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ABSTRACT

The article examines emission intensity drivers in Azerbaijan’s light industry (NACE C13–C15: textiles, apparel, leather) over 2007-2023. Air pollutant 
intensity is defined as the weight of pollutants per 1 AZN of output (kg/AZN), calibrated where relevant to CO₂ intensity. Unit root tests (ADF, Zivot–
Andrews) reveal a mix of I(0) and I(1) series, allowing ARDL estimation. Considering shocks from the 2015 exchange rate shift, an ARDL (1,2,1,2,2) 
with a post-break dummy is estimated. Bounds testing confirms cointegration (F = 12.83). The error correction coefficient (−1.90) indicates rapid 
adjustment to long-run equilibrium. Long-run results show that currency depreciation raises emission intensity, while sectoral productivity lowers it, 
consistent with scale effects. Exports have a weak negative impact. In the short run, depreciation raises intensity immediately but partially corrects 
after one year; output growth mitigates the effect. Model checks (LM, RESET, CUSUM, CUSUMSQ) confirm robustness in a small sample. Policy 
implications suggest that exchange rate shocks temporarily worsen environmental outcomes, whereas expansion and modernization reduce intensity. 
Priorities include boosting energy efficiency, strengthening cleaner production, and expanding exports to improve environmental performance.

Keywords: Light Industry, Emissions Intensity, ARDL, Bounds Testing, ECM), Structural Breaks, Textiles and Apparel, Azerbaijan 
JEL Classifications: Q56, Q53, C32, F31, L67, O14

1. INTRODUCTION

The agile modernization of production sectors and the improvement 
of resource efficiency lie at the intersection of strategic areas such 
as climate change mitigation, energy security, and competitive 
industrial policy. In this context, the light industry—particularly 
textiles, apparel, and leather products (ISIC Rev.4: C13–C15)—
is in focus due to its employment and export potential, as well 
as its intensive use of water, energy, and chemicals. The high 
consumption of water and chemicals during the dyeing–finishing–
treatment stages, along with intensive demand for thermal and 
electrical energy and the composition of wastewater, exacerbate 
the ecological footprint of these subsectors. Under such conditions, 
the adoption and widespread implementation of “resource-efficient 

technologies” (RETs), as well as the integration of circular 
economy principles into the production chain, are crucial not only 
from an environmental standpoint but also for reducing costs and 
improving product quality.

Systematic, comparative, and methodologically rigorous 
assessment of the environmental performance of light industry 
enterprises in Azerbaijan is still represented by limited research. 
Most existing studies either focus on single indicators (e.g., total 
emissions or energy consumption) or are constrained by a lack of 
disaggregated data at the enterprise level, limiting methodological 
integration. As a result, the evidence base for policy tools, 
including energy tariffs, inspection intensity, the implementation 
of eco-standards, and incentives for clusters and eco-industrial 
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parks, remains weak in terms of clearly quantifying real impact 
channels. This gap makes it difficult to design effective decision-
support mechanisms for both regulatory authorities and enterprise 
managers.

In conclusion, this study not only provides a systematic, evidence-
based perspective on the ecological performance of Azerbaijan’s 
light industry, but also quantitatively demonstrates the real impact 
of “resource-saving technology,” thereby laying the groundwork 
for practice-oriented recommendations in the design of policy 
instruments. The remainder of the study is structured as follows: 
Section II summarizes the relevant literature and theoretical 
framework. Section III presents the methodology and data sources. 
Section IV covers the empirical findings. Section V discusses the 
study’s limitations and the future research agenda. Section VI 
analyzes the comparison of the empirical results obtained with 
findings from other studies. Finally, Section VIII presents the 
overall conclusions.

The aim of the study is to measure the atmospheric emissions 
of light industry enterprises (specifically: C13–Textiles; C14–
Apparel; C15–Leather and related products), to evaluate their 
eco-efficiency, and to econometrically analyze the determinants. 
It should be noted that according to ISIC Rev.4, i.e., the 
United Nations International Standard Industrial Classification of 
All Economic Activities (4th revision), Textiles are classified as 
C13, Apparel as C14, and Leather and related products as C15. 
The research questions are as follows:
a)	 What are the levels and intensity dynamics of CO₂, SO₂, NOx, 

PM, and waste indicators during the period 2000-2023?
b)	 To what extent does the intensity dynamic depend on different 

determinants: production volume, structural or subsectoral 
share, or other factors?

c)	 Do export orientation, subsector size, and financial stability 
have an impact on eco-efficiency?

2. LITERATURE REVIEW

Light industry, particularly textiles, apparel, leather–footwear, and 
household textiles, is characterized by two main channels of impact 
on atmospheric air: First, process-related emissions. For example, 
during production processes such as dyeing, printing, drying, and 
tentering, as well as in solvent-based operations, volatile organic 
compounds (VOCs), formaldehyde, and other pollutants are 
generated. Second, stationary combustion sources. These include 
small-  and medium-capacity boilers used for steam or heating 
within workshops, which lead to the release of pollutants into the 
atmosphere. Early studies dedicated to this issue—for instance, 
Müezzinoğlu (1998)—systematized the potential of air pollutants 
according to different stages of textile production, showing that 
VOC emissions can dominate particularly in dyeing–finishing and 
drying lines. Subsequent research has quantitatively assessed the 
ozone formation potential (OFP) and carcinogenic risk indicators 
of VOC mixtures in industrial sectors, including textiles, thereby 
revealing distinct profile differences (Yang et al., 2020).

