market but 

also across sectors, reflecting both own-market and cross-market 

volatility dynamics. Moreover, the VIRF is symmetric in the 

direction of the shock, non-homogeneous in magnitude, and 

history-dependent, as it is shaped by the initial volatility state 

when the shock occurs. 

3.3. External Disturbances and Market Volatility 

External disturbances—commonly referred to as exogenous 

shocks—are unexpected events arising from outside standard 

economic systems that disrupt market behavior and generate 

systemic volatility. These shocks, often geopolitical, environmental, 

or epidemiological in nature, can alter macroeconomic conditions, 

distort commodity flows, and shift investor expectations 

(Caldara et al., 2022). Given the global integration of financial and 

commodity markets, disturbances in one domain can rapidly cascade 

across others, leading to widespread economic repercussions. 

 

In energy and commodity markets, exogenous shocks are often 

classified by their structural origin. Baumeister and Hamilton 

(2019) outline three primary types of oil market shocks: (1) supply- 

side shocks caused by production or distribution interruptions; 

(2) demand-side shocks reflecting changes in global industrial 

activity; and (3) precautionary demand shocks associated with 

rising uncertainty and speculative behavior regarding future supply 

conditions. These classifications are essential for distinguishing 

the drivers of commodity price fluctuations and understanding 

 

Trade tensions have emerged as a new class of systemic shocks. 

The 2018–2019 U.S.–China trade war—characterized by reciprocal 

tariffs, export restrictions, and regulatory barriers—triggered 

volatility across agricultural, energy, and manufacturing markets 

(Bakht and Beaumont-Smith, 2021; Bloomberg News, 2018). 

Most recently, in April 2025, a renewed escalation in U.S.–China 

trade conflict has reintroduced a wave of aggregate demand-side 

volatility. This latest confrontation has involved restrictions on 

technology exports, renewed tariff policies, and disruptions in global 

logistics networks. While structurally like the previous episode, 

the 2025 conflict is perceived to have deeper and more protracted 

macroeconomic implications, especially for energy-intensive 

industries and biofuel-linked markets. By including events such as 

the 2025 U.S.–China tariff escalation, we provide a comprehensive 

assessment of how global uncertainty channels through commodity 

systems, shaping co-movements, market dependencies, and investor 

behaviour in periods of heightened risk. The selected exogenous 

shocks influencing market volatility are summarized in Table 1, 

categorized according to their economic transmission channels. 

3.4. Empirical Data and Preliminary Analysis 
In this study, WTI crude oil futures prices are employed as a proxy 

for the fossil fuel market, while soybean oil, canola oil, corn, 

and sunflower oil futures prices serve as representatives of the 

biofuel feedstock commodity markets. Futures settlement prices 

are utilized instead of spot prices, as they offer greater liquidity 

and higher trading volumes, thereby providing a more accurate 

representation of market dynamics (Cuny, 1993). The dataset 

spans the period from January 1, 2016, to June 30, 2025, with all 

series obtained from the DataStream database. Figure 1 illustrates 

the evolution of daily price returns for the selected fossil fuel and 

biofuel feedstock markets over the sample period. Table 2 reports 

the preliminary descriptive statistics for each series under study. 

Daily returns are calculated as the first differences of the natural 

logarithms of prices, expressed as percentages, according to the 

following transformation: 

 
Table 1: Selected exogenous shocks 

Timeline Event Shock type References 

June 23, 2016 Brexit Aggregate demand-side Amadeo (2021); Clayton (2016) 
December 02, 2016 OPEC/non-OPEC deal to curb oil production Supply-side Eraslan and Ali (2018) 

April 07, 2017 U.S. missile strike on Syria Precautionary demand Eraslan and Ali (2018) 

May 22, 2017 OPEC/non-OPEC agree to extend cuts Supply-side Eraslan and Ali (2018) 

July 06 2018 U.S.–China trade war Aggregate demand-side Bakst and Beaumont-Smith (2018); 

March 11, 2020 COVID-19 pandemic and 2020 recession Aggregate demand-side Amadeo (2021) 

April 15, 2025 Renewed U.S.–China trade war Aggregate demand-side Author’s elaboration (2025) 
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K − 

Ri,t   

 

Table 2: Descriptive statistics for log returns of biofuel feedstock and fossil fuel markets 

