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ABSTRACT

The article examines emission intensity drivers in Azerbaijan’s light industry (NACE C13—C15: textiles, apparel, leather) over 2007-2023. Air pollutant
intensity is defined as the weight of pollutants per 1 AZN of output (kg/AZN), calibrated where relevant to CO- intensity. Unit root tests (ADF, Zivot—
Andrews) reveal a mix of I(0) and I(1) series, allowing ARDL estimation. Considering shocks from the 2015 exchange rate shift, an ARDL (1,2,1,2,2)
with a post-break dummy is estimated. Bounds testing confirms cointegration (F = 12.83). The error correction coefficient (—1.90) indicates rapid
adjustment to long-run equilibrium. Long-run results show that currency depreciation raises emission intensity, while sectoral productivity lowers it,
consistent with scale effects. Exports have a weak negative impact. In the short run, depreciation raises intensity immediately but partially corrects
after one year; output growth mitigates the effect. Model checks (LM, RESET, CUSUM, CUSUMSQ) confirm robustness in a small sample. Policy
implications suggest that exchange rate shocks temporarily worsen environmental outcomes, whereas expansion and modernization reduce intensity.
Priorities include boosting energy efficiency, strengthening cleaner production, and expanding exports to improve environmental performance.

Keywords: Light Industry, Emissions Intensity, ARDL, Bounds Testing, ECM), Structural Breaks, Textiles and Apparel, Azerbaijan
JEL Classifications: Q56, Q53, C32, F31, L67, 014

1.INTRODUCTION technologies” (RETs), as well as the integration of circular
economy principles into the production chain, are crucial not only
from an environmental standpoint but also for reducing costs and

improving product quality.

The agile modernization of production sectors and the improvement
of resource efficiency lie at the intersection of strategic areas such
as climate change mitigation, energy security, and competitive

industrial policy. In this context, the light industry—particularly
textiles, apparel, and leather products (ISIC Rev.4: C13—-C15)—
is in focus due to its employment and export potential, as well
as its intensive use of water, energy, and chemicals. The high
consumption of water and chemicals during the dyeing—finishing—
treatment stages, along with intensive demand for thermal and
electrical energy and the composition of wastewater, exacerbate
the ecological footprint of these subsectors. Under such conditions,
the adoption and widespread implementation of “resource-efficient

Systematic, comparative, and methodologically rigorous
assessment of the environmental performance of light industry
enterprises in Azerbaijan is still represented by limited research.
Most existing studies either focus on single indicators (e.g., total
emissions or energy consumption) or are constrained by a lack of
disaggregated data at the enterprise level, limiting methodological
integration. As a result, the evidence base for policy tools,
including energy tariffs, inspection intensity, the implementation
of eco-standards, and incentives for clusters and eco-industrial

This Journal is licensed under a Creative Commons Attribution 4.0 International License

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 1




Gulaliyev, et al.: What Drives Emissions Intensity in Azerbaijan’s Light Industry? Evidence from ARDL with Structural Breaks

parks, remains weak in terms of clearly quantifying real impact
channels. This gap makes it difficult to design effective decision-
support mechanisms for both regulatory authorities and enterprise
managers.

In conclusion, this study not only provides a systematic, evidence-
based perspective on the ecological performance of Azerbaijan’s
light industry, but also quantitatively demonstrates the real impact
of “resource-saving technology,” thereby laying the groundwork
for practice-oriented recommendations in the design of policy
instruments. The remainder of the study is structured as follows:
Section II summarizes the relevant literature and theoretical
framework. Section III presents the methodology and data sources.
Section IV covers the empirical findings. Section V discusses the
study’s limitations and the future research agenda. Section VI
analyzes the comparison of the empirical results obtained with
findings from other studies. Finally, Section VIII presents the
overall conclusions.

The aim of the study is to measure the atmospheric emissions

of light industry enterprises (specifically: C13—Textiles; C14—

Apparel; Cl15-Leather and related products), to evaluate their

eco-efficiency, and to econometrically analyze the determinants.

It should be noted that according to ISIC Rev.4, i.e., the

United Nations International Standard Industrial Classification of

All Economic Activities (4" revision), Textiles are classified as

C13, Apparel as C14, and Leather and related products as C15.

The research questions are as follows:

a) Whatare the levels and intensity dynamics of CO2, SOz, NOx,
PM, and waste indicators during the period 2000-2023?

b) To what extent does the intensity dynamic depend on different
determinants: production volume, structural or subsectoral
share, or other factors?