In light industry subsectors closely related to textiles—for 
example, footwear or rubber enameling—assessments have 

shown that ethylbenzene, xylenes, toluene, and other aromatics 
predominate, significantly influencing both ozone formation 
potential (OFP) and health risks (Li et al., 2019; Wang et al., 2022; 
Huang et al., 2022; Shang et al., 2022). Within textile production 
itself, it has been demonstrated that solvent use in polyester fabric 
lines and thermal processes can lead to a high VOC “chemical 
footprint.” Moreover, it is possible to identify priority compounds 
and control points along the process line (Qian et al., 2022; Guo 
et al., 2022). These findings highlight that the proper specification 
of the source–process profile is critical for model development 
(OFP, risk) and for the effective targeting of policy instruments.

The energy demand of light industry enterprises is often met by 
in-house boilers operating on natural gas, fuel oil, or, in some 
cases, coal. Unit-based inventories conducted across Chinese 
cities and regions quantitatively confirm the systematic impact 
of such boilers on PM, SO₂, and NOₓ emissions. Although recent 
regulatory tightening has led to reductions in emission volumes, 
the large number of distributed small-scale units continues 
to represent a “difficult-to-control” source (Xue et al., 2016; 
Tong et al., 2021; An et al., 2021; Li et al., 2019; Zheng et al., 
2019). These literature findings reinforce the methodological 
basis for proportional allocation strategies of stationary sources 
with similar configurations to light industry in the post-Soviet 
context. However, additional uncertainty arises precisely from 
the heterogeneity of fuel mixes and technologies.

Since light industry products are highly export-oriented, the 
“consumption-based” pollution burden carries significant weight. 
Some studies have shown that export-oriented industrial clusters 
increase O₃ and its precursors, particularly VOCs, in coastal 
areas, while this effect can sharply decline once the technology 
gap is closed (Ou et al., 2020). On a broader scale, the growing 
consumption of light industry goods by the G20 has been shown 
to account for a large share of the global PM₂.₅-related mortality 
burden being “imported” (Nansai et al., 2021). Other studies, 
such as McDuffie et al. (2021), report that the sectoral impacts 
of industrial and energy fuel mixes differ significantly in terms 
of PM₂.₅ health risks. This body of evidence justifies the targeted 
role of policy instruments—such as supply chain restructuring 
and technology transfer—in reducing emission intensity in light 
industry.

In recent years, it has been confirmed that textile-derived 
microfibers are emitted not only into water but also into the air. 
Studies have shown that household tumble dryers can release 
hundreds of thousands of fibers into the atmosphere within just 
15  min (O’Brien et al., 2020; Tao et al., 2022). Quantitative 
measurements of fiber fluxes during washing–drying cycles 
(Kärkkäinen and Sillanpää, 2021) and the impact of domestic 
laundry on global microplastic pollution (De Falco et al., 2019; 
Gaylarde et al., 2021) have been widely investigated. From the 
perspective of light industry, this implies that in-house dust–fiber 
management and filtration technologies need to be considered 
alongside OFP-centered VOC control.

The use of process-line “chemical footprint” indicators (Qian et al., 
2022; Guo et al., 2022) enables substance-specific prioritization 
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in light industry. For the calibration of inventories, field 
measurements and unit-based data are essential (Zheng et al., 2019; 
An et al., 2021). In the economic assessment of the determinants of 
emission intensity, both linear and nonlinear ARDL and NARDL 
frameworks are widely applied. Findings on the asymmetric effects 
of textile–apparel activity, energy intensity, FDI and transaction 
variables, as well as trade structure on emissions (Haseeb et al., 
2020; Adebayo et al., 2021; Zhang and Zhang, 2018), align the 
ARDL-SB (ARDL with structural breaks) model developed in 
this article with the existing literature.

The general conclusion is that the main share of atmospheric 
impacts in light industry originates either from process-line VOCs 
or from in-house boilers. The appropriate policy mix should 
therefore consist of:
1.	 The application of solvent-reducing technologies and hermetic 

sealing
2.	 Ensuring NOₓ/PM control in boilers
3.	 The diffusion of “clean technology” throughout supply chains, 

and
4.	 The implementation of multi-component measures such as 

fiber–dust filtration.

3. METHODOLOGY

Since subsectors C13–C15 were selected as the objects of the 
study, the ecological impacts of other light industry subsectors—
such as wood processing (C16), paper (C17), and printing (C18)—
were not examined. The study relies on data covering the period 
2007-2023. The atmospheric pollutants considered include CO₂, 
SO₂, NOx, and PM.

For the purposes of the study, quantitative data were obtained 
from the official databases of the State Statistical Committee of 
the Republic of Azerbaijan (ARDSK, 2025) and the Ministry of 
Ecology and Natural Resources (MENR, 2025).

To evaluate, at the macro level, the environmental impacts of 
Azerbaijan’s light industry enterprises (ISIC Rev.4 subsectors 
C13–C15: textiles, apparel, and leather products), we identify 
practical dependent and independent indicators, along with their 
measurement units, based on available sources. As the dependent 
indicator, we use:
1.	 Air Pollution Intensity (API), defined as the ratio of air 

pollutants (SO₂, NOₓ, CO, dust, etc.) to the value of output 
in the sector (tons per million AZN).

The following independent macro indicators have been adopted 
as potential determinants of the dependent variable:
a)	 Output volume in sectors C13, C14, and C15 (million AZN, 

constant prices) — C1315
b)	 Volume of textile–apparel–leather exports — EXPC1315
c)	 Exchange rate (EXCH) (AZN/USD, annual average), serving 

as a control for imported equipment and energy price pass-
through.

It should be noted that deflators (control indicators) were used to 
convert nominal values of C1315 and EXPC1315 into real values.