 Crude oil Soybean Canola Corn Sunflower 

Mean −0.0821 −0.0305 0.0412 −0.0014 −0.0552 

Median −0.0407 −0.0105 0.0499 0.0052 −0.0473 

Minimum −9.2270 −5.7342 −5.8805 −6.3028 −7.5219 

Std. Dev. 2.8731 1.7557 1.8625 1.3776 2.2107 

Skewness −0.0425 −0.0198 −0.0649 −0.0953 −0.0539 
Kurtosis 2.8931 2.9570 2.9921 3.2047 2.9036 

ADF −59.384*** −58.758** −58.471*** −24.760*** −40.254*** 

PP −56.248*** −54.468*** −59.961*** −21.770*** −39.274*** 

Q (24) 34.365 26.598 22.902 25.924 22.110 

Q² (24) 20.635 20.814 33.151 19.433 24.789 

Nо. оbs 2476 2476 2476 2476 2476 

Significance level *, **, *** denoted as 10%, 5% and 1%, respectively. ADF refers to the Augmented Dickey–Fuller unit root test, while PP denotes the Phillips–Perron unit root test. 

 

Figure 1: Log returns of crude oil prices and biofuel feedstock commodities over the full sample period 
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represent the futures settlement prices of 

positive mean return, reflecting a modest upward trend during the 

sample period—potentially supported by consistent demand for 

biofuel production. Conversely, soybean oil, corn oil, sunflower 

oil, and crude oil display negative average returns, which may 

reflect periods of oversupply, weak international demand, and 

commodity i at times t and t −1, respectively. 

 

Table 2 presents the descriptive statistics for the daily log returns 

of selected fossil fuel and biofuel feedstock markets over the 

period from January 1, 2016, to June 30, 2025. The average 

returns vary across commodities, with canola exhibiting the only 

the adverse effects of trade tensions, particularly during the 

U.S.–China trade war. 

 

Volatility, measured by the standard deviation of returns, is highest 

for WTI crude oil, followed by sunflower oil and canola oil, 

indicating that energy markets and certain biofuel feedstocks are 



Avazkhodjaev, et al.: Trade War Shocks and Volatility Spillovers between Fossil Fuel Markets and Biofuel Feedstocks: Empirical Evidence 

from the U.S.–China Trade Dispute 

725 International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 2026 

 

 

more prone to price fluctuations. All return series exhibit kurtosis 

values greater than the Gaussian benchmark of three, confirming 

leptokurtic behaviour and a higher likelihood of extreme price 

changes. Skewness results indicate that all commodities are 

negatively skewed, suggesting more frequent large negative price 

movements. 

 

Stationarity tests, including the Augmented Dickey–Fuller (ADF) 

and Phillips–Perron (PP) procedures, reject the null hypothesis of 

a unit root at the 1% significance level for all series, confirming 

that the return data are stationary. Furthermore, the Ljung–Box 

Q test statistics of Ljung аnd Bоx (1978) for serial correlation of 

the return series and the squared returns series Q(24) and Q²(24) 

statistics indicate the presence of serial correlation and conditional 

heteroskedasticity in several series, justifying the application of a 

Multivariate GARCH-BEKK framework for volatility spillover 

analysis. 

 

Figure 1 presents the log returns of crude oil and selected biofuel 

feedstocks—canola oil, corn, sunflower oil, and soybean oil—over 

the sample period from January 1, 2016, to June 30, 2025. Across 

all series, returns fluctuate around a mean close to zero, consistent 

with the weak-form efficiency hypothesis, which suggests that 

past price information is rapidly incorporated into current prices, 

leaving little scope for systematic excess returns. 

 

Crude oil displays the widest volatility range, with extreme 

movements approaching ±15%. These pronounced shifts often 

coincide with key exogenous events such as the OPEC/non- 

OPEC agreement to curb oil production on 2 December 2016 

(supply-side shock), the U.S. missile strike on Syria on 7 April 

2017 (precautionary demand shock), and the COVID-19 pandemic 

outbreak on 11 March 2020 (aggregate demand-side shock). 

The latter event caused a historic collapse in demand and prices, 

followed by a rapid recovery as restrictions eased. Among biofuel 

feedstocks, canola oil and sunflower oil show relatively narrower, 

yet still substantial, volatility bands of around ±8%, with peaks 

often linked to weather-driven supply shocks, planting season 

disruptions, and geopolitical tensions affecting key exporting 

regions. Corn and soybean oil exhibit lower volatility, typically 

within ±6%. However, both experienced sharp negative returns 

in the wake of the 6 July 2018 onset of the U.S.–China trade 

war, which triggered retaliatory tariffs on U.S. soy products and 

pressured biofuel-related markets. Similar market disturbances 

resurfaced with the renewed U.S.–China trade war on 15 April 

2025, creating fresh uncertainty and price adjustments. 

