

The Dynamics of FDI Inflows, Economic Growth, Trade Openness and CO₂ Emissions in India: An ARDL Approach with Structural Breaks

Tamilselvan Manickam¹, N. C. Vijayakumar², G. Sathis Kumar³, Srinivasan Pazhamalai^{4*}, S. Ravindra Babu⁵

¹Department of Business Studies, University of Technology and Applied Sciences, Ibri, Sultanate of Oman, ²Alliance School of Business, Alliance University, Bangalore, Karnataka, India, ³School of Social Sciences and Languages, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India, ⁴Faculty of Management Studies, CMS Business School, JAIN (Deemed-to-be University), Bengaluru, Karnataka, India, ⁵School of Business and Management, Christ (Deemed to be) University, Bengaluru, Karnataka, India. *Email: srinivasaneco@gmail.com

Received: 20 June 2025

Accepted: 14 October 2025

DOI: <https://doi.org/10.32479/ijep.21558>

ABSTRACT

The present study empirically investigates the causal relationship among FDI inflows, economic growth, trade openness, and CO₂ emissions in India from 1980 to 2023, employing the autoregressive distributed lag (ARDL) approach. Unlike previous studies, the structural breakpoints are identified in the time-series data using the multiple breakpoint test to incorporate into the ARDL model. The cointegration test shows a significant long-term relationship between the variables. The error correction model with structural breaks reveals a bidirectional causation between the FDI inflows and trade openness, validating the long-term complementary relationship. However, there is no significant evidence of causation between FDI inflows and economic growth in the long run. Besides, the FDI-Growth nexus is bidirectional in the short run, with the impact of FDI on GDP growth being relatively modest. While GDP and trade contribute to CO₂ emissions, the study indicates no significant relationship between FDI inflows and CO₂ emissions in both the long and short run. The findings do not support the pollution haven hypothesis in the Indian economy. The study emphasizes the establishment of future-ready infrastructure for the green FDI inflows, rather than the FDI that primarily focuses on generating employment opportunities in the economy.

Keywords: Foreign Direct Investment, Economic Growth, Trade Openness, CO₂ Emissions, Autoregressive Distributed Lag Approach, India
JEL Classifications: C12, F21, F23

1. INTRODUCTION

Foreign direct investment (FDI) is widely acknowledged as a significant driver of economic growth and trade liberalization, particularly within emerging economies, due to greater financial and economic integration (Dinh et al., 2019). Neoclassical economists posit that increases in FDI inflows bolster economic growth by crowd-in domestic investment. It facilitates technological progress and capital accumulation, thereby improving efficiency.

Endogenous growth theory further highlights that FDI enhances productivity through spillover effects. Additionally, FDI can promote domestic investment, generate employment opportunities, and encourage skills development and knowledge transfer (Solow, 1956; Romer, 1986; Grossman and Helpman, 1991). Nonetheless, the dependency theorists emphasize the potential risk that FDI could impede output growth by concentrating economic power in the hands of foreign entities, leading to profit repatriation and restricted reinvestment in host economies (Cardoso, 1977).

Moreover, the high economic growth attracts more FDI into the country (Markusen, 1995). A larger market size characterizes a higher GDP, increased per capita income, and a stable macroeconomic environment. Such conditions foster investor confidence in the potential for profit and return on investment.

FDI and trade openness exhibit substitute and complementary relations. The substitute and complementary relationship is referred to as horizontal FDI and vertical FDI, respectively. Vertical FDI involves firms leveraging advanced technologies alongside cheap resources in developing countries, primarily driven by cost considerations (Fonseca and Mendonça, 2016). Conversely, horizontal FDI occurs in advanced economies, motivated by market-seeking objectives (Kang, 2012). This distinction highlights the differing motivations behind these two types of FDI, with unique economic strategies in international trade. FDI occurs in a host country to leverage comparative advantages, subsequently enhancing trade flows through increased exports from the host country. Local Firms choose between export and FDI to enter foreign markets, and entry depends on transportation costs, trade barriers, and the host country's market demand. This investment often serves as a substitute for imports in the host country. Besides, it was established that absorptive capacity is critical for FDI inflows to influence trade openness positively (Tang and Zhang, 2016). Liberalized trade policy (tariff and non-tariff barriers) and favourable FDI policy can encourage foreign capital to support import substitution strategies (Su et al., 2018). In other words, trade liberalization positively influences FDI inflows by enhancing the investment environment, providing better market access, and lowering business barriers for foreign investors.

The nexus between FDI inflows, economic growth and trade openness has emerged as a pivotal area of inquiry in sustainable development. FDI can significantly lower pollution intensity in firms, particularly in lightly polluting industries and regions with better absorption capabilities (Wang and Liu, 2024; Chang et al., 2022). It often brings advanced technologies that improve resource efficiency and pollution management, contributing to better environmental outcomes. Besides, FDI improves environmental quality by introducing sustainable practices, supporting the Pollution Halo Hypothesis (Zhao and Peng, 2024). In contrast, the pollution haven effect states that developing countries may attract FDI, leading to increased pollution, as foreign firms exploit weaker environmental regulations, creating "polluted paradise" (Liu and Guo, 2023). Further, the impact of FDI varies significantly between developing and developed nations, with middle-income countries often experiencing increased pollution levels due to lax regulations (Zhao and Peng, 2024). Without robust environmental policies, the influx of FDI can lead to resource over-exploitation and environmental degradation (Ngoc et al., 2025).

On the theoretical arguments, the relationship between FDI, GDP, trade openness, and pollution remains complex and depends on which effect dominates the other effects. Given the necessity to address climate change, exploring the relationship between FDI inflows, economic growth, and trade openness in alignment with environmental quality is essential. This will provide significant

insights into how the Indian economy can harness the economic advantages of FDI while reducing its environmental impacts. Furthermore, the Indian economy, characterized by limited capital and inadequate environmental regulations, predominantly depends on non-renewable energy sources like coal to attract FDI in energy-intensive and carbon-heavy sectors (Sarkodie and Strezov, 2019). This situation raises an empirical question: while FDI fosters economic growth and trade, it may also challenge and adversely affect the environmental quality of the Indian economy. Our study empirically investigates the causal nexus between FDI inflows, economic growth, and trade openness. Besides, it explores the effects of FDI inflows, economic growth, and trade openness on CO₂ emissions in India. This research contributes to the existing body of knowledge in multiple ways. Unlike other studies, it uses the ARDL approach with structural breaks that can handle variables with mixed integration orders (I[0] and I[1]), avoids pre-testing for unit roots, and can be used to estimate long run relationships even with small sample sizes. Incorporating structural breaks allows the model to account for potential shifts or changes between variables over time, leading to more accurate and robust results. Further, while earlier studies mainly concentrate on economic factors, this study integrates a key environmental variable (CO₂ emission) as a regressand, offering a broader framework to explore the dynamics of economic factors influencing environmental quality. Finally, this research carries considerable implications for both policymakers and investors. If FDI inflows are determined to increase CO₂ emissions without effective governance and policies focused on sustainability, it emphasizes the necessity for more stringent environmental regulations and incentives for green investments. On the other hand, if FDI inflows, economic growth, and trade openness are found to alleviate these environmental effects, it underscores the significance of aligning these factors with sustainability goals. Such insights could assist policymakers in formulating frameworks that optimize the economic advantages of FDI while reducing its environmental impacts. It also guides investors in identifying opportunities in the Indian economy that align with sustainable development.

The structure of this paper is as follows: Section 2 reviews the relevant literature. Section 3 introduces the data and methods. Section 4 presents the empirical results. Section 5 concludes the study and provides policy recommendations.

2. LITERATURE REVIEW

2.1. FDI Inflows and Economic Growth Nexus

Numerous studies have explored the causal relationship between FDI inflows and economic growth in various countries and regions. Kurečić and Kozina (2017) examined the FDI-GDP relationship among EU15 member states from 1980 to 2014, found a positive correlation in most countries. The authors emphasized that FDI is a significant growth driver in less developed EU states. Using cointegration and the error correction model, Talwar and Srivastava (2018) examined the FDI-GDP nexus across countries at different stages of development—Bhutan, Ethiopia, India, Brazil, the USA, and the UK. The authors showed a long-term equilibrium relationship between FDI and GDP in Ethiopia, India, and the UK,

but not in Bhutan, Brazil, or the USA. The research concludes that the developmental effects of FDI differ based on the context of the specific country and suggests against excessive reliance on FDI for short-term growth. Mansoor and Bibi (2019) utilized ARDL approaches and causality tests to demonstrate that FDI positively influences economic growth in Pakistan, highlighting the need for stable exchange rates and supportive policies to sustain long-term growth. Verma (2020) analyzed FDI inflows on GDP per capita in India, China, the Philippines, and Vietnam and concluded that FDI enhances income growth through technological transfers. Li (2020) demonstrated that FDI contributes positively to economic growth in Shandong Province, China, advocating for strategies that enhance export activities and target FDI in industrial sectors.