One of the main challenges and limitations of the study is the 
lack of accessible data on most of the factors that may affect 
“Air Pollution Intensity” (API). To address this problem to some 
extent, the following method will be applied. For instance, in 
order to calculate the indicator “Air Pollution Intensity (SO₂, 
NOx, CO, dust, etc.),” data on the volume of “air pollutants” are 
required. However, in the publicly available database of the State 
Statistical Committee (SSC), only the indicator “Emissions into 
the atmosphere from stationary sources” is provided. Considering 
that all economic activity sectors—except road transport—are 
classified as “stationary sources,” it is difficult to accurately 
determine the volume of pollutants emitted into the atmosphere 
specifically from the C13–C15 subsectors of light industry, as 
opposed to industry, agriculture, and other sectors in general.

To estimate the volume of pollutants from the C13–C15 subsectors, 
several assumptions will be made:
1.	 It will be assumed that light industry primarily uses natural gas
2.	 It will be assumed that the main waste gas emitted into the 

atmosphere is CO₂. Since the volume of other waste gases is 
very small compared to CO₂, they will be disregarded

3.	 It will be assumed that the combustion of 1  kg of gas (in 
oil equivalent) results in 2.349 kg of CO₂ released into the 
atmosphere.

Based on these assumptions, and using the amount of energy 
consumption in subsectors C13–C15, the API can be calculated 
as follows:

QAPC1315 ECC1315*2.349API
C1315 C1315

a*C1315*2.349 a*2.349
C1315

= =

= =
�

(1)

Here, “a” represents the volume of energy products consumed 
for the production of 1 AZN worth of C13–C15 output (at current 
prices), calculated as “(kg of oil equivalent)/AZN.” When 
expressed in real terms, it is defined as ar=a100×CPIa_r = \frac{a}
{100} \times CPIar = 100a × CPI.
•	 QAPC1315 — the amount of pollutants generated and 

released into the atmosphere in the C13–C15 subsectors of 
light industry

•	 C1315 — the value of output in the C13–C15 subsectors of 
light industry

•	 ECC1315 — the amount of energy consumption (in oil 
equivalent) in the C13–C15 subsectors of light industry.

According to the data of the State Statistical Committee of the 
Republic of Azerbaijan (SSCRA, 2025), the dynamics of C1315, 
EXPC1315, and API in real terms (base year 2000) for the period 
2007-2023 are presented in Table 1.

4. RESULTS

4.1. Dynamics and Descriptive Statistics of the 
Variables
Based on these indicators, we will attempt to quantitatively assess 
the dependence of air pollutant intensity (API) on:
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•	 The volume of value added created in light industry (in 
national real currency — manat; base year 2000) (C1315)

•	 The export volume of light industry products (in national real 
currency — manat; base year 2000) (EXPC1315), and

•	 The exchange rate (EXCH).

The dynamics of these indicators for the period 2007-2023 are 
presented in Table 1.

In the study, the logarithms of the indicators C1315 and EXPC1315 
were used. The results of the descriptive statistics for these 
indicators are presented in Table 2. Based on the results, moderate 
variability is observed in API (CV ≈ 19%), while the exchange 
rate exhibits high variability (CV ≈ 36%). By contrast, log-level 
output and exports are relatively stable (CV ≈ 2.6-4.1%). The 
Jarque–Bera tests do not reject normality for any of the time series 
(in particular, for API, P = 0.846). Such a result can be considered 
favorable for OLS/ARDL models in small samples.

Based on the results of the descriptive statistics, the high volatility 
of EXCH increases the likelihood of a strong effect in short-term 
dynamics (ΔEXCH). This justifies the inclusion of a break dummy 
variable in the model. Accordingly, we introduce into the model a 

dummy indicator that characterizes the sharp change in the exchange 
rate: it takes the value “1” only in 2015, and “0” in all other years. 
The stability of the log-transformed variables is favorable for the 
existence of a long-term cointegration relationship. The results 
indicate that there is no problem of normality in these time series.

4.2. Stationarity
For model selection, the stationarity of the time series for the 
indicators in Table  2 should be tested using the ADF test and 
the Zivot–Andrews test. The results of the stationarity tests are 
presented in Table 3.

According to the ADF tests, API is non-stationary at the level at 
the 5% significance level (intercept P = 0.072; trend P = 0.247), 
but becomes stationary after the first difference (P = 0.026). 
Therefore, we treat API as I(1) in the baseline results. The Zivot–
Andrews unit root tests with an endogenous structural break 
do not reject the null of a unit root in API at the level (ZA–C: 
t = −3.64, P = 0.31, break = 2013; ZA–CT: t = −4.59, P = 0.105, 
break = 2015). However, after the first difference, the series 
becomes stationary (ZA–C: t = −6.00, P = 0.033, break = 2016; 
ZA–CT: t = −4.81, P = 0.058, break = 2013). Therefore, we 
consider API to be I(1) with a structural break during 2013-2015. 
According to the ADF test, the EXCH exchange rate series is 
non-stationary at the level under both the intercept and trend 
specifications (P = 0.650; p = 0.290). For the first difference, the 
ADF test in our small sample does not reject the null of a unit root 
at conventional levels (t = −2.253; P = 0.198). Given the limited 
power of the ADF test with structural breaks and n = 15, we rely 
on the Zivot–Andrews test to confirm the order of integration.

The results of the Z-A test indicate that, with an endogenously 
selected break, the unit root hypothesis is strongly rejected. In 
other words, with the 2015 break, EXCH is stationary at order 
I(0). The break-aware Zivot–Andrews tests reject the unit root in 
the EXCH time series at the 1% significance level under both the 
“intercept only” and the “trend + intercept” specifications, with the 
break endogenously selected in 2015. Therefore, we treat EXCH 
as I(0) with a structural break, and we include a post-2015 dummy 
variable in the ARDL/ECM specification.