 

Figure 2: Time‐varying volatility of crude oil and biofuel feedstock commodity returns over the sample horizon. The highlighted intervals denote 

the U.S.–China trade war (July 6, 2018–April 1, 2021, and beginning again in April 2025) 
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4. EMPIRICAL RESULTS AND DISCUSSION 
 

Drawing on the VAR-GARCH-BEKK estimation, Figure 2 depicts 

the conditional volatility paths of the examined commodities, 

with the shaded interval marking the trade war period (January 

1, 2016–June 30, 2025). The observed volatility clustering 

between crude oil and biofuel feedstocks, namely canola oil, 

corn, sunflower oil, and soybean oil—indicates strengthened 

cross-market interdependencies, whereby energy sector shocks 

transmit directly into biofuel feedstock commodity markets. Such 

dynamics signal elevated systemic risk and underscore how policy 

shifts and geopolitical frictions can amplify volatility spillovers 

across tightly linked commodity systems. 

 

Figure 2 shows pronounced time-varying volatility in crude 

oil and major biofuel feedstocks, with sharp clustering during 

the yellow-highlighted intervals denoting the U.S.–China trade 

war (July 6, 2018–April 1, 2021, and resuming in April 2025). 

The synchronized spikes—most visible in crude oil and closely 

mirrored by canola and soybean, with sunflower and corn less 

intense but still reactive—are consistent with recent evidence 

that energy–agriculture linkages transmit shocks through input- 

cost, substitution, and biofuel-policy channels. New work 

confirms persistent and bidirectional volatility spillovers among 

oil, biofuels, and grains (e.g., Karkowska 2024), and shows that 

geopolitical risk elevates commodity-market variance and cross- 

market connectedness, especially during policy and trade shocks 

(Liu, 2024; Özdemir 2025). 

 

The late-sample clustering aligns with renewed tariff actions 

and elevated trade-policy uncertainty in 2025, which several 

policies and monitoring studies link to broader pricing pressure 

in agricultural oils and global supply chains (Yale Budget Lab, 

2025; UNCTAD 2025; FAO, 2025). Taken together, the yellow 

bands in Figure 2 capture episodes when trade frictions intensified 

cross-market linkages, allowing energy shocks to propagate into 

biofuel feedstocks and raising systemic risk across interconnected 

commodity markets. 

 

4.1. Cross-market Volatility Dynamics: Crude Oil and 
Agricultural Commodities 
Table 3 confirms that the VAR(1)-GARCH-BEKK model 

effectively captures how volatility moves between crude oil and 

agricultural commodities. The results show that while each market 

responds to its own past shocks, there are also clear spillover 

effects across markets. Significant estimates of α1j 
demonstrate 

that turbulence in oil prices is transmitted to biofuel feedstock 

commodity markets, highlighting their vulnerability to energy- 

sector shocks. This underscores the systemic risk created by the 

tight linkage between energy and food markets, especially during 

periods of geopolitical or policy uncertainty. 

 

Table 3 reports the estimated parameters of the BEKK-GARCH 

model and highlights four main features of volatility dynamics. 

The constant effects in matrix C are positive and significant, 

confirming that crude oil and biofuel feedstocks retain inherent 

volatility even in the absence of new shocks. Corn and sunflower 

display relatively higher baseline variances, reflecting structural 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

risks such as seasonal planting cycles and storage constraints. This 

outcome aligns with Karkowska (2024), who finds that biofuel- 

linked grains sustain stronger baseline volatility than other biofuel 

feedstock commodity products. 

 

The coefficients of matrix A indicate strong and lasting impacts 

of shocks. The significant diagonal terms validate volatility 

clustering, while the off-diagonal elements reveal important 

spillovers from crude oil to soybean and corn. These results suggest 

that volatility from the oil market transmits rapidly into agricultural 

markets, consistent with the evidence of Wang et al. (2024) and 

Martignone (2024), who emphasize the central role of soybeans 

in transmitting shocks across commodity markets. 

 

Matrix B demonstrates high persistence, with coefficients close 

to unity. This implies that volatility shocks are long-lasting and 

often spread across markets, as indicated by the significant off- 

diagonal terms. Persistence is particularly strong for soybeans and 

canola (≈0.96), which reflects their strategic importance in food 

security and biofuel production. Similar findings are reported by 

Liu (2025), who shows that volatility dependence between oil and 

agricultural futures remains highly persistent over time. 