¢) Do export orientation, subsector size, and financial stability
have an impact on eco-efficiency?

2. LITERATURE REVIEW

Light industry, particularly textiles, apparel, leather—footwear, and
household textiles, is characterized by two main channels of impact
on atmospheric air: First, process-related emissions. For example,
during production processes such as dyeing, printing, drying, and
tentering, as well as in solvent-based operations, volatile organic
compounds (VOCs), formaldehyde, and other pollutants are
generated. Second, stationary combustion sources. These include
small- and medium-capacity boilers used for steam or heating
within workshops, which lead to the release of pollutants into the
atmosphere. Early studies dedicated to this issue—for instance,
Miiezzinoglu (1998)—systematized the potential of air pollutants
according to different stages of textile production, showing that
VOC emissions can dominate particularly in dyeing—finishing and
drying lines. Subsequent research has quantitatively assessed the
ozone formation potential (OFP) and carcinogenic risk indicators
of VOC mixtures in industrial sectors, including textiles, thereby
revealing distinct profile differences (Yang et al., 2020).

In light industry subsectors closely related to textiles—for
example, footwear or rubber enameling—assessments have

shown that ethylbenzene, xylenes, toluene, and other aromatics
predominate, significantly influencing both ozone formation
potential (OFP) and health risks (Li et al., 2019; Wang et al., 2022;
Huang et al., 2022; Shang et al., 2022). Within textile production
itself, it has been demonstrated that solvent use in polyester fabric
lines and thermal processes can lead to a high VOC “chemical
footprint.” Moreover, it is possible to identify priority compounds
and control points along the process line (Qian et al., 2022; Guo
etal.,2022). These findings highlight that the proper specification
of the source—process profile is critical for model development
(OFP, risk) and for the effective targeting of policy instruments.

The energy demand of light industry enterprises is often met by
in-house boilers operating on natural gas, fuel oil, or, in some
cases, coal. Unit-based inventories conducted across Chinese
cities and regions quantitatively confirm the systematic impact
of such boilers on PM, SO, and NOy emissions. Although recent
regulatory tightening has led to reductions in emission volumes,
the large number of distributed small-scale units continues
to represent a “difficult-to-control” source (Xue et al., 2016;
Tong et al., 2021; An et al., 2021; Li et al., 2019; Zheng et al.,
2019). These literature findings reinforce the methodological
basis for proportional allocation strategies of stationary sources
with similar configurations to light industry in the post-Soviet
context. However, additional uncertainty arises precisely from
the heterogeneity of fuel mixes and technologies.

Since light industry products are highly export-oriented, the
“consumption-based” pollution burden carries significant weight.
Some studies have shown that export-oriented industrial clusters
increase Os and its precursors, particularly VOCs, in coastal
areas, while this effect can sharply decline once the technology
gap is closed (Ou et al., 2020). On a broader scale, the growing
consumption of light industry goods by the G20 has been shown
to account for a large share of the global PMz.s-related mortality
burden being “imported” (Nansai et al., 2021). Other studies,
such as McDuffie et al. (2021), report that the sectoral impacts
of industrial and energy fuel mixes differ significantly in terms
of PMaz.s health risks. This body of evidence justifies the targeted
role of policy instruments—such as supply chain restructuring
and technology transfer—in reducing emission intensity in light
industry.

In recent years, it has been confirmed that textile-derived
microfibers are emitted not only into water but also into the air.
Studies have shown that household tumble dryers can release
hundreds of thousands of fibers into the atmosphere within just
15 min (O’Brien et al., 2020; Tao et al., 2022). Quantitative
measurements of fiber fluxes during washing—drying cycles
(Kérkkédinen and Sillanpéd, 2021) and the impact of domestic
laundry on global microplastic pollution (De Falco et al., 2019;
Gaylarde et al., 2021) have been widely investigated. From the
perspective of light industry, this implies that in-house dust—fiber
management and filtration technologies need to be considered
alongside OFP-centered VOC control.