Using the cointegration and the error correction model, Tanoe (2021) confirmed a positive long-term relationship between FDI and GDP in Sub-Saharan African nations. Taghiyev and Mahmud (2022) also identified a long-term relationship and a unidirectional causality from FDI to GDP in Azerbaijan, highlighting the liberalized foreign investment for economic development. Similarly, Angola (2022) found unidirectional causality from FDI to GDP in Zambia. Research conducted by Sabra (2021) in selected MENA (Middle East and North Africa) countries revealed a negligible but positive effect of FDI on GDP. The study highlights the need for institutional and structural reforms to enhance the growth benefits of foreign investment. Lingaiah (2021) and Begum et al. (2023) demonstrated a positive effect of FDI on GDP in India and Bangladesh, respectively. The study highlights the necessity for institutional reforms to attract foreign investment, which supports sustained development. Kumar (2023) found no significant relationship between FDI inflows and economic growth in Ethiopia. Besides, the analysis revealed a positive impact of FDI on GDP in 14 East African nations, suggesting that FDI is essential for regional growth. Bobek et al. (2024) reported a positive association between FDI and GDP in both China and India, highlighting the need to strengthen institutional frameworks to maximize the benefits of foreign investment. Xuan (2025) demonstrated a significant positive correlation between FDI and GDP in Germany, advocating for growth strategies driven by investment and support for innovations and sustainability initiatives.

Studies have also shown that economic growth often signals a favourable investment climate, increased market size, and business confidence, making a country more appealing to foreign investors. For instance, Kosztowniak (2016) demonstrated a bidirectional causation among FDI and GDP in Poland, with GDP exerting a more substantial impact on FDI. The study suggests that policy reforms should focus on enhancing employment growth, improving the quality of FDI inflows, and boosting domestic investments. Pečarić et al. (2021) established that GDP growth has a significant impact on FDI inflows in Croatia. Similarly, Anwar et al. (2023) found that GDP growth positively influences FDI inflows in the ASEAN-5 countries. The authors suggest that strong macroeconomic performance would attract more foreign investment. Recently, Güz et al. (2025) examined the factors affecting FDI inflows across 54 nations and confirmed a positive correlation between GDP and FDI. Their study indicates that high

economic growth, institutional quality and liberal trade policies are needed to attract foreign capital.

FDI is often seen as a driver of economic growth, but some studies suggest that its impact on GDP can be negligible or even negative. Ramadhan et al. (2016) analyzed the effects of FDI inflows on economic growth in Mozambique and South Africa from 1996 to 2014. Utilizing the ordinary least squares (OLS) technique, the research indicated that FDI had a positive but insignificant effect in Mozambique. Besides, FDI was statistically significant but had a negative impact on GDP in South Africa. The authors suggest enhancing infrastructure sectors, business environment, and governance structures to attain long-term economic growth from foreign investment. Alvarado et al. (2017) investigated the impact of FDI inflows on GDP across 19 Latin American countries using panel data analysis. Their findings indicated that the effect of FDI on economic growth is not statistically significant however, this effect varies based on the developmental levels of the countries in the region. FDI shows a positive and statistically significant impact on output growth in high-income countries. Conversely, the effect is uneven and not statistically significant in upper-middle-income countries. In lower-middle-income countries, the impact of FDI is negative and statistically significant. Using cointegration and Granger causality tests, Al-Masbhi and Du (2020) indicated no causal nexus between FDI and GDP growth in Yemen. Employing time-series analysis and Artificial Neural Networks (ANNs) in a production function framework, Magazzino and Mele (2022) supported the neutrality hypothesis, suggesting no significant causal link between FDI and GDP in Malta during the study period.

2.2. FDI Inflows and Trade Nexus

Sun (1999) explored the impact of FDI on foreign trade in China using macroeconomic and firm-level analysis and found that foreign-invested enterprises (FIEs) played a significant role in trade expansion. Liu et al. (2001) applied panel data analysis from 1984 to 1998 and identified that FDI stimulate exports in China. Using panel data analysis, Jensen (2004) observed that the effect of FDI on trade was more moderate in the Central and Eastern European countries. Africano and Magalhães (2005) applied a gravity model to examine the causal nexus between trade flows and FDI inflows in Portugal. The results revealed that inward FDI boosted exports, especially within the EU. Kosekahyaoglu (2006) applied the Granger causality tests for Turkey and Central and Eastern European countries and confirmed a complementary FDI–trade relationship. Aizenman and Noy (2006) applied time-series analysis and Geweke decomposition. They found strong bidirectional causality between FDI and manufacturing trade—50% influence from FDI to trade and 31% in reverse. Similarly, Ghosh (2007) used panel data from 1970 to 1997 for developing countries and found that FDI was a stronger driver of trade openness than vice versa. Dash and Sharma (2011) used VAR and Granger causality tests. They found bidirectional causality between FDI and imports and unidirectional causality from exports to FDI, supporting export promotion to attract investment in India.

Anwar and Nguyen (2011) employed a gravity model for Vietnam and concluded that FDI had a robust positive effect on exports and imports, particularly post-crisis, urging for resilience-focused FDI

policies. For a panel of 36 developing countries, Liargovas and Skandalis (2012) found that trade openness significantly attracted FDI inflows. Belloumi (2015) applied ARDL bounds testing for Tunisia and confirmed long run cointegration among FDI, trade openness, and GDP, but no short run causality. The authors recommended policies that enhance absorptive capacity. Dash and Parida (2013) applied cointegration and the error correction model for India and found that services exports and FDI are mutually reinforcing, and both positively contributed to economic growth. Using the Hausman-Taylor estimator for Malaysia, Goh and Tham (2013) observed that inward FDI complements trade. For the emerging countries, Medvedev (2012) showed that preferential trade agreements significantly increase FDI flows. Frutos-Bencze et al. (2017) used dynamic panel models and found that FDI promotes export diversification in African economies, especially in low-tech sectors. Albulescu and Goyeau (2019) used gravity models for Central and Eastern European countries from 2000 to 2013 and found inward FDI had weaker effects on trade openness. Cantah et al. (2018) applied dynamic panel GMM to Sub-Saharan Africa and found that trade openness significantly boosts FDI inflows. The study suggests tariff reductions and liberal reforms. Pan and Chong (2023) performed social network analysis for the Belt and Road Initiative (BRI) countries and established that FDI significantly improved trade, especially in medium-tech exports post-BRI. The study recommends sector-specific coordination to sustain gains in the region.

2.3. FDI and Pollution Nexus

The impact of FDI inflows on environmental concerns has sparked a global discourse on sustainable development. Researchers have begun to examine how the influx of foreign capital can contribute to both the degradation and enhancement of environmental quality. Chen et al. (2022) analyzed provincial data in China using spatial econometric and threshold models. They found that FDI improved emission efficiency and water quality, refuting the pollution haven hypothesis, which states FDI can increase pollution in host countries, particularly those with weaker environmental regulations. The authors suggested the need to promote export-oriented and eco-innovative foreign capital inflows. Liu and Zhang (2022) employed firm-level data around the global financial crisis in China. They showed that FDI reduced air pollution, especially where trade openness and governance were strong, supporting the pollution halo hypothesis. Wang et al. (2021) performed spatial Durbin and panel threshold models and showed that FDI inflows improved emission efficiency and generated positive spatial spillovers. Bhujabal et al. (2021) demonstrated that FDI reduced emissions in Asia-Pacific countries.

While studies highlight that FDI significantly reduces emissions, a growing body of research reveals adverse effects of FDI towards emissions. Marques and Caetano (2022) applied a panel ARDL model to 15 OECD countries from 2005 to 2016 and found FDI inflows linked to rising emissions, recommending stricter environmental controls. Using threshold regression on 107 countries, Deng et al. (2022) found that FDI reduced pollution only below certain income thresholds, suggesting income-level-sensitive environmental policies. Ha and Nguyen (2021) employed the system GMM estimation on 86 developing countries and observed that FDI worsens pollution. Caetano et al. (2022)

examined FDI in electricity and services sectors for the OECD countries and found improved energy efficiency in certain areas but overall increased pollution. Using spatial autoregressive analysis, An et al. (2021) reported an inverted “U-shaped” association between FDI and pollution in China. Bulus and Koc (2021) validated that FDI, GDP, energy use, and imports raised emissions in Korea, recommending expansion of green growth policies and stricter FDI regulation. For a panel of 105 developing economies, Kamal et al. (2021) confirmed that FDI and globalization increased CO₂ emissions. The authors recommended restructuring industrial sectors and implementing carbon-free macroeconomic policies. Using a semi-parametric STIRPAT model on the Chinese economy, Xu et al. (2020) found a positive association between FDI and SO₂ emissions. Huang et al. (2021) reported that FDI increased PM2.5 pollution in China. For Asian countries, Kisswani and Zaitouni (2021) found mixed evidence—FDI increased pollution in the Philippines (PHH) but negatively impacted Malaysia and Singapore. Mahmood (2025) applied a spatial durbin model in Latin America and found FDI had no significant environmental effect, though growth raised emissions. Chiriluș and Costea (2023) showed that CO₂ emissions influenced FDI inflows, with economic growth being the main pollution driver in Romania. Fu et al. (2023) confirmed the pollution haven hypothesis in central and western China. Nguyen et al. (2023) found that FDI increased pollution in ASEAN countries, validating the pollution haven hypothesis. Apergis et al. (2023) showed that bilateral FDI had mixed effects on emissions in BRICS. Wu and Wang (2023) found that FDI worsened air pollution in China and an inverted U-shape effect, especially in central and western regions. Xie and Zhang (2023) observed that global FDI raised haze pollution, but environmental regulation moderated the impact. Applying the Difference-in-Differences approach, Liu et al. (2025) showed that FDI lowered firm-level emissions in China. The authors recommended the FDI liberalized strategy to achieve growth with environmental sustainability.