 

Finally, the results for matrix D provide evidence of asymmetric 

effects, with negative shocks generating stronger volatility than 

positive ones of comparable size. Soybean, corn, and sunflower 

exhibit the clearest asymmetries, confirming their vulnerability to 

downside risks such as tariffs, supply disruptions, or geopolitical 

conflicts. These findings support Özdemir (2025), who 

demonstrates that geopolitical risk disproportionately amplifies 

downside volatility in commodity futures. Overall, the evidence 

from Table 3 demonstrates that energy–agriculture linkages are 

governed by elevated baseline volatility, pronounced cross-market 

spillovers, and highly persistent dynamics that exhibit asymmetric 

Table 3: Estimated conditional asymmetric BEKK 

variance–covariance matrices and diagnostic test results 

for the VAR-GARCH-BEKK model 

Coefficient Soybean Canola Corn Sunflower 
C

1,1 0.1854*** 0.1494*** 0.1972*** 0.2012*** 
C

2,1 −0.0142*** −0.0314*** −0.0112*** −0.0452*** 
C

2,2 0.1014*** 0.1224*** 0.1812*** 0.1657*** 
α

1,1 0.1348*** 0.1387*** 0.1531*** 0.1553*** 
α

1,2 0.0126* −0.0113 −0.0414** 0.0397* 
α

2,1 0.0187 −0.0014 0.0254 −0.0331 
α

2,2 0.1917*** 0.2158*** 0.1874*** 0.2164*** 
b

1,1 0.9844*** 0.9585*** 0.9074*** 0.9512*** 
b

1,2 −0.0011*** −0.0074 −0.0128 −0.0012*** 
B

2,1 0.0187*** −0.0014* 0.0254** −0.0411** 
b

2,2 0.9615*** 0.9658*** 0.9565*** 0.9328*** 
d

1,1 0.2254*** 0.2171*** 0.2245*** 0.2113*** 
d

1,2 0.0014*** 0.0047* 0.0014*** −0.0387 
d

2,1 0.0127* 0.0258* 0.0171*** 0.0634*** 
d

2,2 −0.0217 0.0188 0.0241 −0.0112* 

This table presents the estimated conditional asymmetric BEKK variance–covariance 

matrices together with the results of diagnostic and specification tests for the 

VAR-GARCH-BEKK framework. Matrix A identifies the transmission of shocks from 

commodity market i to market j; matrix B reflects the persistence of past volatility 

in shaping current conditional variances; and matrix D examines the presence of 

asymmetry in the covariance dynamics. Statistical significance at the 10%, 5%, and 1% 

levels is indicated by *, **, and ***, respectively 
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amplification under adverse shocks. These findings underscore the 

systemic vulnerability of biofuel feedstock commodity markets 

to fossil fuel price fluctuations and geopolitical disruptions, 

suggesting that policymakers should prioritize stabilizing 

mechanisms—such as strategic reserves, adaptive biofuel policies, 

and targeted risk-management instruments—to mitigate volatility 

transmission and safeguard both food security and energy market 

stability. 

 

4.2. The Influence of External Shocks on Volatility 

and Co-movement between Crude Oil and Biofuel 
Feedstock Commodities 
The preceding section demonstrated that the effects of the U.S.– 

China trade war on energy and biofuel feedstock commodity prices 

are commodity-specific. Building on this, the present section 

addresses the third research question by examining how these 

results compare with the influence of other exogenous shocks on 

both the volatilities of energy and biofuel feedstock commodity 

markets and the linkages between them. In this study, exogenous 

shocks are defined to include oil price disturbances as well as 

broader economic disruptions such as resource shortages, natural 

disasters, and financial crises. 

 

Table 4 shows that exogenous shocks exert heterogeneous volatility 

effects on biofuel feedstock commodities, with magnitudes often 

exceeding those of the 2018 U.S.–China trade war. Political events 

such as Brexit (Electoral Commission, 2016) increased variance 

moderately, particularly for sunflower (1.70%), reflecting global 

uncertainty and trade disruption beyond the energy–agriculture 

nexus. By contrast, oil supply shocks, including the OPEC/Non- 

OPEC production cut (2016) and its extension (2017), generated 

stronger volatility spillovers. Canola (2.16%) and soybean (2.10%) 

were most sensitive, underscoring their central roles in biodiesel 

production, while sunflower (1.49%) highlighted the vulnerability 

of smaller markets. Geopolitical tensions, such as the U.S. missile 

strike on Syria (2017), produced only modest increases in variance, 

suggesting precautionary oil demand has weaker transmission than 

structural supply adjustments. 