The use of process-line “chemical footprint” indicators (Qian et al.,
2022; Guo et al., 2022) enables substance-specific prioritization
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in light industry. For the calibration of inventories, field
measurements and unit-based data are essential (Zheng et al., 2019;
Anetal.,2021). In the economic assessment of the determinants of
emission intensity, both linear and nonlinear ARDL and NARDL
frameworks are widely applied. Findings on the asymmetric effects
of textile—apparel activity, energy intensity, FDI and transaction
variables, as well as trade structure on emissions (Haseeb et al.,
2020; Adebayo et al., 2021; Zhang and Zhang, 2018), align the
ARDL-SB (ARDL with structural breaks) model developed in
this article with the existing literature.

The general conclusion is that the main share of atmospheric

impacts in light industry originates either from process-line VOCs

or from in-house boilers. The appropriate policy mix should

therefore consist of:

1. The application of solvent-reducing technologies and hermetic
sealing

2. Ensuring NO/PM control in boilers

3. The diffusion of “clean technology” throughout supply chains,
and

4. The implementation of multi-component measures such as
fiber—dust filtration.

3. METHODOLOGY

Since subsectors C13—C15 were selected as the objects of the
study, the ecological impacts of other light industry subsectors—
such as wood processing (C16), paper (C17), and printing (C18)—
were not examined. The study relies on data covering the period
2007-2023. The atmospheric pollutants considered include CO-,
SOz, NOx, and PM.

For the purposes of the study, quantitative data were obtained
from the official databases of the State Statistical Committee of
the Republic of Azerbaijan (ARDSK, 2025) and the Ministry of
Ecology and Natural Resources (MENR, 2025).

To evaluate, at the macro level, the environmental impacts of
Azerbaijan’s light industry enterprises (ISIC Rev.4 subsectors
C13-CI15: textiles, apparel, and leather products), we identify
practical dependent and independent indicators, along with their
measurement units, based on available sources. As the dependent
indicator, we use:
1. Air Pollution Intensity (API), defined as the ratio of air
pollutants (SOz, NOy, CO, dust, etc.) to the value of output
in the sector (tons per million AZN).

The following independent macro indicators have been adopted

as potential determinants of the dependent variable:

a) Output volume in sectors C13, C14, and C15 (million AZN,
constant prices) — C1315

b) Volume of textile—apparel-leather exports — EXPC1315

¢) Exchange rate (EXCH) (AZN/USD, annual average), serving
as a control for imported equipment and energy price pass-
through.

It should be noted that deflators (control indicators) were used to
convert nominal values of C1315 and EXPC1315 into real values.

One of the main challenges and limitations of the study is the
lack of accessible data on most of the factors that may affect
“Air Pollution Intensity” (API). To address this problem to some
extent, the following method will be applied. For instance, in
order to calculate the indicator “Air Pollution Intensity (SO-,
NOx, CO, dust, etc.),” data on the volume of “air pollutants™ are
required. However, in the publicly available database of the State
Statistical Committee (SSC), only the indicator “Emissions into
the atmosphere from stationary sources” is provided. Considering
that all economic activity sectors—except road transport—are
classified as “stationary sources,” it is difficult to accurately
determine the volume of pollutants emitted into the atmosphere
specifically from the C13—C15 subsectors of light industry, as
opposed to industry, agriculture, and other sectors in general.

To estimate the volume of pollutants from the C13—C15 subsectors,

several assumptions will be made:

1. It will be assumed that light industry primarily uses natural gas

2. It will be assumed that the main waste gas emitted into the
atmosphere is CO.. Since the volume of other waste gases is
very small compared to CO-, they will be disregarded

3. It will be assumed that the combustion of 1 kg of gas (in
oil equivalent) results in 2.349 kg of CO: released into the
atmosphere.

Based on these assumptions, and using the amount of energy
consumption in subsectors C13—C15, the API can be calculated
as follows:

[_ QAPCI3IS _ ECCI315%2.349

C1315 C1315
sk sk
= M = 3*2349 (1)
C1315

Here, “a” represents the volume of energy products consumed

for the production of 1 AZN worth of C13—C15 output (at current

prices), calculated as “(kg of oil equivalent)/AZN.” When
expressed in real terms, it is defined as ar=al00xCPla_r=\frac{a}

{100} \times CPIar = 100a x CPI.

e QAPCI1315 — the amount of pollutants generated and
released into the atmosphere in the C13—C15 subsectors of
light industry

e (C1315 — the value of output in the C13—C15 subsectors of
light industry

e ECCI1315 — the amount of energy consumption (in oil
equivalent) in the C13—C15 subsectors of light industry.