The existing literature indicates that FDI significantly influences the economic growth of host nations; however, there exists a notable gap in research regarding its relationship with environmental pollution. The Indian economy has experienced substantial FDI inflows since implementing economic reforms, establishing itself as an attractive destination for such investments. Nonetheless, the impact of FDI on economic growth and trade in India remains contentious, with various studies producing conflicting evidence. Furthermore, the literature has predominantly concentrated on the economic advantages of FDI, such as output growth, trade, and spillover effects, while often neglecting the environmental consequences. This neglect is particularly alarming, as the increase in industrial activity concerning FDI inflows can result in increased pollution levels in India, complicating the evaluation of ecological footprint. On the methodological front, prior studies mainly used traditional econometric techniques without accounting for structural breaks, which can mislead results and obscure the underlying relationships between variables. It is essential to address these research gaps to formulate comprehensive policies that not only attract foreign investment but also protect environmental integrity, thereby ensuring sustainable development in the long run. The current study also employed robust least squares methods to validate the results.

3. METHODOLOGY

3.1. Data Sources

The study uses annual time series data from 1980 to 202. All necessary information is collected from the World Development Indicators (WDI) provided by the World Bank. Foreign Direct Investment (FDI) is measured as net foreign direct investment inflows as a percentage of GDP. Gross domestic product (GDP) is expressed in constant 2015 US dollars. Trade openness is the percentage of exports and imports relative to GDP. Following Sreenu (2022), Rana and Sharma (2020), and Bekun et al. (2024), pollution is represented by carbon dioxide (CO₂) emissions per capita. This reflects the total annual CO₂ emissions—among the six greenhouse gases recognized in the Kyoto Protocol—derived from the agriculture, energy, waste, and industrial sectors, standardized to carbon dioxide equivalent values and divided by the population of the economy.

3.2. Model Specification

To evaluate the stationarity of the time series data while accounting for structural breaks, the study employs the augmented dickey-fuller (ADF) test, including additive outliers (AO) and Innovative Outliers (IO) as outlined by Perron (1989). The ARDL approach is then used to investigate the long run and short run causal relationships among FDI inflows, GDP, trade, and CO₂ emissions. To ensure a robust ARDL analysis, the study identifies potential structural breaks in the time series data using the multiple structural breakpoint test developed by Bai and Perron (2003). Using a general-to-specific modelling framework, the ARDL method selects suitable lags to capture the data-generating process effectively. The ARDL bounds test is represented in Equations (5-8).

$$\begin{aligned} \Delta InFDI_t = \beta_0 + \sum_{i=1}^m \delta_1 \Delta InFDI_{t-i} + \sum_{i=1}^n \delta_2 \Delta InGDP_{t-i} \\ + \sum_{i=1}^n \delta_3 \Delta InTRADE_{t-i} + \beta_1 InFDI_{t-i} + \beta_2 InGDP_{t-i} \\ + \beta_3 InTRADE_{t-i} + \lambda_1 D_{1t} + \lambda_2 D_{2t} + \lambda_3 D_{3t} + \varepsilon_t \end{aligned} \quad (1)$$

$$\begin{aligned} \Delta InGDP_t = \beta_4 + \sum_{i=1}^m \delta_4 \Delta InFDI_{t-i} + \sum_{i=1}^n \delta_5 \Delta InGDP_{t-i} \\ + \sum_{i=1}^n \delta_6 \Delta InTRADE_{t-i} + \beta_5 InFDI_{t-i} + \beta_6 InGDP_{t-i} \\ + \beta_7 InTRADE_{t-i} + \lambda_4 D_{4t} + \lambda_5 D_{5t} + \lambda_6 D_{6t} \\ + \lambda_7 D_{7t} + \varepsilon_t \end{aligned} \quad (2)$$

$$\begin{aligned} \Delta InTRADE_t = \beta_8 + \sum_{i=1}^m \delta_7 \Delta InFDI_{t-i} + \sum_{i=1}^n \delta_8 \Delta InGDP_{t-i} \\ + \sum_{i=1}^n \delta_9 \Delta InTRADE_{t-i} + \beta_9 InFDI_{t-i} + \beta_{10} InGDP_{t-i} \\ + \beta_{11} InTRADE_{t-i} + \lambda_8 D_{8t} + \lambda_9 D_{9t} + \varepsilon_t \end{aligned} \quad (3)$$

$$\begin{aligned} \Delta InCO_{2t} = \beta_8 + \sum_{i=1}^m \delta_7 \Delta InFDI_{t-i} + \sum_{i=1}^n \delta_8 \Delta InGDP_{t-i} \\ + \sum_{i=1}^n \delta_9 \Delta InTRADE_{t-i} + \sum_{i=1}^n \delta_9 \Delta InCO_{2t-i} + \beta_9 InFDI_{t-i} \\ + \beta_{10} InGDP_{t-i} + \beta_{11} InTRADE_{t-i} + \beta_{12} InCO_{2t-i} \\ + \lambda_8 D_{8t} + \lambda_9 D_{9t} + \lambda_{10} D_{10t} \end{aligned} \quad (4)$$

The variables FDI, GDP, TRADE, and CO₂ represent net foreign direct investment inflows, gross domestic product, trade openness, and carbon dioxide emissions per capita, respectively. The dummy variables D1 through D13 indicate the existence of structural breaks in the time series data. Each dummy variable takes the zero value before the break period and one after. The FDI has three key breakpoints: 1986 (D₁), 1994 (D₂), and 2006 (D₃). The GDP characterizes four breakpoints: 1987 (D₄), 1993 (D₅), 2004 (D₆), and 2014 (D₇). Trade openness has two key breakpoints: 1992 (D₈) and 2002 (D₉). The CO₂ emissions have four significant breakpoints: 1987 (D₁₀), 1997 (D₁₁), 2006 (D₁₂), and 2012 (D₁₃).

The above ARDL bounds test equations provide the following long run form of the ARDL estimates:

$$InFDI_t = \alpha_1 + \rho_1 InFDI_{t-1} + \rho_2 InGDP_{t-i} + \rho_3 InTRADE_{t-i} + \varepsilon_t \quad (5)$$

$$InGDP_t = \alpha_2 + \rho_4 InFDI_{t-1} + \rho_5 InGDP_{t-i} + \rho_6 InTRADE_{t-i} + \varepsilon_t \quad (6)$$

$$InTRADE_t = \alpha_3 + \rho_7 InFDI_{t-1} + \rho_8 InGDP_{t-i} + \rho_9 InTRADE_{t-i} + \varepsilon_t \quad (7)$$

$$\begin{aligned} InCO_{2t} = \alpha_3 + \rho_7 InFDI_{t-1} + \rho_8 InGDP_{t-i} + \rho_9 InTRADE_{t-i} \\ + \rho_{10} InCO_{2t-i} + \varepsilon_t \end{aligned} \quad (8)$$

Besides, the short run estimates of the ARDL-error correction model takes the following form:

$$\begin{aligned} ln\Delta FDI_t = \gamma_1 z_{t-1} + \sum_{i=1}^{p-1} \sigma_1 ln\Delta FDI_{t-i} + \sum_{i=1}^{p-1} \sigma_2 ln\Delta GDP_{t-i} + \sum_{i=1}^{p-1} \sigma_3 ln\Delta TRADE_{t-i} \\ + \lambda_1 D_{1t} + \lambda_2 D_{2t} + \lambda_3 D_{3t} + \varepsilon_t \end{aligned} \quad (9)$$

$$\begin{aligned} ln\Delta GDP_t = \gamma_2 z_{t-1} + \sum_{i=1}^{p-1} \sigma_4 ln\Delta FDI_{t-i} + \sum_{i=1}^{p-1} \sigma_5 ln\Delta GDP_{t-i} + \sum_{i=1}^{p-1} \sigma_6 ln\Delta TRADE_{t-i} \\ + \lambda_4 D_{4t} + \lambda_5 D_{5t} + \lambda_6 D_{6t} + \lambda_7 D_{7t} + \varepsilon_t \end{aligned} \quad (10)$$

$$\begin{aligned} ln\Delta TRADE_t = \gamma_3 z_{t-1} + \sum_{i=1}^{p-1} \sigma_7 ln\Delta FDI_{t-i} + \sum_{i=1}^{p-1} \sigma_8 ln\Delta GDP_{t-i} + \sum_{i=1}^{p-1} \sigma_9 ln\Delta TRADE_{t-i} \\ + \lambda_8 D_{8t} + \lambda_9 D_{9t} + \varepsilon_t \end{aligned} \quad (11)$$

$$\begin{aligned} ln\Delta CO_{2t} = \gamma_4 z_{t-1} + \sum_{i=1}^{p-1} \sigma_{10} ln\Delta FDI_{t-i} + \sum_{i=1}^{p-1} \sigma_{11} ln\Delta GDP_{t-i} + \sum_{i=1}^{p-1} \sigma_{12} ln\Delta TRADE_{t-i} \\ + \lambda_{10} D_{10t} + \lambda_{11} D_{11t} + \lambda_{12} D_{12t} \\ + \lambda_{13} D_{13t} + \varepsilon_t \end{aligned} \quad (12)$$

Where $\gamma_{Z_{t-1}}$ represents the error correction term. \mathcal{U}_s are the short run parameters. To assess the stability of the estimated ARDL models, we use the cumulative sum of recursive residuals (CUSUM) and the cumulative sum of squares of recursive residuals (CUSUMQ) plots. In addition, the study applied the robust least squares method to validate the long run and short run nexus between FDI inflows, economic growth, trade openness and CO₂ emissions.