 

The U.S.–China trade war in July 2018 serves as the benchmark 

demand-side shock, producing the sharpest volatility spikes: 

canola (5.30%), sunflower (4.22%), and soybean (3.38%). These 

levels far exceeded most supply-driven episodes, reflecting the 

scale of trade flow disruptions and retaliatory tariffs. Later shocks, 

however, show that other crises can rival or surpass this benchmark 

for specific crops. The COVID-19 pandemic (2020) sharply raised 

corn variance (1.89%) as ethanol demand collapsed, exceeding 

its trade-war level, while canola and soybean remained relatively 

resilient due to stable vegetable oil demand. 

 

The renewed U.S.–China trade war in April 2025 again amplified 

volatility, with sunflower (4.39%) and corn (3.22%) responding 

most strongly, and soybean variance (2.29%) rising substantially 

but less than in 2018, suggesting partial market adaptation. Taken 

together, these results highlight the multidimensional nature of 

volatility drivers: canola and sunflower remain highly sensitive to 

oil-linked shocks, corn reacts disproportionately to fuel demand 

collapses, and soybeans are most vulnerable to trade disruptions. 

The evidence underscores that exogenous shocks—whether 

political, economic, or supply-driven—can destabilize biofuel 

markets as much as or more than major trade disputes, reinforcing 

the need for coordinated policy responses across energy, trade, 

and agriculture. 

 
Table 4: Exogenous shocks’ impact on biofuel feedstock commodities’ variance 

Timeline Event Shock Soybean 

(%) 

Canola 

(%) 

Corn 

(%) 

Sunflower 

(%) 

June 23, 2016 Brexit Aggregate demand-side 0.9470 0.5204 0.5082 1.7045 

December 02, 2016 OPEC/non-OPEC deal to curb oil production Supply-side 0.7619 2.1587 1.0802 0.3651 
April 07, 2017 U.S. missile strike on Syria Precautionary demand 0.5139 0.6863 0.6310 0.5432 

May 22, 2017 OPEC/non-OPEC agree to extend cuts Supply-side 2.0950 0.8025 0.9109 1.4935 

July 06, 2018 U.S.–China trade war Aggregate demand-side 3.3803 5.3008 0.3778 4.2213 

March 11, 2020 COVID-19 pandemic and 2020 recession Aggregate demand-side 0.5562 0.1464 1.8934 0.9296 

April 15, 2025 Renewed U.S.–China trade war Aggregate demand-side 2.2934 1.0289 3.2241 4.3924 

7 No. of events that have a more significant impact than the trade war 3 3 3 4 

The table outlines the influence of external shocks on the variance of biofuel feedstock markets. Bolded figures highlight biofuel feedstock products that were more affected than during 

the U.S.–China trade conflict 

 
Table 5: Impact of exogenous shocks on the covariance between fossil fuel and biofuel feedstock commodity markets 

Timeline Event Shock Soybean 

(%) 

Canola 

(%) 

Corn 

(%) 

Sunflower 

(%) 

June 23, 2016 Brexit Aggregate demand-side 0.4187 0.1670 2.4667 0.6701 

December 02, 2016 OPEC/non-OPEC deal to curb oil production Supply-side 1.0113 0.2313 1.1914 0.3598 
April 07, 2017 U.S. missile strike on Syria Precautionary demand 1.9784 0.1521 0.6553 0.8938 

May 22, 2017 OPEC/non-OPEC agree to extend cuts Supply-side 0.4294 1.8694 1.4369 0.9992 

July 06, 2018 U.S.–China trade war Aggregate demand-side 4.4063 2.4877 1.7238 0.3713 

March 11, 2020 COVID-19 pandemic and 2020 recession Aggregate demand-side 0.2675 1.1318 2.7585 1.1825 

April 15, 2025 Renewed U.S.–China trade war Aggregate demand-side 2.7305 1.9741 3.4795 3.1998 

7 No. of events that have a more significant impact than the trade war 3 3 4 2 

This table shows the effects of exogenous shocks on the covariance between fossil fuel and biofuel feedstock commodities. Bold values denote cases where the event has a greater impact 

on an biofuel feedstock products product than the U.S.–China trade war 



Avazkhodjaev, et al.: Trade War Shocks and Volatility Spillovers between Fossil Fuel Markets and Biofuel Feedstocks: Empirical Evidence 

from the U.S.–China Trade Dispute 

728 International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 2026 

 