The LOGC1315  time series is not stationary at order I(0), but 
becomes stationary at the first difference, meaning that it is suitable 
for ARDL estimation as there is no I(2) integration. According to the 
Zivot–Andrews test results, the break-aware tests for LOGC1315 do 
not reject the unit root at the level under either the “intercept only” or 
“trend + intercept” specifications (ZA–C: t = −3.60, P = 0.331, break 
= 2015; ZA–CT: t = −4.36, P = 0.80, break = 2015). However, under 
the “trend + intercept” specification at the first difference, the null 
is strongly rejected (t = −13.91, P < 0.01, break = 2022). Thus, unit 
root tests indicate that LOGC1315 is I(1) at the level under both 
deterministic specifications. The structural breaks appear within the 
2015-2018 interval, which is consistent with the shocks observed 
during 2014-2016.

The classical ADF tests do not reject the null of a unit root 
for LOGEXPC1315 either at the level (“intercept”: P = 0.845; 
“intercept + trend”: P = 0.640) or at the first difference (“intercept”: 

Table 1: Dynamics of the variables
Years CPI API C1315 expC1315 EXCH a‑nominal
2007 151.9 0.288 49703752 39824709 0.858 0.081
2008 175.1 0.392 53398058 25653627 0.822 0.095
2009 195.9 0.493 39509954 21924682 0.804 0.107
2010 199.5 0.463 42606516 21969113 0.803 0.099
2011 216.1 0.389 51272559 25406670 0.790 0.077
2012 226.4 0.463 54814488 23303033 0.786 0.087
2013 228.3 0.346 64432764 25980248 0.785 0.065
2014 233.2 0.400 58747856 19294592 0.784 0.073
2015 233.7 0.558 50962773 19824454 1.026 0.102
2016 265.6 0.624 74209337 32565854 1.596 0.100
2017 297.1 0.500 1.02E+08 53486933 1.721 0.072
2018 313.4 0.465 1.21E+08 80663373 1.700 0.063
2019 318.8 0.477 1.37E+08 1.06E+08 1.700 0.064
2020 327.5 0.420 1.16E+08 99345456 1.700 0.055
2021 338.2 0.371 1.54E+08 1.59E+08 1.700 0.047
2022 380.4 0.332 1.51E+08 1.16E+08 1.700 0.037
2023 432.2 0.445 1.21E+08 80436865 1.700 0.044
Calculated by the authors using SSCRA (2025) data

Table 2: Descriptive statistics of the variables
Statistic API EXCH LOGC1315 LOGEXPC13
Mean 0.436874 1.233724 18.14967 17.58120
Median 0.445126 1.026100 17.98113 17.29877
Maximum 0.623578 1.721100 18.85433 18.88231
Minimum 0.288286 0.784400 17.49206 16.77534
Standard 
Deviation

0.083695 0.447192 0.474706 0.726400

Skewness 0.342235 0.087186 0.227259 0.448147
Kurtosis 2.929396 1.058188 1.484860 1.630549
Jarque‑Bera 0.335384 2.692404 1.772416 1.897442
Probability 0.845614 0.260227 0.412216 0.387236
Sum 7.426853 20.97330 308.5444 298.8804
Sum Sq. Dev. 0.112076 3.199689 3.605525 8.442502
Number of 
observations

17 17 17 17

Calculated by the authors using Eviews‑12 software
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Table 3: Stasionarity (ADF and Z‑A)
Variables I (0) I (1)

Intercept Intercept and trend Intercept Intercept and trend
t‑stat Prob. t‑stat Prob. t‑stat Prob. t‑stat Prob.

API −2.8593 0.0724 −2.7057 0.2470 −3.4522 0.0256 −3.1791 0.1254
API (Z‑A) −3.6436 0.3102 −4.5898 0.1050 −4.5980 0.0331 −4.8086 0.0579
EXCH (ADF) −1.1878 0.6503 −2.5869 0.2895 −2.2534 0.1976 −2.1301 0.4898
EXCH (Z‑A) −446.8789 <0.01 −291.9139 <0.01 −5.8506 <0.01 −5.0604 0.0277
LOGC1315 −0.7611 0.8029 −2.3667 0.3801 −3.3406 0.0314 −3.1623 0.1286
LOGC1315 (Z‑A) −3.5997 0.3306 −4.3620 0.1826 3.5410 0.3649 −13.9108 <0.01
LOGEXPC1315 −0.6007 0.8446 −1.8298 0.6395 −2.6657 0.1027 −2.1910 0.4604
LOGEXPC1315 (Z‑A) −4.3088 0.0731 −4.9385 0.0394 −3.1930 0.5703 −4.1046 0.3109
Calculated by the authors using Eviews‑12 software

P  = 0.103). This is likely due to small-sample size and the 
effects of structural breaks. Therefore, we confirm the order of 
integration using break-aware tests. According to the Zivot–
Andrews test results, for LOGEXPC1315 under the “intercept 
only” specification with a break, the unit root cannot be rejected 
(P = 0.073). However, under the “trend + intercept” specification, 
with endogenously selected breaks in 2016-2017, the null is 
rejected (P = 0.039). Conservatively, we treat LOGEXPC1315 as 
I(1) with a structural break, satisfying the preconditions for ARDL 
estimation. Thus, the unit root evidence with structural breaks 
indicates a mixture of I(0) and I(1) variables (API and LOGC1315: 
I(1); EXCH: I(0) with a 2015 break; LOGEXPC1315 is treated 
as I(1)). Since none of the series is I(2), estimation with ARDL is 
appropriate for our case. Naturally, a post-2015 dummy variable 
should also be included in the model.