4. EMPIRICAL RESULTS

4.1. Descriptive Statistics

Table 1 shows the descriptive statistics for the selected variables. The average real GDP was USD 1190 billion with a median of USD 855 billion. The range between the maximum (USD 3220 billion) and minimum (USD 271 billion) real GDP values highlights that the Indian economy exhibits significantly higher levels of transformation and structural changes during the study period. A standard deviation of USD 8670 billion implies the variation in the economic performance. FDI inflows had recorded an all-time high of 3.6% of the GDP. However, it is observed that the average net FDI inflows as a percentage of GDP are recorded as <1%, with a median of 0.77%. Standard deviation (0.88%) shows lesser variability in the FDI inflows to the output. Trade openness has a mean of 31.29%, indicating the average level of integration with global trade. The maximum contribution of trade towards GDP was 55.79%. The high standard deviation (14.67%) suggests significant variability in the contribution of trade towards the economic output, potentially due to differences in economic growth prospects, trade regimes or institutional frameworks. The rapid industrial growth and urbanization have led to increased energy consumption. The average per capita CO₂ emissions were approximately 1.10245 metric tons per person. The highest recorded emissions were 2.05496 metric tons, still lower than the global average of approximately 4.8 metric tons. These circumstances highlight the urgent need for sustainable energy practices in India to support economic and infrastructure development. Moreover, the growing demand for energy and industrial growth driven by FDI may increase per capita emissions, raising significant questions about sustainable economic practices.

4.2. Unit Root Test

The modified Dickey-Fuller unit root test was employed to evaluate the stationarity properties of the selected variables. This unit root test incorporates dummy variables for structural shifts using the additive outlier (AO) and innovative outlier (IO) models. The AO model captures immediate shocks, while the IO model accounts for gradual effects. The results of the breakpoint unit root test are depicted in Table 2.

Table 1: Descriptive statistics

Statistics	FDI (% of GDP)	GDP (Billion US\$)	TRADE (% of GDP)	CO ₂ emissions Per capita
Mean	0.97698	1190	31.2954	1.10245
Median	0.77633	855	28.2047	0.94883
Maximum	3.62052	3220	55.7937	2.05496
Minimum	0.00258	271	12.2192	0.44166
Standard deviation	0.88808	8670	14.6721	0.48056

The results reveal that the macroeconomic variables, viz. FDI, GDP, openness and CO₂ emissions are stationary at first differences I(1) under the innovative outlier (IO) model. The variables, except FDI inflows, are stationary at the first differences under the additive outlier (AO) model. The variable FDI is stationary at level form I(0). Hence, the variables are either stationary at the first differences or the mix of order of integration warrants applying the ARDL approach to examine the causal nexus between FDI, economic growth, trade openness and CO₂ emissions.

4.3. Structural Break Analysis

Unlike previous studies, the structural breakpoints are identified for the selected variables using a multiple breakpoints test to incorporate into the ARDL model. The breakpoint test results are shown in Table 3. The FDI has three key breakpoints: 1986, 1994, and 2006. The breakpoint in 1986 signifies the beginning of economic reforms and a growing acceptance of foreign investment in India. The breakpoint in 1994 is noted for a marked increase in FDI inflows, aligning with the rollout of various economic reforms designed to liberalize foreign investment policies in the early 1990s. By 2006, India saw a considerable rise in FDI inflows, which was a notable increase compared to earlier years, leading India to surpass the United States and become the second-largest recipient of FDI across the globe.

Table 2: Unit root test with a breakpoint

Variables	Level t-statistics	Break	First difference	Break t-statistics
Innovative outlier (IO) model				
FDI	-4.160076 (0.1088)	1991	-8.771753* (<0.01)	1985
GDP	-0.935078 (0.9983)	2003	-9.128514* (<0.01)	2020
TRADE	-2.414985 (0.9231)	1988	-6.009992* (<0.01)	2015
CO ₂	-1.918526 (0.9864)	2005	-9.883910* (<0.01)	2020
Additive outlier (AO) model				
FDI	-4.210050*** (0.0956)	1991	-9.258539* (<0.01)	1983
GDP	-1.166812 (0.9952)	2021	-6.766148* (<0.01)	1991
TRADE	-2.335635 (0.9403)	1988	-6.141844* (<0.01)	2011
CO ₂	-4.092289 (0.1273)	2000	-6.184903* (<0.01)	2022

* and *** denote significance at 1% and 10%, respectively. Figures in brackets are *P* values

Table 3: Bai-Perron multiple structural breaks test

Variable	Break test	F-statistic	Critical value	Break
FDI	0 versus 1	189.5509*	8.58	1994
	1 versus 2	15.42604*	10.13	2006
	2 versus 3	14.00221*	11.14	1986
	3 versus 4	1.682758	11.83	
GDP	0 versus 1	138.0916*	8.58	2004
	1 versus 2	31.56483*	10.13	1993
	2 versus 3	52.77716*	11.14	2014
	3 versus 4	13.99169*	11.83	1987
	4 versus 5	0.000000	12.25	
TRADE	0 versus 1	193.3081*	8.58	2002
	1 versus 2	57.31279*	10.13	1992
	2 versus 3	10.74916	11.14	
CO ₂	0 versus 1	123.0946*	8.58	1987
	1 versus 2	56.06102*	10.13	1997
	2 versus 3	30.25810*	11.14	2006
	3 versus 4	13.56280*	11.83	2012
	4 versus 5	2.852629	12.25	

*Denotes significance at 1% level

The GDP characterizes four breakpoints: 1987, 1993, 2004, and 2014. The breakpoint in 1987 indicates that it was a crucial time for significant structural shifts in GDP growth. It highlights a marked change in GDP growth during 1987 and 1993, attributed to the effects of economic reforms (Wallack, 2003; Choudhury, 2014). Additionally, the test identifies a breakpoint in 2004, linked to a rise in real GDP. The GDP had reached approximately 2 trillion in 2014, showcasing India's resilience, innovation, and growing global stature.

The trade openness has two key breakpoints, namely 1992 and 2002. In 1992, India embarked on a significant transition towards trade liberalization as part of broader economic reforms, shifting from a controlled and regulated economy to a more market-driven one. This process included reducing trade barriers such as tariffs, licensing restrictions, and import duties and replacing the import licensing system. India's exports have experienced significant growth throughout 2002. The strategies to enhance exports included several impactful measures to ensure a consistent rise in India's export figures. These measures feature the elimination of quantitative restrictions, except for a few sensitive items designated for export through state trading enterprises, a farm-to-port strategy for the export of agricultural goods, a particular emphasis on cottage industries and handicrafts, along with increased support for states in terms of export-related infrastructural development. This trade recovery occurred despite a struggling global economy, sharply decreased investment inflows, significant fluctuations in currency exchange rates, diminished business confidence, heightened restrictions on international trade transactions meant to mitigate risks from terrorism, and escalating geopolitical tensions. The CO₂ emissions show four breakpoints, namely 1987, 1997, 2006 and 2012. In 1987, the per capita CO₂ emissions stood at 0.61 tons per person. Despite being lower than those of numerous developed countries, it has risen due to population growth and increased economic activity. By 1997, India's per capita CO₂ emissions had climbed to 0.88 metric tons, primarily driven by economic expansion and industrialization throughout the 1990s. The per capita CO₂ emissions reached 1.11 tons in 2006. The industrial sector was the second largest contributor to CO₂ emissions, accounting for approximately 26% of India's total emissions, following the energy sector. By 2012, India's total CO₂ emissions had escalated to 2 billion tons, positioning it as the fourth largest emitter globally, behind China, the United States, and the European Union. The per capita CO₂ emissions stood at 1.6 metric tons per person in 2012. Though the total emissions are considerable, the per capita emissions remain relatively low compared to other developed nations.

4.4. ARDL Bounds Cointegration Test

Before applying the ARDL bounds cointegration test, it is essential to determine the appropriate lag length for FDI, GDP, trade and CO₂. The results are presented in Table 4. The optimal lag length criteria indicate that the preferred lag length for the ARDL approach is one. Consequently, the ARDL model was estimated, and the results are shown in Table 5. The calculated values of the F-statistics exceeded the critical values at the 1% significance level for the FDI and GDP equations, and at the 5% level for the trade equation. Therefore, we reject the null hypothesis of no

Table 4: Optimal lag length selection criteria

Lag	LR	FPE	AIC	SIC	HQ
0	--	0.006734	3.513069	3.645029	3.559127
1	283.9241*	1.56e-06*	-4.859561*	-4.331721*	-4.675330*
2	7.377285	2.02e-06	-4.613950	-3.690230	-4.291547
3	4.881467	2.84e-06	-4.301698	-2.982099	-3.841123
4	10.32501	3.17e-06	-4.250612	-2.535133	-3.651864
5	6.319413	4.20e-06	-4.066582	-1.955224	-3.329662
6	4.076028	6.37e-06	-3.806349	-1.299110	-2.931255
7	12.44328	5.50e-06	-4.195155	-1.292037	-3.181889
8	5.571005	7.94e-06	-4.201610	-0.902612	-3.050171

*Indicates lag order selected by the criterion

Table 5: ARDL bounds test for cointegration

Dependent variable	F-statistic	Significance level (%)	I (0)	I (1)
F _{FDI} (FDI GDP TRADE)	7.35539*	10	2.63	3.35
		5	3.10	3.87
		1	4.13	5.00
F _{GDP} (GDP FDI TRADE)	7.08617*	10	2.63	3.35
		5	3.10	3.87
		1	4.13	5.00
F _{TRADE} (TRADE FDI GDP)	5.95133*	10	2.63	3.35
		5	3.10	3.87
		1	4.13	5.00
F _{CO2} (CO ₂ FDI GDP TRADE)	3.51934*	10	2.37	3.20
		5	2.79	3.67
		1	3.65	4.66

*Denotes significance at 1% level. I (0) shows the lower critical bound values, and I (1) represent the upper critical bound values

cointegration, confirming a long run relationship between FDI inflows, economic growth, and trade openness. These findings align with the results reported by Bhasin and Gupta (2017). When CO₂ is considered the dependent variable, the calculated F-statistic surpasses the upper bound critical value at the 10% significance level. This finding leads us to reject the null hypothesis of no cointegration, concluding that there is a long run relationship among the variables.