According to the data of the State Statistical Committee of the
Republic of Azerbaijan (SSCRA, 2025), the dynamics of C1315,
EXPC1315, and API in real terms (base year 2000) for the period
2007-2023 are presented in Table 1.

4. RESULTS

4.1. Dynamics and Descriptive Statistics of the
Variables

Based on these indicators, we will attempt to quantitatively assess
the dependence of air pollutant intensity (API) on:
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e The volume of value added created in light industry (in
national real currency — manat; base year 2000) (C1315)

e The export volume of light industry products (in national real
currency — manat; base year 2000) (EXPC1315), and

e  The exchange rate (EXCH).

The dynamics of these indicators for the period 2007-2023 are
presented in Table 1.

In the study, the logarithms of the indicators C1315 and EXPC1315
were used. The results of the descriptive statistics for these
indicators are presented in Table 2. Based on the results, moderate
variability is observed in API (CV = 19%), while the exchange
rate exhibits high variability (CV = 36%). By contrast, log-level
output and exports are relatively stable (CV = 2.6-4.1%). The
Jarque—Bera tests do not reject normality for any of the time series
(in particular, for API, P=0.846). Such a result can be considered
favorable for OLS/ARDL models in small samples.

Based on the results of the descriptive statistics, the high volatility
of EXCH increases the likelihood of a strong effect in short-term
dynamics (AEXCH). This justifies the inclusion of a break dummy
variable in the model. Accordingly, we introduce into the model a

Table 1: Dynamics of the variables

Years CPI API C1315 expC1315 EXCH a-nominal
2007 151.9 0.288 49703752 39824709  0.858 0.081
2008  175.1 0.392 53398058 25653627 0.822 0.095
2009 1959 0.493 39509954 21924682 0.804 0.107
2010  199.5 0.463 42606516 21969113  0.803 0.099
2011 216.1 0.389 51272559 25406670  0.790 0.077
2012 2264 0.463 54814488 23303033 0.786 0.087
2013 2283 0.346 64432764 25980248  0.785 0.065
2014 2332 0.400 58747856 19294592 0.784 0.073
2015 2337 0.558 50962773 19824454 1.026 0.102
2016 265.6 0.624 74209337 32565854 1.596 0.100
2017  297.1 0.500 1.02E+08 53486933 1.721 0.072
2018 3134 0.465 1.21E+08 80663373 1.700 0.063
2019 318.8 0.477 1.37E+08 1.06E+08 1.700 0.064
2020 327.5 0.420 1.16E+08 99345456 1.700 0.055
2021 338.2 0.371 1.54E+08 1.59E+08 1.700 0.047
2022 3804 0.332 1.51E+08 1.16E+08 1.700 0.037
2023 4322 0.445 1.21E+08 80436865 1.700 0.044

Calculated by the authors using SSCRA (2025) data

Table 2: Descriptive statistics of the variables

Statistic API EXCH LOGC1315 LOGEXPC13
Mean 0.436874 1.233724  18.14967 17.58120
Median 0.445126 1.026100 17.98113 17.29877
Maximum 0.623578 1.721100  18.85433 18.88231
Minimum 0.288286 0.784400  17.49206 16.77534
Standard 0.083695 0.447192  0.474706 0.726400
Deviation

Skewness 0.342235 0.087186  0.227259 0.448147
Kurtosis 2.929396 1.058188  1.484860 1.630549
Jarque-Bera 0.335384 2.692404 1.772416 1.897442
Probability 0.845614 0.260227 0.412216 0.387236
Sum 7.426853 20.97330  308.5444 298.8804
Sum Sq. Dev.  0.112076 3.199689  3.605525 8.442502
Number of 17 17 17 17
observations

Calculated by the authors using Eviews-12 software

dummy indicator that characterizes the sharp change in the exchange
rate: it takes the value “1” only in 2015, and “0” in all other years.
The stability of the log-transformed variables is favorable for the
existence of a long-term cointegration relationship. The results
indicate that there is no problem of normality in these time series.

4.2. Stationarity

For model selection, the stationarity of the time series for the
indicators in Table 2 should be tested using the ADF test and
the Zivot—-Andrews test. The results of the stationarity tests are
presented in Table 3.