4.3. Model Selection and ARDL Model Results
Thus, since none of the variables is I(2), there is no obstacle to 
applying the ARDL/Bounds approach. However, given the large 
number of possible ARDL specifications, it is necessary to select 
the most appropriate model among them. In Scheme 1, the 20 
possible ARDL models with the highest AIC values are presented. 
Among them, the ARDL (1,2,1,2,2) specification is selected as the 
best-fitting model. This is because:
•	 AIC: −5.253 (ARDL (1,2,1,2,2)) < −3.695 (ARDL (1,0,0,0,1)) 

→ better fit.
•	 BIC/HQ: −4.639/−5.260 < −3.357/−3.678 → again, preference 

is for ARDL (1,2,1,2,2)
•	 S.E. of regression: 0.020 < 0.033 → smaller residual error
•	 Adjusted R²: 0.933 > 0.818 → higher explanatory power.

The results for the selected ARDL (1,2,1,2,2) model are presented 
in Table 4.

Based on the results in the table, the ARDL(1,2,1,2,2) model yields 
AIC = −5.253, SER = 0.020, Adj. R² = 0.933, and DW = 2.42 
→ indicating a strong fit with no signs of autocorrelation. The 
coefficient of API(−1) = −0.899 (statistically significant) shows 
that approximately 90% of the “disequilibrium” from the previous 
year is corrected within 1 year. The system is stable, with rapid 
convergence after shocks.

Devaluation increases API in the same year, but in the following 
year the effect is largely reversed, with a net 2-year impact of about 
+0.90 units (a small positive effect). An increase in logC1315 

Table 4: ARDL (1, 2, 1, 2, 2) results
Variable Coefficient Std. Error t‑Statistic Prob.*
API (−1) −0.899241 0.232162 −3.873337 0.0607
DUMMY −2.596250 0.683160 −3.800353 0.0628
DUMMY(−1) −6.114133 1.619903 −3.774381 0.0636
DUMMY(−2) −1.619070 0.432103 −3.746950 0.0644
EXCH 11.10809 2.838022 3.914026 0.0595
EXCH(−1) −10.20474 2.701648 −3.777227 0.0635
LOGC1315 −0.506217 0.098284 −5.150565 0.0357
LOGC1315(−1) 0.185129 0.100030 1.850733 0.2054
LOGC1315(−2) −0.430081 0.158274 −2.717324 0.1129
LOGEXPC1315 0.157611 0.075492 2.087777 0.1721
LOGEXPC1315(−1) −0.370552 0.090239 −4.106315 0.0545
LOGEXPC1315(−2) 0.096006 0.075631 1.269392 0.3320
C 15.45416 2.675986 5.775126 0.0287
Calculated by the authors using Eviews‑12 software

(production) reduces API in the short run (net ≈ −0.75). Exports 
(logEXPC1315) show an overall weak negative net effect (≈ −0.12), 
suggesting that export shocks are subsequently “cleaned up” through 
structural adjustment. The break dummy is negative and large, both 
contemporaneously and with lags. The model results indicate that the 
system is stable and provides a good fit. Exchange rate shocks raise 
API in the short term, followed by partial reversal after one year. 
Production growth, on the other hand, generally reduces intensity.

4.4. Bound Test
The results of the ARDL Bounds test are presented in Table 5. 
Based on these results, cointegration is confirmed. The F-statistic 
of the Bounds test is 12.83, which is significantly higher than both 
the asymptotic and finite-sample upper critical bounds (I(1)) (e.g., 
for n ≈ 30 at the 1% level: 5.84). Therefore, the null hypothesis of 
“no levels relationship” is confidently rejected.

This indicates that the ARDL (1,2,1,2,2), Case 2 (restricted constant, 
no trend), with k = 4 (four level regressors: DUMMY, EXCH, 
LOGC1315, LOGEXPC1315), exhibits a valid long-run relationship. 
Since F = 12.83 > upper bound critical values (10%: 3.56; 5%: 4.223; 
1%: 5.84), the existence of cointegration is confirmed. The ECM 
(error correction term) coefficient for API(−1), equal to −1.899, is 
negative. This means the system corrects approximately 190% of 
disequilibria each year, indicating very rapid convergence, even 
with “overshooting.” Stable but oscillatory convergence is expected.

APIt = −5.439*DUMMYt + 0.476*EXCHt − 0.396*logC1315t − 
0.062*logEXPC1315t + 8.137 + εt� (2)
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According to the equation, an increase in the exchange rate 
(EXCH), i.e., devaluation, leads to an increase in API. Growth in 
logC1315 (output/production) reduces API, reflecting an efficiency 
effect. LogEXPC1315 has a weak negative long-run impact on 
API. The effect of the DUMMY (post-break) indicator on the 
level of API is minor. Based on the short-run dynamics, ΔEXCH 
is positive and strong, meaning that devaluation raises API within 
the same year. ΔLOGC1315 has a negative effect, indicating that 
production growth reduces API even in the short term. The effects 
of ΔLOGEXPC are weak. Thus, the Bounds test strongly confirms 
the presence of cointegration. The ECM coefficient indicates 
rapid (and somewhat oscillatory) convergence. In the long run, 
the exchange rate increases API, while production reduces API. 
This allows us to reliably present both the long-run and short-run 
interpretations for the ARDL (1,2,1,2,2) model.

4.5. ECM
The ECM results are presented in Table 6. Based on these results, 
cointegration is confirmed and the model exhibits rapid (even 
somewhat oscillatory) convergence. In the short run, an increase 
in the exchange rate (devaluation) raises API, while an increase in 

production reduces API; the impact of exports is mixed in the short 
term. Since CointEq(−1) = −1.899 and is negative, and because 
|ECT| > 1, the system returns to equilibrium in less than one 
year “effectively,” though the adjustment is wave-like with some 
overshooting. Put simply, if there is a deviation from equilibrium 
today, the next period brings an over-correction, after which the 
system “sticks” back to equilibrium.