4.5. ARDL-ECM Approach

After establishing the cointegrating relationship among the variables of interest, the study examines the long- and short run coefficients using the ARDL-ECM approach. This model further assesses the speed at which the variables adjust. The long run and short run estimates from the ARDL model are presented in Tables 6 and 7, respectively. The analysis in Table 6 indicates that, when normalized for FDI, trade openness has a positive and significant effect on FDI inflows in the long run. A 1 unit increase in trade openness would lead to a 1.30 unit increase in FDI inflows at a 10% significance level. Trade liberalization attracts foreign investors by providing larger markets, reducing entry barriers, and creating a more stable trade policy environment. Furthermore, the positive and significant coefficient of trade openness in equation (6) shows that a 1 unit increase in trade openness leads to a 0.92 unit increase in GDP. This supports the traditional trade-led growth theory (TLG) and suggests that trade liberalization policies in India have positively influenced economic growth. The estimated coefficients in equation (7) indicate that FDI inflows and GDP have a significant impact on trade openness. A 1 unit increase in FDI inflows is associated with an approximate 0.12 unit increase

Table 6: Long run ARDL model estimates

Variables	LFDI Eq. [5]		LGDP Eq. [6]		LTRADE Eq. [7]		LCO ₂ Eq. [8]	
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
LFDI	--		-0.055004 (0.12019)		0.120001* (0.031825)		-0.020271 (0.041313)	
LGDP	-0.454180 (0.44531)		--		0.383722* (0.074277)		0.306938*** (0.180255)	
LTRADE	1.298621*** (0.74597)		0.915767*** (0.47893)		--		0.228127 (0.188402)	
C	4.905133 (11.5022)		24.49146* (1.48201)		-7.142876* (2.069431)		-9.382313 (4.592288)	

* and *** denote significance at 1% and 10%, respectively. Figures in brackets are standard errors

Table 7: Short run ARDL model estimates

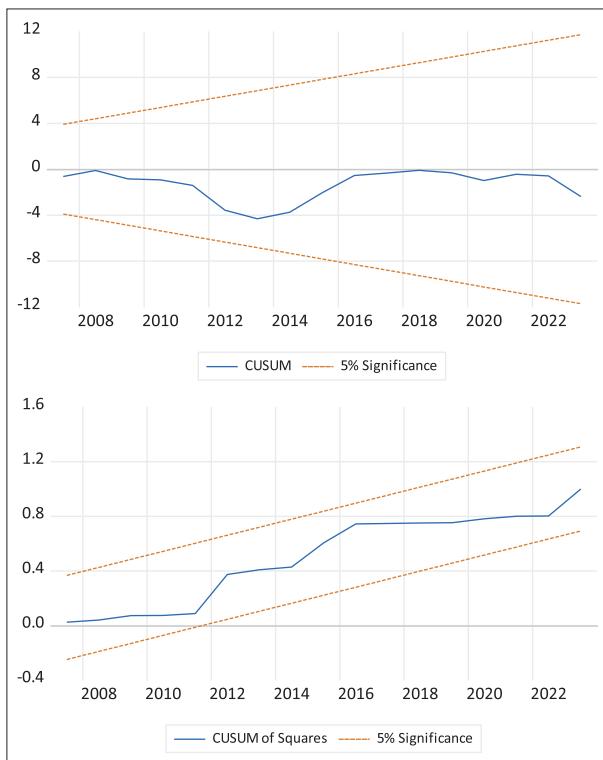
Variables	ΔLFDI Eq. [9]		ΔLGDP Eq. [10]		ΔLTRADE Eq. [11]		ΔLCO ₂ Eq. [12]	
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
ΔLFDI	--		0.011810** (0.00551)		0.013318 (0.01763)		-0.002366 (0.00509)	
ΔLGDP	6.283762** (2.70250)		--		0.275678 (0.33076)		0.660610* (0.126901)	
ΔLTRADE	0.383862 (1.04139)		0.063730 (0.05234)		--		0.117844** (0.046018)	
D ₁	1.231003* (0.28458)		--		--		--	
D ₂	1.678243* (0.38684)		--		--		--	
D ₃	0.511117** (0.23417)		--		--		--	
D ₄	--		0.023212*** (0.01192)		--		--	
D ₅	--		0.019966*** (0.01069)		--		--	
D ₆	--		0.018735*** (0.01076)		--		--	
D ₇	--		0.045251* (0.01545)		--		--	
D ₈	--		--		0.117340* (0.04123)		--	
D ₉	--		--		0.159499* (0.05658)		--	
D ₁₀	--		--		--		0.217566* (0.04967)	
D ₁₁	--		--		--		0.219333* (0.04631)	
D ₁₂	--		--		--		0.338827* (0.05312)	
D ₁₃	--		--		--		0.478405* (0.05040)	
Z _{t-1}	-0.863389* (0.15258)		-0.077654* (0.01396)		-0.273639* (0.07643)		-0.189504* (0.06470)	
B-G LM test	0.588750 [0.4484]		0.595499 [0.4460]		0.466536 [0.4992]		0.595601 [0.5578]	
ARCH-LM test	0.000130 [0.9910]		0.011325 [0.9158]		0.090429 [0.7652]		1.169342 [0.2860]	
RESET test	0.836136 [0.3671]		0.022667 [0.8813]		0.672719 [0.4178]		0.086413 [0.7708]	

*, ** and *** denote significance at 1%, 5% and 10%, respectively. Standard errors are in parentheses, and P values are in bracket

in trade. This highlights that FDI promotes trade by integrating domestic firms into global value chains, fostering export-oriented production, and providing access to international markets. Furthermore, the results reveal that a 1 unit increase in GDP would lead to a 0.38 unit increase in trade. This outcome is consistent with proponents of the growth-led trade (GLT) hypothesis, which posits that economic growth drives trade expansion due to the increased capacity of the economy to produce and consume a greater variety of goods and services. The long run analysis shows that FDI and trade have a complementary relationship, positively influencing each other in the long run. Trade liberalization creates a favourable environment that encourages FDI inflows by reducing barriers to both trade and investment. The influx of FDI significantly enhances trade volumes, as foreign companies engage with local markets, introduce innovative products, and expand their supply chains. Furthermore, the analysis shows a bidirectional positive long-term causality between GDP growth and openness, indicating that openness fosters economic growth and vice versa.

The long run estimates show no long-term causal relationship between FDI inflows and economic growth. Similarly, the coefficient for FDI is negatively associated with CO₂ emissions, but this relationship is statistically insignificant. This does not support the pollution haven hypothesis. Trade openness also has no significant impact on carbon emissions in India. The coefficient

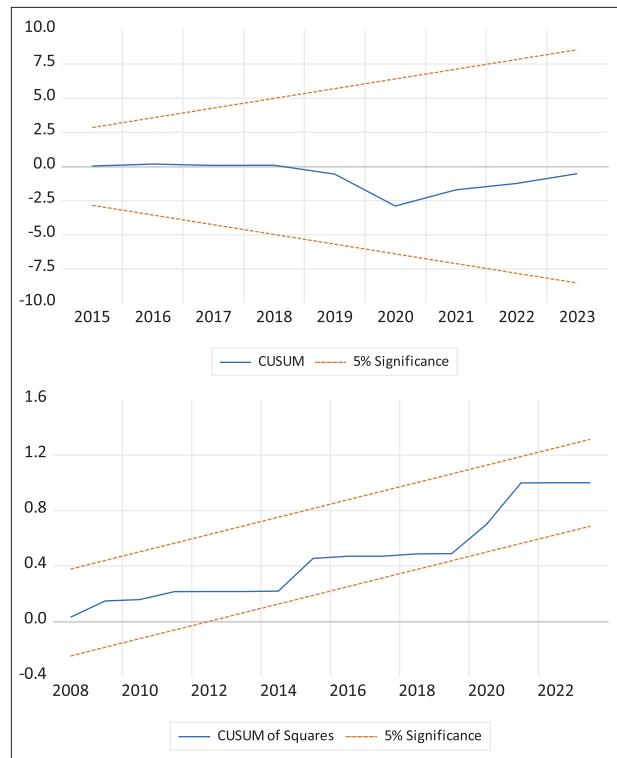
of GDP is positive and statistically significant at 10%, implying that a 1 unit increase in GDP leads to CO₂ emissions by 0.30 units. This suggests that increases in GDP contribute to higher CO₂ emissions in India. It is also evident that the long-term nexus between trade and economic growth supports both the trade-led and growth-led trade hypotheses, signifying that economic growth and trade openness reinforce each other.