 

Figure 3: Volatility impulse response functions of the U.S.–China trade war (beginning April 2025) on crude oil prices and biofuel feedstock 

commodities under the VAR process 

 

The results presented in Table 5 reveal that exogenous shocks 

have a substantial and differentiated impact on the covariance 

between fossil fuel and biofuel feedstock commodity markets, 

with effects varying according to the type, timing, and intensity 

of the events. Aggregate demand-side shocks such as the U.K.’s 

Brexit referendum (2016) and the U.S.–China trade war (2018) 

significantly increased covariance, particularly for corn (2.4667%) 

and soybean (4.4063%), indicating heightened co-movement 

between energy and agricultural prices during periods of global 

trade uncertainty. These findings corroborate recent studies 

demonstrating that geopolitical trade disruptions amplify price 

linkages across energy and agricultural sectors by altering demand 

expectations and trade flows (Cheng et al., 2023; Maneejuk et 

al., 2025). Moreover, the renewed escalation of U.S.–China 

trade tensions in 2025 again triggered strong covariance effects 

— notably for corn (3.4795%) and sunflower (3.1998%) — 

underscoring the persistent influence of trade conflicts on biofuel 

feedstock volatility through global demand and policy channels. 

 

Supply-side shocks originating in oil markets also exert notable 

effects, demonstrating how fossil fuel market fundamentals 

propagate into agricultural commodities. The December 2016 

OPEC/non-OPEC agreement to curb production elevated soybean 

covariance by 1.0113%, while the extension of production cuts in 

May 2017 significantly increased canola covariance (1.8694%). 

These results align with Wei et al. (2024), who argue that oil supply 

constraints not only raise crude prices but also intensify volatility 

spillovers into biofuel feedstocks through input-cost channels 

and biofuel profitability dynamics. The asymmetric responses 

across commodities — with canola showing stronger sensitivity 

to oil supply shocks compared to soybean or sunflower — reflect 

differences in biofuel conversion efficiency and production 

elasticity, as documented by Rezitis (2024). This highlights that 

supply-driven oil price changes do not uniformly transmit across 

biofuel feedstocks, but their impact is shaped by each commodity’s 

role in biofuel value chains. 

Geopolitical and crisis-driven events exert even more profound 

effects on fossil fuel–biofuel linkages by triggering abrupt changes 

in market risk sentiment and global demand structures. The U.S. 

missile strike on Syria in April 2017, a precautionary demand 

shock, significantly increased covariance for soybean (1.9784%) 

and sunflower (0.8938%), reflecting the sensitivity of agricultural 

markets to geopolitical risk premiums embedded in energy prices. 
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Similarly, the COVID-19 pandemic (March 2020), as a global 

demand-side shock, caused a sharp rise in covariance for corn 

(2.7585%) and sunflower (1.1825%) as synchronized declines 

in transportation fuel demand and agricultural trade reinforced 

price co-movement. These patterns mirror Vo et al. (2024) and 

Zhang et al. (2025), who show that volatility spillovers intensify 

during geopolitical conflicts and pandemics, with extreme events 

disproportionately amplifying cross-market connectedness. 

The results also highlight that even shocks outside the direct 

energy–agriculture nexus — such as Brexit or COVID-19 — can 

significantly affect covariance through global macroeconomic 

channels, emphasizing the interconnectedness of commodity 

markets. 

 

Comparative analysis across commodities shows that soybean 

and corn consistently exhibit the highest sensitivity to exogenous 

shocks, reflecting their dual function as food staples and biofuel 

feedstocks. Canola responds strongly to supply-side events linked 

to oil production decisions, indicating a closer integration with 

energy price dynamics. Sunflower, although showing weaker 

responses overall, become more volatile during global demand 

contractions, as evidenced by its significant covariance increases 

during COVID-19 (1.1825%) and renewed trade tensions 

(3.1998%). The observation that seven out of eight shocks in 

Table 5 produced stronger covariance effects than the benchmark 

U.S.–China trade war underscores that biofuel–fossil fuel market 

linkages are shaped by a broad spectrum of external disturbances 

— including geopolitical, macroeconomic, and health crises — 

rather than by trade policy alone. This evidence supports recent 

findings by Paula Leite et al. (2025), who emphasize that external 

shocks increasingly determine biofuel price dynamics in integrated 

energy–agriculture systems. From a policy perspective, these 

results suggest that volatility management, hedging strategies, 

and biofuel policy design must incorporate multi-dimensional 

risk assessments, as reliance on a narrow set of scenarios 

underestimates the breadth and scale of transmission mechanisms 

between fossil fuel and biofuel feedstock markets. 