According to the ADF tests, API is non-stationary at the level at
the 5% significance level (intercept P = 0.072; trend P = 0.247),
but becomes stationary after the first difference (P = 0.026).
Therefore, we treat API as I(1) in the baseline results. The Zivot—
Andrews unit root tests with an endogenous structural break
do not reject the null of a unit root in API at the level (ZA-C:
t=-3.64,P=10.31, break = 2013; ZA-CT: t =—4.59, P=0.105,
break = 2015). However, after the first difference, the series
becomes stationary (ZA—C: t =—6.00, P = 0.033, break = 2016;
ZA-CT: t = —4.81, P = 0.058, break = 2013). Therefore, we
consider API to be I(1) with a structural break during 2013-2015.
According to the ADF test, the EXCH exchange rate series is
non-stationary at the level under both the intercept and trend
specifications (P =0.650; p = 0.290). For the first difference, the
ADF test in our small sample does not reject the null of a unit root
at conventional levels (t =—2.253; P =0.198). Given the limited
power of the ADF test with structural breaks and n =15, we rely
on the Zivot—Andrews test to confirm the order of integration.

The results of the Z-A test indicate that, with an endogenously
selected break, the unit root hypothesis is strongly rejected. In
other words, with the 2015 break, EXCH is stationary at order
1(0). The break-aware Zivot—Andrews tests reject the unit root in
the EXCH time series at the 1% significance level under both the
“intercept only” and the “trend + intercept” specifications, with the
break endogenously selected in 2015. Therefore, we treat EXCH
as I(0) with a structural break, and we include a post-2015 dummy
variable in the ARDL/ECM specification.

The LOGC1315 time series is not stationary at order I(0), but
becomes stationary at the first difference, meaning that it is suitable
for ARDL estimation as there is no I(2) integration. According to the
Zivot—Andrews test results, the break-aware tests for LOGC1315 do
not reject the unit root at the level under either the “intercept only” or
“trend + intercept” specifications (ZA—C: t=—3.60, P=0.331, break
=2015;ZA-CT:t=—4.36,P=0.80, break = 2015). However, under
the “trend + intercept” specification at the first difference, the null
is strongly rejected (t=-13.91, P<0.01, break = 2022). Thus, unit
root tests indicate that LOGC1315 is I(1) at the level under both
deterministic specifications. The structural breaks appear within the
2015-2018 interval, which is consistent with the shocks observed
during 2014-2016.

The classical ADF tests do not reject the null of a unit root
for LOGEXPC1315 either at the level (“intercept”: P = 0.845;
“intercept + trend”: P=0.640) or at the first difference (“intercept™:
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Table 3: Stasionarity (ADF and Z-A)

API ~2.8593 0.0724 -2.7057 02470  —3.4522 0.0256 -3.1791 0.1254
API (Z-A) —3.6436 0.3102 —4.5898 0.1050 —4.5980 0.0331 ~4.8086 0.0579
EXCH (ADF) —1.1878 0.6503 —2.5869 0.2895 —2.2534 0.1976 —2.1301 0.4898
EXCH (Z-A) —446.8789 <0.01 —291.9139 <0.01 —5.8506 <0.01 —5.0604 0.0277
LOGC1315 —0.7611 0.8029 —2.3667 0.3801 —3.3406 0.0314 —3.1623 0.1286
LOGCI315 (Z-A) ~3.5997 0.3306 —4.3620 0.1826 3.5410 0.3649 ~13.9108 <0.01
LOGEXPC1315 —0.6007 0.8446 —1.8298 0.6395 —2.6657 0.1027 —2.1910 0.4604
LOGEXPC1315 (Z-A) —4.3088 0.0731 —4.9385 0.0394 —3.1930 0.5703 —4.1046 0.3109
Calculated by the authors using Eviews-12 software
P = 0.103). This is likely due to small-sample size and the Table 4: ARDL (1, 2, 1, 2, 2) results
effects of structural breaks. Therefore, we confirm the order of
integration using break-aware tests. According to the Zivot— API (-1) —-0.899241  0.232162 —3.873337 0.0607
Andrews test results, for LOGEXPC1315 under the “intercept DUMMY —2.596250  0.683160 —3.800353 0.0628
only” specification with a break, the unit root cannot be rejected DUMMY(-1) —6.114133 1619903 —3.774381  0.0636
(P=0.073). However, under the “trend + intercept” specification, DUMMY(~2) ~1.619070  0.432103  ~3.746950  0.0644
. . . EXCH 11.10809  2.838022  3.914026 0.0595
with endogenously selected breaks in 2016-2017, the null is EXCH(-1) 1020474 2701648 -3.777227 0.0635
rejected (P =0.039). Conservatively, we treat LOGEXPC1315 as LOGC1315 —0.506217 0.098284 —5.150565 0.0357
I(1) with a structural break, satisfying the preconditions for ARDL LOGC1315(-1) 0.185129  0.100030  1.850733 0.2054
estimation. Thus, the unit root evidence with structural breaks LOGCI1315(-2) —0.430081  0.158274  -2.717324 0.1129
indicates a mixture of I(0) and I(1) variables (APTand LOGC1315: I}:gggggll ;11 55 1) PO 135770651512 88;(5) ‘2‘23 34018(367371?5 8(1);%
I(1); EXCH: 1(0) with a 2015 break; LOGEXPCI315 is treated | Gpwpei3is2)  0.096006 0075631  1.269392  0.3320
as I(1)). Since none of the series is 1(2), estimation with ARDL is C 15.45416  2.675986  5.775126 0.0287