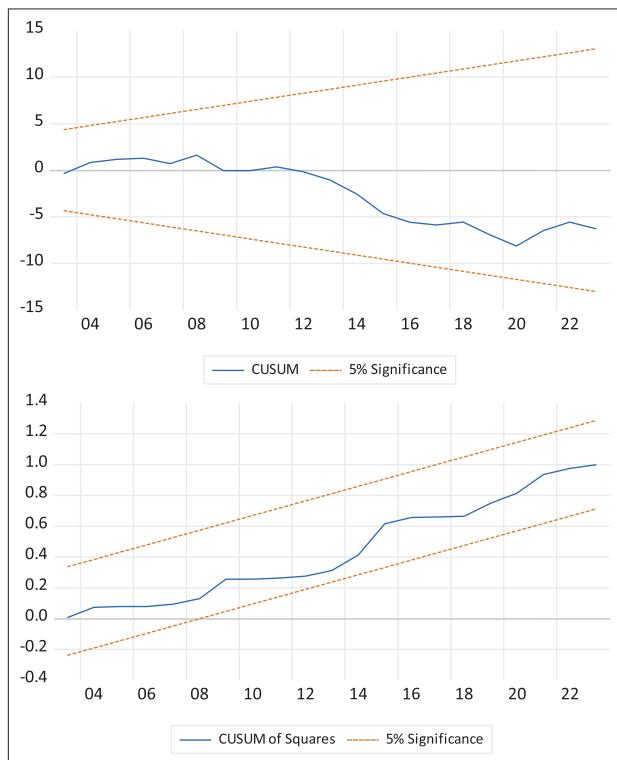

The short run estimates in Table 7 demonstrate that the coefficient of GDP has a positive and significant effect on FDI at the 1% level. A 1% increase in GDP results in approximately a 6.28% increase in FDI inflows, assuming other factors remain constant. Moreover, the coefficient for FDI shows a positive and modest effect on GDP at the 10% level. A 1% rise in FDI inflows leads to a 0.01% increase in GDP. The analysis reveals a bidirectional short-term causality between FDI inflows and GDP growth, indicating that FDI inflows contribute towards economic growth and vice versa. Besides, the analysis identifies no short-term causality between FDI inflows and trade in India. Moreover, the short run estimates establish that while the coefficient of FDI is negatively associated with CO₂ emissions, the effect is statistically insignificant, invalidating the pollution haven hypothesis. The coefficient of GDP and trade is positive and statistically significant. This implies that a 1% increase in GDP and trade increases CO₂ emissions by 0.66% and 0.11%, respectively. Thus, it is evident that economic growth and trade activity substantially contribute to higher carbon dioxide

emissions in the short run. Besides, the trade openness does not appear to contribute to FDI inflows or GDP growth.

The error correction coefficient (z_{t-1}) in equation (9) indicates that approximately 86% of the deviation from the long run equilibrium in FDI inflows is restored in the following year. Similarly, equations (10) and (11) show that 0.07% and 0.27% of the deviation from the long run equilibrium in GDP and trade openness, respectively, is corrected after 1 year. In addition, equation (12) reveals that 18% of the deviation from the long run equilibrium in CO₂ emissions is restored. These findings confirm a stable long-term association among the variables, with short-term deviations gradually adjusting toward equilibrium. Furthermore, the results indicate that the dummy variables incorporated into the ARDL estimates to account for structural breaks significantly influence the dynamics of FDI inflows, GDP, trade openness, and CO₂ throughout the study period.

The diagnostic tests applied to validate the ARDL estimates include the Breusch-Godfrey (B-G LM) test for autocorrelation, the ARCH test for conditional heteroscedasticity, and the RESET test for model misspecification. The corresponding probability values of the F-statistics for each model are >0.05 . Therefore, we cannot reject the null hypothesis, which means we accept our null hypothesis of no serial correlation, no heteroscedasticity, and the model is correctly specified. For the stability test, the CUSUM and CUSUMSQ plots for the estimated ARDL models with FDI, GDP, trade openness, and CO₂ as dependent variables are displayed in Figures 1-4, respectively. The plots demonstrate that the CUSUM and CUSUMSQ statistics lie within the 5% critical bounds, indicating that both the short- and long run coefficients of the selected ARDL models are stable.


Figure 1: Plot of cumulative sum (CUSUM) and cumulative sum square (Dependent variable: Foreign direct investment)


4.6. Robustness Check

To ensure robustness, Table 8 presents the results of a robust least squares method using M-estimation to examine the short run and long run relationship between FDI inflows, GDP, and trade

Figure 2: Cumulative sum (CUSUM) and cumulative sum square (Dependent variable: Gross domestic product)

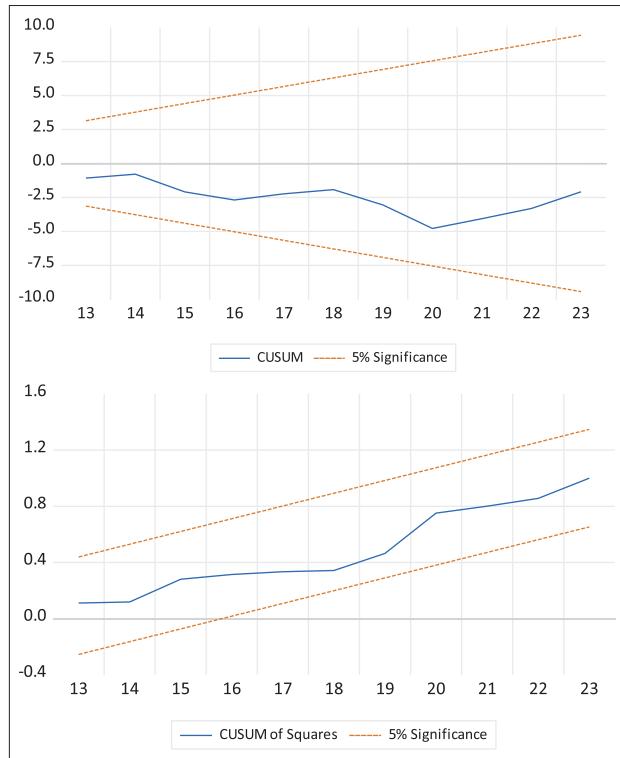

Figure 3: Cumulative sum (CUSUM) and cumulative sum square (Dependent variable: TRADE)

Table 8: Robust least squares based on M-estimation

Variables	Long run estimates			
	Department variable:		Department variable:	
	LFDI	LGDP	LTRADE	LCO ₂
	Coefficient	Coefficient	Coefficient	Coefficient
LFDI	--	0.053280 (0.061054)	0.047969* (0.017847)	0.012944 (0.010397)
LGDP	0.307061 (0.347839)	--	0.425312* (0.041653)	0.569382* (0.027763)
LTRADE	2.375744* (0.514325)	1.106642* (0.210699)	--	-0.014370 (0.048740)
C	-17.13139** (8.032063)	23.85378* (0.750737)	-8.412771* (1.160487)	-15.61489* (0.666968)
Short run estimates				
Variables	Department variable:		Department variable:	
	ΔLFDI	ΔLGDP	ΔLTRADE	ΔLCO ₂
	Coefficient	Coefficient	Coefficient	Coefficient
ΔLFDI	--	0.008677** (0.004077)	0.017307 (0.020449)	-0.002089 (0.006529)
ΔLGDP	5.699172*** (3.192120)	--	0.397475 (0.551487)	0.642405* (0.175600)
ΔLTRADE	0.998569 (0.970740)	0.006228 (0.033437)	--	0.078838*** (0.042419)
C	0.405502** (0.200694)	0.061801 (0.002924)	0.002610 (0.034884)	-0.003265 (0.011055)

* , ** and *** denote significance at 1%, 5% and 10%, respectively. Figures in brackets are standard errors

Figure 4: Cumulative sum (CUSUM) and cumulative sum square (Department variable: CO₂)

openness. This robust regression approach based on M-estimation provides dependable parameter estimates even in the presence of structural breaks (Yang et al., 2019). The long run estimates indicate that trade openness positively influences FDI inflows at a significance level of 1%. Similarly, FDI inflows have a positive impact on trade openness at a 1% significance level, confirming a bidirectional relationship between the FDI inflows and trade in the long run. Furthermore, the findings suggest that GDP leads to trade openness and vice versa at a 1% significance level, reinforcing the bidirectional causality among economic growth and trade openness in India. While economic growth significantly increases CO₂ emissions, it is evident that neither FDI nor trade openness has

a significant long-term impact on CO₂ emissions. These findings validate the results from the ARDL long run estimates.

The short run analysis reveals that GDP positively influences the FDI inflows at a 5% significance level. The FDI inflows are positive, but have a modest impact on GDP at a 10% significance level. Hence, the feedback relationship between the FDI inflows and economic growth is validated, with the effect of FDI on GDP being modest. Besides, this analysis shows no short-term causality between trade and FDI inflows and trade and economic growth. The analysis reveals that the FDI inflows do not have a significant relation with the CO₂ emissions, while economic growth and trade activity significantly increase the emissions. These findings validate the results from the ARDL short run estimates.

5. CONCLUSION

The study empirically examines the causal nexus between FDI inflows, economic growth, trade openness and CO₂ emissions in India. The ARDL bounds test confirms the long run association between the variables. The results indicate a bidirectional causation between trade openness and FDI inflows in the long run, validating the complementary relationship. This suggests that increased trade openness attracts FDI inflows and, in turn, FDI enhance trade openness. As a result of specialization, greater trade openness stimulates foreign investment. Multinational companies seek goods that can be produced more cost-effectively in India, making it advantageous for them to establish operations in the market to leverage its comparative advantages. The increase in FDI inflows fosters the transfer of technology and innovative products for export, facilitating access to global markets.