Short-run effects (Δ-terms) are as follows:
•	 For ΔEXCH, the coefficient is +11.108, implying that when 

the exchange rate rises (devaluation), API increases in the 
same year

•	 For ΔLOGC1315, the coefficient is −0.506, while 
ΔL O G C 1 3 1 5 ( − 1 )  i s  + 0 . 4 3 0 ,  m e a n i n g  t h a t 
production growth reduces API in the first year, with partial 
reversal in the following year. The net short-run effect is 
about −0.076

•	 For ΔLOGEXPC1315, the coefficient is +0.158 and 
ΔLOGEXPC1315(−1) is −0.096, indicating a small initial 
increase followed by correction, with a weak net effect

•	 For the break shock (ΔDUMMY), the coefficient is −2.596, 
while ΔDUMMY(−1) is +1.619, implying a sharp one-
off negative shock in the break year, followed by partial 
compensation the next year. These terms are active only 
around the break period

Table 5: Bound test results
Conditional error correction regression

Variable Coefficient Standard 
Error

t‑Statistic Prob.

C 15.45416 2.675986 5.775126 0.0287
API(−1)* −1.899241 0.232162 −8.180678 0.0146
DUMMY(−1) −10.32945 2.732573 −3.780119 0.0634
EXCH(−1) 0.903354 0.163247 5.533650 0.0311
LOGC1315(−1) −0.751170 0.159708 −4.703382 0.0424
LOGEXPC1315(−1) −0.116935 0.048965 −2.388122 0.1396
D (DUMMY) −2.596250 0.683160 −3.800353 0.0628
D (DUMMY(−1)) 1.619070 0.432103 3.746950 0.0644
D (EXCH) 11.10809 2.838022 3.914026 0.0595
D (LOGC1315) −0.506217 0.098284 −5.150565 0.0357
D (LOGC1315(−1)) 0.430081 0.158274 2.717324 0.1129
D (LOGEXPC1315) 0.157611 0.075492 2.087777 0.1721
D 
(LOGEXPC1315(−1)) 

−0.096006 0.075631 −1.269392 0.3320

Calculated by the authors using Eviews‑12 software

Table 6: ECM results
ECM regression

Case 2: Restricted Constant and No Trend
Variable Coefficient Std. 

Error
t‑Statistic Prob.

D (DUMMY) −2.596250 0.162011 −16.02517 0.0039
D (DUMMY(−1)) 1.619070 0.094505 17.13217 0.0034
D (EXCH) 11.10809 0.662759 16.76038 0.0035
D (LOGC1315) −0.506217 0.036746 −13.77598 0.0052
D (LOGC1315(−1)) 0.430081 0.032959 13.04891 0.0058
D (LOGEXPC1315) 0.157611 0.021604 7.295500 0.0183
D (LOGEXPC1315(−1)) −0.096006 0.017593 −5.456935 0.0320
CointEq(−1)* −1.899241 0.115707 −16.41426 0.0037
Calculated by the authors using Eviews‑12 software

Scheme 1: ARDL model selection
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•	 With R² ≈ 0.992, SER ≈ 0.0108, and DW ≈ 2.42, the ECM 
model is confirmed to have a very good fit, high explanatory 
power, and no signs of autocorrelation.

Thus, the Bounds test (Case 2, k = 4) with F = 12.83 confirms 
the existence of cointegration, while the ECM test validates 
rapid (oscillatory) convergence (ECT = −1.899, negative and 
significant). In the short run, devaluation increases API, production 
growth reduces API, and the impact of exports is weak and mixed. 
During the break period, a one-off negative shock is observed.

4.6. Diagnostic Tests
The results of the diagnostic tests are summarized in Table  7. 
According to the LM test, no serial correlation is detected up to 
the first order. In the Breusch–Godfrey LM test, both the F-form 
(F = 0.211; P = 0.726) and the χ²-form (Obs*R² = 2.616; P = 0.106) 
do not reject the null hypothesis of “no serial correlation.” Since 
the Durbin–Watson statistic is ≈ 2.33, this result is consistent. 
This means that the model residuals are not AR(1). Therefore, the 
standard errors and p-values of the ARDL results are reliable with 
respect to AR(1) violations. In the test equation, the coefficient 
of RESID(−1) is not significant (P = 0.726), which supports the 
same conclusion. Thus, the Breusch–Godfrey LM test (lag = 1) 
shows that there is no serial correlation (F = 0.211, P = 0.726; 
Obs*R² = 2.616, P = 0.106). The Durbin–Watson ≈ 2.33 result is 
also consistent with this finding. Hence, the ARDL residuals are 
robust against AR(1) concerns.

According to the results of the heteroscedasticity test, no 
heteroscedasticity was detected. In the Breusch–Pagan–Godfrey 
(BPG) test, both the F-form (F = 0.165; P = 0.985) and the χ²-form 
(Obs*R² = 7.465; P = 0.825) do not reject the null hypothesis of 
homoscedasticity (constant variance). The “Scaled explained 
SS” statistic supports the same conclusion (P = 1.000). Thus, the 
variance of the residuals is not systematically dependent on the 
explanatory variables, and the standard errors from OLS/ARDL are 
reliable with respect to heteroscedasticity. The auxiliary regression 
on RESID² shows that none of the explanatory variables has a 
statistically significant P-value, which also provides no signal of 
structural variance violations.

The negative Adjusted R² is simply the result of low power in 
a small sample (df₂ = 2; many regressors) and does not alter 

the conclusion. Thus, the Breusch–Pagan–Godfrey test does 
not indicate heteroscedasticity: F(12,2) = 0.165, P = 0.985; 
Obs·R² = 7.465, P = 0.825. The result is also supported by the 
CUSUMSQ graph. For robustness, heteroskedasticity-robust (HC3) 
standard errors were reported, and the results remained unchanged.