appropriate for our case. Naturally, a post-2015 dummy variable
should also be included in the model.

4.3. Model Selection and ARDL Model Results

Thus, since none of the variables is I(2), there is no obstacle to

applying the ARDL/Bounds approach. However, given the large

number of possible ARDL specifications, it is necessary to select

the most appropriate model among them. In Scheme 1, the 20

possible ARDL models with the highest AIC values are presented.

Among them, the ARDL (1,2,1,2,2) specification is selected as the

best-fitting model. This is because:

e AIC:—5.253 (ARDL(1,2,1,2,2))<-3.695 (ARDL(1,0,0,0,1))
— better fit.

e BIC/HQ: —4.639/—5.260 <—3.357/-3.678 — again, preference

is for ARDL (1,2,1,2,2)

S.E. of regression: 0.020 < 0.033 — smaller residual error

Adjusted R?: 0.933 > 0.818 — higher explanatory power.

The results for the selected ARDL (1,2,1,2,2) model are presented
in Table 4.

Based on the results in the table, the ARDL(1,2,1,2,2) model yields
AIC = =5.253, SER = 0.020, Adj. R* = 0.933, and DW = 2.42
— indicating a strong fit with no signs of autocorrelation. The
coefficient of API(—1) = —0.899 (statistically significant) shows
that approximately 90% of the “disequilibrium” from the previous
year is corrected within 1 year. The system is stable, with rapid
convergence after shocks.

Devaluation increases API in the same year, but in the following
year the effect is largely reversed, with a net 2-year impact of about
+0.90 units (a small positive effect). An increase in logC1315

Calculated by the authors using Eviews-12 software

(production) reduces API in the short run (net = —0.75). Exports
(logEXPC1315) show an overall weak negative net effect (~—0.12),
suggesting that export shocks are subsequently “cleaned up” through
structural adjustment. The break dummy is negative and large, both
contemporaneously and with lags. The model results indicate that the
system is stable and provides a good fit. Exchange rate shocks raise
API in the short term, followed by partial reversal after one year.
Production growth, on the other hand, generally reduces intensity.

4.4. Bound Test

The results of the ARDL Bounds test are presented in Table 5.
Based on these results, cointegration is confirmed. The F-statistic
ofthe Bounds test is 12.83, which is significantly higher than both
the asymptotic and finite-sample upper critical bounds (I(1)) (e.g.,
for n =30 at the 1% level: 5.84). Therefore, the null hypothesis of
“no levels relationship” is confidently rejected.

This indicates that the ARDL (1,2,1,2,2), Case 2 (restricted constant,
no trend), with k = 4 (four level regressors: DUMMY, EXCH,
LOGCI1315, LOGEXPC1315), exhibits a valid long-run relationship.
Since F=12.83 > upper bound critical values (10%: 3.56; 5%: 4.223;
1%: 5.84), the existence of cointegration is confirmed. The ECM
(error correction term) coefficient for API(—1), equal to —1.899, is
negative. This means the system corrects approximately 190% of
disequilibria each year, indicating very rapid convergence, even
with “overshooting.” Stable but oscillatory convergence is expected.