The analysis on the FDI-GDP linkage shows no significant evidence of causation between FDI inflows and economic growth in the long run. Furthermore, the FDI-GDP nexus is bidirectional in the short run, with the impact of FDI on GDP growth being relatively modest. It is also to be noted that the FDI-GDP ratio remains below 1%. Although FDI inflows significantly contribute to foreign trade

in the long run, the country must enhance its attractiveness as an investment destination to promote economic growth. The study recommends that the Indian economy implement targeted reforms that adapt to changing global conditions and foster an environment that encourages investors to commit long-term capital. India should further liberalize key sectors by establishing an investor-friendly policy framework and addressing challenges related to infrastructure, bureaucratic delays, regulatory complexities, and sector-specific issues. Notably, it is vital to ensure stability and transparency in tax regulations.

While GDP and trade contribute to CO₂ emissions, the study indicates no significant relationship between FDI inflows and CO₂ emissions in either the long or short run. The findings refute the hypothesis of a pollution haven in the Indian economy. The study recommends that while achieving economic growth and foreign trade, mitigating carbon emissions through effective environmental management regulations is crucial. Governments should actively promote green trade, which prioritizes exchanging environmentally sustainable goods and services. This initiative could include the implementation of reduced tariffs as a compelling incentive. Furthermore, the study suggests governments need to enhance investment in renewable energy projects and develop infrastructure equipped for future demands, thereby reducing emissions associated with economic activities. Moreover, it is essential to prioritize green FDI over projects that merely generate employment opportunities in the economy.

REFERENCES

- Africano, A.P., Magalhães, M. (2005), FDI and trade in Portugal: A gravity analysis. *Research Work in Progress*, 174, 1-24.
- Aizenman, J., Noy, I. (2006), FDI and trade-two-way linkages? *The Quarterly Review of Economics and Finance*, 46(3), 317-337.
- Albulescu, C.T., Goyeau, D. (2019), The interaction between trade and FDI: The CEECs experience. *International Economics and Economic Policy*, 16, 489-509.
- Al-Masbhi, G.H.A., Du, Y. (2020), The impact of FDI on GDP growth and unemployment in Yemen. In: *Fifth International Conference on Economic and Business Management (FEBM 2020)*. China: Atlantis Press, p17-23.
- Alvarado, R., Iñiguez, M., Ponce, P. (2017), Foreign direct investment and economic growth in Latin America. *Economic Analysis and Policy*, 56, 176-187.
- An, T., Xu, C., Liao, X. (2021), The impact of FDI on environmental pollution in China: Evidence from spatial panel data. *Environmental Science and Pollution Research*, 28(32), 44085-44097.
- Anwar, C.J., Suhendra, I., Imansyah, T., Chendrawan, T.S. (2023), GDP growth and FDI nexus in ASEAN-5 countries: The role of macroeconomic performances. *JEJAK Jurnal Ekonomi dan Kebijakan*, 16(1), 37247.
- Anwar, S., Nguyen, L.P. (2011), Foreign direct investment and trade: The case of Vietnam. *Research in International Business and Finance*, 25(1), 39-52.
- Apergis, N., Pinar, M., Unlu, E. (2023), How do foreign direct investment flows affect carbon emissions in BRICS countries? Revisiting the pollution haven hypothesis using bilateral FDI flows from OECD to BRICS countries. *Environmental Science and Pollution Research*, 30(6), 14680-14692.
- Bai, J., Perron, P. (2003), Computation and analysis of multiple structural change models. *Journal of Applied Econometrics*, 18(1), 1-22.
- Begum, S., Hasan, M., Hossain, J. (2023), Impacts of FDI on economic developments of Bangladesh: Considering GDP, export and industry value. *International Journal of Science and Business*, 19(1), 118-127.
- Bekun, F.V., Gyamfi, B.A., Olasehinde-Williams, G., Yadav, A. (2024), Revisiting the foreign direct investment-CO₂ emissions nexus within the N-EKC framework: Evidence from South Asian countries. *Sustainable Futures*, 8, 100357.
- Belloumi, M. (2014), The relationship between trade, FDI and economic growth in Tunisia: An application of the autoregressive distributed lag model. *Economic Systems*, 38(2), 269-287.
- Bhasin, N., Gupta, A. (2017), Macroeconomic impact of FDI inflows: An ARDL approach for the case of India. *Transnational Corporations Review*, 9(3), 150-168.
- Bhujabal, P., Sethi, N., Padhan, P.C. (2021), ICT, Foreign direct investment and environmental pollution in major Asia Pacific countries. *Environmental Science and Pollution Research*, 28(31), 42649-42669.
- Bobek, V., Majaj, S., Horvat, T. (2024), The moderating role of institutions between FDI and GDP: Evidence from China and India. *Economic Research Ekonomika Istraživanja*, 37(1), 2343375.
- Bulus, G.C., Koc, S. (2021), The effects of FDI and government expenditures on environmental pollution in Korea: The pollution haven hypothesis revisited. *Environmental Science and Pollution Research*, 28(28), 38238-38253.
- Caetano, R.V., Marques, A.C., Afonso, T.L., Vieira, I. (2022), A sectoral analysis of the role of foreign direct investment in pollution and energy transition in OECD countries. *Journal of Environmental Management*, 302, 114018.
- Cantah, G.W., Brafu-Insaidoo, G.W., Wiafe, E.A., Adams, A. (2018), FDI and trade policy openness in Sub-Saharan Africa. *Eastern Economic Journal*, 44, 97-116.
- Cardoso, F.H. (1977), The consumption of dependency theory in the United States. *Latin American Research Review*, 12(3), 7-24.
- Chang, R., Wang, B., Zhang, Y., Zhao, L. (2022), Foreign direct investment and air pollution: Re-estimating the “pollution haven hypothesis” in China. *Sustainability*, 14(21), 13759.
- Chen, Z., Paudel, K.P., Zheng, R. (2022), Pollution halo or pollution haven: Assessing the role of foreign direct investment on energy conservation and emission reduction. *Journal of Environmental Planning and Management*, 65(2), 311-336.
- Chiriluș, A., Costea, A. (2023), The effect of FDI on environmental degradation in Romania: Testing the pollution haven hypothesis. *Sustainability*, 15(13), 10733.
- Choudhury, P.R. (2014), Multiple Structural Breaks in India's GDP: Evidence from India's Service Sector. In: *10th Annual Conference on Economic Growth and Development*, Indian Statistical Institute, New Delhi. Available from: <https://www.isid.ac.in/~epu/acegd2014/papers/purbaroychoudhury.pdf>
- Dash, R.K., Parida, P.C. (2013), FDI, services trade and economic growth in India: Empirical evidence on causal links. *Empirical Economics*, 45, 217-238.
- Dash, R.K., Sharma, C. (2011), FDI, trade, and growth dynamics: New evidence from the post-reform India. *The International Trade Journal*, 25(2), 233-266.
- Deng, Q.S., Alvarado, R., Cuesta, L., Tillaguango, B., Murshed, M., Rehman, A., López-Sánchez, M. (2022), Asymmetric impacts of foreign direct investment inflows, financial development, and social globalization on environmental pollution. *Economic Analysis and Policy*, 76, 236-251.
- Dinh, T.T., Vo, D.H., The Vo, A., Nguyen, T.C. (2019), Foreign direct investment and economic growth in the short run and long run: Empirical evidence from developing countries. *Journal of Risk and Financial Management*, 12(4), 176.
- Fonseca, M., Mendonça, A. (2016), Outward FDI and Sustainable Trade