According to the results of the residual normality test, the 
Jarque–Bera test yields P = 0.261, so we do not reject the null 
hypothesis of normal distribution. In other words, Jarque–
Bera = 2.69, P = 0.261. Thus, the ARDL/ECM residuals are 
approximately normal, with no strong evidence of normality 
violation. The residuals are centered around zero (mean ≈ 0), 
show slight left skewness (skewness = −1.01), and somewhat 
leptokurtic tails (kurtosis ≈ 3). Heteroskedasticity-robust standard 
errors remain unchanged.

According to the results of the Ramsey RESET test, there is no 
clear evidence of functional form misspecification. Since the 
p-value for both the t- and F-forms is 0.1243 (df₂ = 1), the null 
hypothesis of “correct specification/no omitted variables” is not 
rejected. Thus, when the squared fitted values (FITTED²) are 
added, the model does not improve significantly, indicating that 
the functional form is correct and no additional nonlinear terms 
are required.

The Ramsey RESET test (omitted: fitted²) shows no functional 
form error: F(1,1) = 25.57, P = 0.1243; t = 5.06, P = 0.1243. 
Although the LR statistic may yield a different result due to 
the small sample size, in the OLS context the decision is based 
on the F/t versions. Furthermore, the stability and residual 
diagnostics confirm that the specification is acceptable. According 
to the CUSUM (Brown–Durbin–Evans) diagnostic, when the 
cumulative recursive residuals remain within the 5% confidence 
bands, the null hypothesis of parameter stability over time cannot 
be rejected.

Our results (Graph 1) also do not cross the boundaries, indicating 
that the coefficients are stable. According to the CUSUMSQ 
diagnostic, if the cumulative sum of squared residuals lies 
within the 5% confidence bands, there is no sharp regime shift 
in the residual variance and no evidence of heteroskedasticity or 
structural breaks. In our results (Graph 2), no boundary exceedance 
is observed either. In both the CUSUM and CUSUMSQ graphs, 

Table 7: Residual diagnostics
Test Statistic df P‑value Decision (α=0.05) Short note
Breusch–Godfrey 
LM (AR (1))

F=0.211; Obs: 
R²=2.616

(1, 1); 1 0.726; 0.106 H₀ is not rejected, i.e., there is no 
serial correlation

Consistent with DW≈2.33

Ramsey RESET 
(fitted²)

F (1, 1) =25.57; 
t=5.06

(1, 1) 0.1243 H₀ is not rejected, i.e., there is no 
functional form misspecification

Small sample→F/t criterion 
is used as the basis

Jarque–Bera 
(normality)

JB=2.69 2 0.261 H₀ is not rejected, i.e., the 
residuals are approximately 
normal

Skew=−1.01; 
Kurtosis=3.45.

Breusch–Pagan–
Godfrey (hetero.)

F=0.165; 
Obs·R²=7.465

(12, 2); 12 0.985; 0.825 H₀ is not rejected, i.e., 
homoskedasticity holds

White/ARCH LM (optional) 
may be added

CUSUM ‑ ‑ ‑ Parameter stability is confirmed 
within the 5% boundaries

There is no crossing

CUSUMSQ ‑ ‑ ‑ Variance stability is confirmed 
within the 5% boundaries

There is no evidence of 
structural variance change

Calculated by the authors using Eviews‑12 software
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the cumulative residual paths remain within the 5% significance 
bands throughout the entire observation period. Thus, there is no 
evidence of violations of parameter stability or variance stability, 
and the model is structurally stable. It should be noted that in 
small-sample settings (n ≈ 15), these results, combined with the 
already presented LM (no serial correlation) and RESET (no 
functional form misspecification) diagnostics, further confirm the 
robustness of the findings.

5. DISCUSSION

This study investigated the key determinants of emission intensity 
in Azerbaijan’s light industry (C13–C15) using the ARDL 
framework with structural breaks. Three main findings emerged.

First, higher sectoral output (as confirmed by logC1315) is 
associated with lower emission intensity in the long run. This 
reflects evidence that, once firms invest in efficiency and best 
available technologies, economies of scale, learning effects, 
and technology diffusion can reduce energy use and emissions 
per unit of value added (Pan et al., 2019; Chen et al., 2022). For 
example, in Bangladesh and China, larger-scale industrialization 
accompanied by openness and technological upgrading has been 
linked to declining energy intensity, once compositional effects are 
controlled for (Pan et al., 2019; Chen et al., 2022). Our findings 
indicate the existence of a similar “efficiency-dominant” channel 
in Azerbaijan’s light industry.

Second, we find that currency depreciation (a higher exchange rate) 
increases emission intensity. In a small open economy that relies 
on imported energy, machinery, dyes, and chemicals, this outcome 
is economically intuitive. Depreciation raises the local currency 
cost of energy and capital upgrading, delays reductions in intensity, 
and locks firms into older, more energy- and emission-intensive 
technologies. Related time-series and quantile-ARDL studies 
show that exchange rate movements significantly affect energy 
demand and emissions; depreciation often worsens environmental 
footprints through cost and operational channels (Peng et al., 
2022; Smaili AND Gam, 2023). In G7 economies, the effects of 
exchange rate movements on emissions are heterogeneous across 

demand states, underscoring the usefulness of flexible models 
such as ARDL. In the Mediterranean, exchange rate–emission 
linkages are also observed despite asymmetries in the level of 
development. This reinforces the importance of country-specific 
structures, such as those in Azerbaijan’s energy-  and import-
intensive light industry.