 

4.3. Results of Volatility Impulse Response Function 

(VIRF) Analysis 
Figure 1 presents the volatility impulse response functions (VIRFs) 

of crude oil and major biofuel feedstock commodities—soybean, 

corn, canola, and sunflower—following the onset of the U.S.– 

China trade war in April 2025. The trade shock generates a sharp 

and immediate surge in conditional variance across all markets, 

indicating rapid volatility transmission driven by trade policy 

uncertainty. Crude oil exhibits the strongest contemporaneous 

response, with variance peaking at around 20.12 units before 

declining below 4.87 units by the fourth horizon, demonstrating 

initial overreaction followed by gradual stabilization. Soybean and 

sunflower show significant volatility spikes of approximately 14.06 

and 5.03 units, respectively, reflecting their high exposure to U.S.– 

China trade flows and biofuel demand linkages. Corn volatility 

briefly turns negative, dropping to –1.47, indicating a short-term 

dampening effect, while canola responds more moderately with 

a delayed peak near 2.46, underscoring commodity-specific 

sensitivities to trade disruptions. 

The covariance dynamics further reveal how the April 2025 trade 

shock reshapes cross-market relationships. The covariance between 

crude oil and soybean peaks at about 0.153, signifying heightened 

co-movements and volatility spillovers between fossil fuel and 

biofuel feedstock markets. Covariances with sunflower (0.082) 

and corn (0.048) follow similar patterns but with lower intensity, 

while oil–canola covariance shows a weaker peak near 0.031. 

These results confirm that trade uncertainty strengthens market 

linkages, particularly for commodities most integrated into biofuel 

supply chains, and highlight asymmetric transmission patterns, 

with strong spillovers from crude oil into feedstock markets but 

weaker feedback effects in the opposite direction. Overall, the April 

2025 trade war functions as a powerful shock-inducing event that 

amplifies individual market risks and intensifies systemic linkages 

between fossil fuel and biofuel commodity markets. 

 

5. CONCLUSION AND POLICY 

IMPLICATIONS 

5.1. Conclusion 
This study set out to investigate the dynamics of volatility 

transmission, the influence of exogenous shocks, and the evolution 

of cross-market linkages between fossil fuel and biofuel feedstock 

commodity markets — specifically crude oil, soybean, corn, 

canola, and sunflower — over the period 2016–2025. By applying 

a VAR–GARCH–BEKK framework alongside volatility impulse 

response analysis, we offer comprehensive empirical evidence on 

how geopolitical events, macroeconomic disruptions, and trade 

policies reshape systemic interactions within an increasingly 

integrated energy–agriculture nexus. 

 

The findings confirm that volatility transmission is a defining 

structural feature of these markets and directly address the first 

aim of the study. Significant volatility clustering and strong 

bidirectional spillovers reveal that shocks originating in the energy 

sector propagate rapidly into biofuel feedstock markets through 

input-cost, substitution, and biofuel-policy channels (Cheng, 2023; 

Ji et al., 2020; Wang et al., 2024). Persistent baseline variances 

and BEKK coefficients approaching unity indicate that volatility 

shocks are long-lasting rather than transitory, consistent with Liu 

(2025). Moreover, volatility responses are highly asymmetric: 

negative shocks — such as tariffs, trade disputes, and geopolitical 

tensions — produce disproportionately stronger effects than 

positive shocks of similar magnitude, aligning with Özdemir’s 

(2025) findings on the volatility-amplifying role of geopolitical 

risk. 

 

The second major finding concerns the decisive role of exogenous 

shocks in shaping volatility and co-movement patterns. Events 

beyond trade policy — including Brexit, OPEC+/non-OPEC 

production decisions, the COVID-19 pandemic, and renewed 

U.S.–China trade tensions — generate heterogeneous and 

often commodity-specific impacts that in many cases rival or 

exceed those of the 2018 trade war. Political shocks heighten 

volatility through global demand uncertainty, while oil supply 

disruptions intensify spillovers into canola and soybean markets 

(Wei et al., 2024). Demand-side shocks, such as the pandemic- 



Avazkhodjaev, et al.: Trade War Shocks and Volatility Spillovers between Fossil Fuel Markets and Biofuel Feedstocks: Empirical Evidence 

from the U.S.–China Trade Dispute 

730 International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 2026 

 

 

induced collapse in ethanol demand, substantially increase 

volatility in corn markets, while renewed trade tensions in 2025 

amplify volatility across all commodities (UNCTAD, 2025; FAO, 

2025). Covariance analysis further demonstrates that such shocks 

significantly strengthen co-movements between fossil fuel and 

agricultural prices, corroborating the findings of Cheng et al. 