- Balance Path: Evidence from Portuguese Economy, 1996-2011. CEsA Centre for African and Development Studies. Available from: <https://www.com/hdl.handle.net/10400.5/10727>
- Frutos-Bencze, D., Bikkavesa, K., Kulvanich, N. (2017), Impact of FDI and trade on environmental quality in the CAFTA-DR region. *Applied Economics Letters*, 24(19), 1393-1398.
- Fu, Y., Zhuang, H., Zhang, X. (2023), Do environmental target constraints of local government affect high-quality economic development? Evidence from China. *Environmental Science and Pollution Research*, 30(19), 56620-56640.
- Ghosh, I. (2007), The relation between trade and FDI in developing countries-a panel data approach. *Global Economy Journal*, 7(3), 1272.
- Goh, S.K., Tham, S.Y. (2013), Trade linkages of inward and outward FDI: Evidence from Malaysia. *Economic Modelling*, 35, 224-230.
- Grossman, G.M., Helpman, E. (1991), Trade, knowledge spillovers, and growth. *European Economic Review*, 35(2-3), 517-526.
- Güz, T., Parim, C., Çene, E. (2025), Examining the impacts of GDP, trade openness, freedom index and the internet on FDI: Comparison of countries with panel ARDL. *Politická Ekonomie*, 73(1), 88-124.
- Ha, T.C., Nguyen, H.N. (2021), The role of institution on FDI and environmental pollution nexus: Evidence from developing countries. *The Journal of Asian Finance Economics and Business*, 8(6), 609-620.
- Huang, D., Zhong, S., Tang, J., Zhao, J. (2021), Impact of foreign direct investment on the haze pollution in various cities: Evidence from China. *Growth and Change*, 52(4), 2016-2039.
- Jensen, C. (2004), Formal integration: FDI and trade in Europe. *Baltic Journal of Economics*, 5(1), 5-27.
- Kamal, M., Usman, M., Jahanger, A., Balsalobre-Lorente, D. (2021), Revisiting the role of fiscal policy, financial development, and foreign direct investment in reducing environmental pollution during globalization mode: Evidence from linear and nonlinear panel data approaches. *Energies*, 14(21), 6968.
- Kang, K. (2012), Is the relationship between foreign direct investment and trade different across developed and developing countries? Evidence from Korea. *Asian Pacific Economic Literature*, 26(2), 144-154.
- Kisswani, K.M., Zaitouni, M. (2023), Does FDI affect environmental degradation? Examining pollution haven and pollution halo hypotheses using ARDL modelling. *Journal of the Asia Pacific Economy*, 28(4), 1406-1432.
- Kosekayaoglu, L. (2006), A comparative analysis of FDI in Turkey and the CEECs: Is there any link between FDI and trade? *Journal of Business Economics and Management*, 7(4), 183-200.
- Kosztowniak, A. (2016), Verification of the relationship between FDI and GDP in Poland. *Acta Oeconomica*, 66(2), 307-332.
- Kumar, D.P.S. (2023), Impact of FDI on GDP in East Africa and Ethiopia: Panel and time series data analysis. *Educational Administration Theory and Practice*, 29(3), 1126-1135.
- Kurečić, P., Kozina, G. (2017), The correlation between the FDI and the GDP in the EU15 member states in the period 1980-2014. *Technical Gazette*, 24(2), 521-524.
- Li, B. (2020), A research on GDP growth, industrial goods export and FDI in industrial sector in Shandong Province. In: Fifth International Conference on Economic and Business Management (FEBM 2020). China: Atlantis Press, p48-51.
- Liargovas, P.G., Skandalis, K.S. (2012), Foreign direct investment and trade openness: The case of developing economies. *Social Indicators Research*, 106, 323-331.
- Lingaiah, B.C.V. (2021), Various countries foreign direct investment (FDI) in India and its impact on gross domestic production (GDP) of India. *International Journal of Management*, 12(5), 258-268.
- Liu, S., Zhang, P. (2022), Foreign direct investment and air pollution in China: Evidence from the global financial crisis. *The Developing Economies*, 60(1), 30-61.
- Liu, X., Wang, C., Wei, Y. (2001), Causal links between foreign direct investment and trade in China. *China Economic Review*, 12(2-3), 190-202.
- Liu, Y., Cao, L., Wu, L., Xi, Y., Zhang, S. (2025), The impact of FDI on firms' pollution emissions: Evidence from China. *International Review of Economics and Finance*, 100, 104113.
- Liu, Y., Guo, M. (2023), The impact of FDI on haze pollution: "Pollution paradise" or "pollution halo?"--Spatial analysis of PM2. 5 concentration raster data in 283 cities. *Frontiers in Environmental Science*, 11, 1133178.
- Magazzino, C., Mele, M. (2022), Can a change in FDI accelerate GDP growth? Time-series and ANNs evidence on Malta. *The Journal of Economic Asymmetries*, 25, e00243.
- Mahmood, H. (2023), Trade, FDI, and CO₂ emissions nexus in Latin America: The spatial analysis in testing the pollution haven and the EKC hypotheses. *Environmental Science and Pollution Research*, 30(6), 14439-14454.
- Mansoor, A., Bibi, T. (2019), Dynamic relationship between inflation, exchange rate, FDI and GDP: Evidence from Pakistan. *Acta Universitatis Danubius Economica*, 15(2), 431-444.
- Markusen, J.R. (1995), The boundaries of multinational enterprises and the theory of international trade. *Journal of Economic Perspectives*, 9(2), 169-189.
- Marques, A.C., Caetano, R.V. (2022), Do greater amounts of FDI cause higher pollution levels? Evidence from OECD countries. *Journal of Policy Modeling*, 44(1), 147-162.
- Medvedev, D. (2012), Beyond trade: The impact of preferential trade agreements on FDI inflows. *World Development*, 40(1), 49-61.
- Ngoc, B.H., Long, N.T., Tram, N.H.M. (2025), Do foreign direct investment and trade openness matter for environmental sustainability in Vietnam? Evidence from time-frequency analysis. *Discover Sustainability*, 6, 245.
- Nguyen, Y., Le, S., Ngo, N., Nguyen, H. (2023), Impacts of FDI and environmental pollution in ASEAN countries: The role of institutions. *International Journal of Energy Economics and Policy*, 13(5), 242-250.
- Pan, S., Chong, Z. (2023), Effects of FDI on trade among countries along the belt and road: A network perspective. *The Journal of International Trade and Economic Development*, 32(1), 84-103.
- Pečarić, M., Kusanović, T., Šitum, A. (2021), The interaction of GDP growth rate and FDI in service sector: Case of Croatia. *Transactions on Maritime Science*, 10(1), 281-288.
- Perron, P. (1989), The great crash, the oil price shock, and the unit root hypothesis. *Econometrica*, 57(6), 1361-1401.
- Ramadhan, A.A., Jian, Z.H., Pasific, Y.K. (2016), Impact of FDI on GDP: A comparative study of Mozambique and South Africa. *Journal of Economics and Sustainable Development*, 7(2), 183-188.
- Rana, R., Sharma, M. (2020), Dynamic causality among FDI, economic growth and CO₂ emissions in India with open markets and technology gap. *International Journal of Asian Business and Information Management*, 11(3), 15-31.
- Romer, P.M. (1986), Increasing returns and long-run growth. *Journal of Political Economy*, 94(5), 1002-1037.
- Sabra, M.M. (2021), Does inward FDI promote exports and GDP: Dynamic panel evidence from selected MENA countries? *Journal of Applied Economics and Business Research*, 11(1), 12-24.
- Sarkodie, S.A., Strebov, V. (2019), Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. *Science of the Total Environment*, 646, 862-871.
- Solow, R.M. (1956), A contribution to the theory of economic growth. *The Quarterly Journal of Economics*, 70(1), 65-94.
- Sreenu, N. (2022), Impact of FDI, crude oil price and economic growth on CO₂ emission in India:-symmetric and asymmetric analysis through ARDL and non-linear ARDL approach. *Environmental Science and Pollution Research*, 29(28), 42452-42465.

- Su, W., Zhang, D., Zhang, C., Abrhám, J., Simionescu, M., Yaroshevich, N., Guseva, V. (2018), Determinants of foreign direct investment in the Visegrad group countries after the EU enlargement. *Technological and Economic Development of Economy*, 24(5), 1955-1978.
- Sun, H. (1999), Impact of FDI on the foreign trade of China. *Journal of the Asia Pacific Economy*, 4(2), 317-339.
- Taghiyev, A., Mahmud, E. (2022), Relationship between foreign direct investment (FDI) and gross domestic product (GDP): A case study from Azerbaijan. *TURAN Stratejik Arastirmalar Merkezi*, 14, 411-422.
- Talwar, S., Srivastava, S. (2018), Integration of GDP and FDI in economies at different stages of growth. *Theoretical Economics Letters*, 8(11), 2199-2219.
- Tang, Y., Zhang, K.H. (2016), Absorptive capacity and benefits from FDI: Evidence from Chinese manufactured exports. *International Review of Economics and Finance*, 42, 423-429.
- Tanoe, V. (2021), Analysis of net trade, FDI and GDP growth using cointegration, VECM, Granger causality and a regression approach: A case study of Sub-Saharan African region. *International Journal of African Studies*, 1(2), 10-20.
- Verma, D. (2020), Impact of FDI on GDP per capita, trade and inflation: Evidence from four emerging economies. *International Journal for Research in Applied Science and Engineering Technology*, 8(6), 956-961.
- Wallack, J.S. (2003), Structural breaks in Indian macroeconomic data. *Economic and Political Weekly*, 38(41), 4312-4315.
- Wang, K., Wang, Y., Zhao, B. (2021), Local government competition, FDI and pollution emission efficiency. *Journal of Beijing Institute of Technology (Social Sciences Edition)*, 23(5), 1-15.
- Wang, X., Liu, H. (2024), Effect of foreign direct investment on firms' pollution intensity: Evidence from a natural experiment in China. *Environment and Development Economics*, 29(4), 338-357.
- Wu, Q., Wang, R. (2023), Do environmental regulation and foreign direct investment drive regional air pollution in China? *Sustainability*, 15(2), 1567.
- Xie, R., Zhang, S. (2024), Re-examining the impact of global foreign direct investment (FDI) inflows on haze pollution: Considering the moderating mechanism of environmental regulation. *Energy and Environment*, 35(6), 3186-3209.
- Xu, S.C., Li, Y.W., Miao, Y.M., Gao, C., He, Z.X., Shen, W.X., Wang, S.X. (2019), Regional differences in nonlinear impacts of economic growth, export and FDI on air pollutants in China based on provincial panel data. *Journal of Cleaner Production*, 228, 455-466.
- Xuan, V.N. (2025), Relationship between GDP, FDI, renewable energy, and open innovation in Germany: New insights from ARDL method. *Environmental and Sustainability Indicators*, 25, 100592.
- Yang, T., Gallagher, C.M., McMahan, C.S. (2019), A robust regression methodology via M-estimation. *Communications in Statistics Theory and Methods*, 48(5), 1092-1107.
- Zhao, Z., Peng, C. (2024), The dual impact of FDI on environmental quality in host countries: A study on the heterogeneity of effects in developing and developed nations. *Journal of Applied Economics and Policy Studies*, 6(1), 85-92.