Third, the weak and negative long-run association between C13–
C15 exports and emission intensity is consistent with technology 
transfer facilitated by trade, as well as process upgrading. Research 
shows that export orientation can reduce energy/emission intensity 
when meeting standards in foreign markets drives the adoption 
of cleaner technologies and stricter quality control (Pan et al., 
2019). Moreover, studies on textile production in Asian countries 
indicate that although the sector is energy-intensive, targeted 
upgrading and green technologies can bend the intensity curve 
downward (Haseeb et al., 2020). Our findings suggest that for 
Azerbaijan’s light industry, the export channel may operate more 
through “standards/efficiency” mechanisms rather than through a 
“pollution haven” effect.

The identified structural breaks coincide with the macro shocks 
to Azerbaijan’s trade sector and exchange rate regime in 2015. 
This aligns with the literature linking such breaks to strong 
spillovers into the real economy (Mukhtarov et al., 2021). In such 
contexts, ARDL with structural breaks is particularly informative, 
as it allows for parameter shifts without discarding long-run 
information.

Our findings are also consistent with the environmental profile 
specific to the textile and apparel sectors. International evidence 
highlights the contributions of combustion-related CO₂, as well 
as process emissions and volatile organic compounds (VOCs) 
released during dyeing and finishing. Targeted process control 
and substitution measures can significantly reduce these burdens 
(Qian et al., 2022). Therefore, policy levers that stabilize firms’ 
access to efficient capital—such as currency risk management and 
concessional green credit—and those that promote export–market 
alignment—such as eco-labels and supplier development—should 
reinforce the efficiency gains observed in Azerbaijan’s light industry.

Graph 2: Results of CUSUM of squaresGraph 1: Results of CUSUM
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6. CONCLUSION

This study examined the determinants of emissions/energy 
intensity in Azerbaijan’s light industry (NACE C13–C15) over the 
period 2007-2023 using an ARDL framework explicitly adjusted 
for structural breaks. After establishing that all series are at most 
I(1) (with no I(2)) based on ADF and break tests, the Bounds test 
(F = 12.83) confirmed the existence of a long-run relationship. The 
associated ECM indicates rapid error correction (ECT ≈ −1.90). 
Thus, deviations from equilibrium are corrected quickly.

Three main findings emerge. First, a weaker currency (higher 
EXCH) is associated with higher intensity in the long run, and 
depreciation shocks amplify the effect, although partially reversed 
after one year. Second, sectoral output growth (logC1315) is 
linked to lower intensity in both the short and long run, consistent 
with scale effects as firms expand and adopt better technologies. 
Third, exports (logEXPC1315) show a small negative long-run 
association with intensity, alongside mixed short-run effects, 
suggesting improvements driven more by standards compliance 
than by pollution-related behavior. Model diagnostics (LM, 
RESET, CUSUM/CUSUMSQ) support the adequacy of the 
specification despite the small sample size.

The policy implications follow directly. Exchange rate volatility 
can temporarily link emissions with economic activity. Targeted 
green financial instruments—including concessional loans, credit 
guarantees, and currency risk management tools for upgrading 
energy-saving equipment and processes—can buffer firms during 
depreciation episodes. The analysis also has limitations. The 
intensity metric was constructed in kgoe/AZN and is constrained 
by the absence of pollutant-specific, firm-level data for C13–C15. 
Hence, the results should be interpreted as sectoral intensity, 
not absolute damage. The sample size is short (n ≈ 17), and the 
P-values do not fully account for model selection uncertainty. 
Future work should test nonlinear/asymmetric responses (NARDL/
QARDL), apply open-band or Narayan small-sample critical 
values as the main inference device, and incorporate input price 
indices to disentangle price from activity channels. Where data 
permit, results should be extended to particulate/VOC proxies. 
Finally, micro-level energy audits or plant-level panels could 
significantly strengthen identification.

The findings of this study further confirm that since depreciation 
pressures worsen intensity, hedging programs for energy-efficient 
machinery and green credit lines can mitigate macro-driven 
downside risks (Peng et al., 2022). Support for compliance with 
EU/EEA product and process standards (e.g., ZDHC, ISO 14001) 
through technology and quality investments can also help reinforce 
the negative export–intensity relationship (Pan et al., 2019). 
Given the process-specific emission profile of the C13–C15 sector 
(thermal energy, dyes/solvents), policies focusing on heat recovery, 
electrification, and low-VOC chemistry could reduce intensity 
without sacrificing output (Haseeb et al., 2020; Qian et al., 2022).

The ARDL–Bounds results demonstrate the existence of a stable 
long-run relationship between the exchange rate, production, 
exports, and the ecological intensity indicator. In the long run, 

higher production volumes are associated with reduced intensity 
(efficiency/technological upgrading channel), a weaker exchange 
rate increases intensity (cost channel of external shocks), while 
exports show a weak negative effect. These findings suggest that 
when production growth is combined with technological upgrading 
and macro-financial conditions (particularly exchange rate risk) 
are effectively managed, it is possible to reduce the intensity of 
atmospheric emissions while sustaining output growth.

Extending the dataset for the indicators used in this study by at 
least 10-15 years would allow for more robust results: a) While 
the stationarity properties and bounds tests justify the use of 
ARDL, future research could apply NARDL or QARDL in order 
to capture the asymmetric effects of depreciation against price 
increases, as suggested in multi-country evidence; b) The study 
could also be expanded by incorporating input-price indices (e.g., 
imported energy and machinery) to disentangle price and activity 
channels. Furthermore, in order to reflect a more comprehensive 
external impact package in the light industry, environmental 
outcomes could be broadened beyond intensity measures—for 
example, by including particulates and VOC permits (Peng et al., 
2022; Qian et al., 2022).
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