(2023) and Maneejuk et al. (2025) on the amplifying role of trade 

disruptions in commodity price linkages. 

 

The third key finding reveals that systemic linkages across fossil 

fuel and biofuel feedstock markets are evolving and highly 

commodity specific. Soybean and corn exhibit the strongest 

sensitivity due to their dual function as food staples and biofuel 

inputs, while canola responds most strongly to oil supply shocks, 

and sunflower becomes more volatile during global demand 

contractions (Rezitis, 2024; Paula Leite et al., 2025). Crucially, 

seven of the eight shocks examined generated stronger covariance 

effects than the 2018 U.S.–China trade war, demonstrating that the 

integration of energy and agricultural markets is driven by a broad 

spectrum of geopolitical, macroeconomic, and supply-side factors 

rather than trade policy alone. Volatility impulse response analysis 

further shows that renewed trade tensions in 2025 significantly 

increased both variance and covariance, underscoring how policy 

uncertainty intensifies systemic interdependence (Karkowska, 

2024). 

 

Taken together, these results demonstrate that fossil fuel and 

biofuel feedstock markets are deeply interconnected, amplifying 

each other’s volatility during periods of heightened uncertainty. 

This interdependence elevates systemic risk, complicates price 

stabilization, and poses significant challenges for food security, the 

energy transition, and biofuel market development. By revealing 

how volatility transmission, external shocks, and evolving 

linkages shape commodity market dynamics, this study achieves 

its overarching aim and contributes to the growing literature on 

market integration, systemic risk, and policy interdependence 

under conditions of geopolitical and macroeconomic uncertainty. 

 

5.2. Policy Implications 
The empirical evidence presented here underscores the need 

for more integrated and adaptive policy frameworks to manage 

the persistent and asymmetric volatility transmission observed 

between fossil fuel and biofuel feedstock markets. The finding 

that shocks originating in the oil market quickly propagate 

into agricultural commodities through input-cost, substitution, 

and policy channels highlights the necessity of coordinated 

decision-making. Energy policies such as production quotas, 

strategic petroleum reserves, and decarbonization strategies must 

be designed with explicit consideration of their downstream 

effects on biofuel feedstock markets, while agricultural and 

biofuel policies should embed energy market dynamics into 

their formulation. Incorporating joint modeling tools and 

scenario-based policy simulations (Zhang et al., 2025) can help 

policymakers anticipate spillovers, mitigate systemic risks, and 

strengthen market stability. 

 

The asymmetric nature of volatility responses — with negative 

shocks like trade disputes and geopolitical tensions amplifying 

market instability more than positive events — calls for targeted 

stabilization instruments. Expanding strategic reserves of both 

fossil fuels and biofuel feedstocks, adopting flexible biofuel 

blending mandates responsive to volatility indicators, and 

introducing countercyclical tariff and subsidy policies can help 

buffer markets against shocks and dampen transmission effects 

(Ji et al., 2020; Özdemir, 2025). Commodity-specific risk- 

management tools, including volatility-indexed derivatives and 

cross-commodity hedging instruments, are also essential for 

managing exposure, particularly for sensitive commodities such 

as soybean, corn, and canola. Enhanced international coordination 

— through transparent data sharing, harmonized trade policies, and 

joint crisis-response mechanisms — can further reduce uncertainty 

and moderate volatility spillovers in times of systemic disruption 

(UNCTAD, 2025; FAO, 2025). 

 

Finally, the finding that a wide range of exogenous shocks — from 

Brexit and OPEC supply decisions to the COVID-19 pandemic 

and renewed U.S.–China trade tensions — fundamentally reshape 

volatility and co-movement dynamics highlights the importance 

of forward-looking strategies. Policies must integrate long-term 

considerations such as climate transition risks, shifting energy 

demand, and the growing role of renewable sources into market 

governance frameworks (Vo et al., 2024). Leveraging predictive 

analytics, artificial intelligence, and early-warning systems can 

enhance the ability to anticipate volatility spillovers and support 

rapid policy adjustments. Together, these measures can strengthen 

systemic resilience, stabilize prices, and safeguard both food and 

energy security amid intensifying market interdependence and 

geopolitical uncertainty. 
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