API = —5.439*DUMMY, + 0.476*EXCH, — 0.396*l0ogC1315, —
0.062*10gEXPCI315,+ 8.137 + ¢, 2)
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Scheme 1: ARDL model selection
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Table 5: Bound test results

C 15.45416  2.675986 5.775126 0.0287
API(—-1)* —1.899241 0.232162 —8.180678 0.0146
DUMMY(-1) —10.32945 2.732573 -3.780119 0.0634
EXCH(-1) 0.903354  0.163247 5.533650 0.0311
LOGC1315(-1) —0.751170 0.159708 —4.703382 0.0424
LOGEXPC1315(—1) —0.116935 0.048965 —2.388122 0.1396
D (DUMMY) —2.596250 0.683160 —3.800353 0.0628
D (DUMMY(-1)) 1.619070  0.432103 3.746950 0.0644
D (EXCH) 11.10809 2.838022 3.914026 0.0595
D (LOGC1315) —0.506217 0.098284 —5.150565 0.0357
D (LOGC1315(-1)) 0.430081 0.158274 2.717324 0.1129
D (LOGEXPC1315) 0.157611 0.075492 2.087777 0.1721
D —0.096006 0.075631 —1.269392 0.3320

(LOGEXPC1315(~1))

Calculated by the authors using Eviews-12 software

According to the equation, an increase in the exchange rate
(EXCH), i.e., devaluation, leads to an increase in API. Growth in
logC1315 (output/production) reduces API, reflecting an efficiency
effect. LogEXPC1315 has a weak negative long-run impact on
API. The effect of the DUMMY (post-break) indicator on the
level of API is minor. Based on the short-run dynamics, AEXCH
is positive and strong, meaning that devaluation raises API within
the same year. ALOGC1315 has a negative effect, indicating that
production growth reduces API even in the short term. The effects
of ALOGEXPC are weak. Thus, the Bounds test strongly confirms
the presence of cointegration. The ECM coefficient indicates
rapid (and somewhat oscillatory) convergence. In the long run,
the exchange rate increases API, while production reduces API.
This allows us to reliably present both the long-run and short-run
interpretations for the ARDL (1,2,1,2,2) model.

4.5. ECM

The ECM results are presented in Table 6. Based on these results,
cointegration is confirmed and the model exhibits rapid (even
somewhat oscillatory) convergence. In the short run, an increase
in the exchange rate (devaluation) raises API, while an increase in
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Table 6: ECM results

D (DUMMY) —2.596250 0.162011 —16.02517 0.0039
D (DUMMY(-1)) 1.619070 0.094505 17.13217 0.0034
D (EXCH) 11.10809 0.662759 16.76038  0.0035
D (LOGC1315) —0.506217 0.036746 —13.77598 0.0052
D (LOGC1315(—1)) 0.430081 0.032959 13.04891 0.0058
D (LOGEXPC1315) 0.157611 0.021604 7.295500 0.0183
D (LOGEXPC1315(-1)) —0.096006 0.017593 —5.456935 0.0320
CointEq(—1)* —1.899241 0.115707 —16.41426 0.0037

Calculated by the authors using Eviews-12 software

production reduces API; the impact of exports is mixed in the short
term. Since CointEq(—1) = —1.899 and is negative, and because
[ECT| > 1, the system returns to equilibrium in less than one
year “effectively,” though the adjustment is wave-like with some
overshooting. Put simply, if there is a deviation from equilibrium
today, the next period brings an over-correction, after which the
system “sticks” back to equilibrium.

Short-run effects (A-terms) are as follows:

e For AEXCH, the coefficient is +11.108, implying that when
the exchange rate rises (devaluation), API increases in the
same year

e For ALOGCI1315, the coefficient is —0.506, while
ALOGC1315(—1) is +0.430, meaning that
production growth reduces API in the first year, with partial
reversal in the following year. The net short-run effect is
about —0.076

e For ALOGEXPCI1315, the coefficient is +0.158 and
ALOGEXPC1315(—1) is —0.096, indicating a small initial
increase followed by correction, with a weak net effect

e For the break shock (ADUMMY), the coefficient is —2.596,
while ADUMMY(-1) is +1.619, implying a sharp one-
off negative shock in the break year, followed by partial
compensation the next year. These terms are active only
around the break period
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e With R? = 0.992, SER = 0.0108, and DW = 2.42, the ECM
model is confirmed to have a very good fit, high explanatory
power, and no signs of autocorrelation.

Thus, the Bounds test (Case 2, k = 4) with F = 12.83 confirms
the existence of cointegration, while the ECM test validates
rapid (oscillatory) convergence (ECT = —1.899, negative and
significant). In the short run, devaluation increases API, production
growth reduces API, and the impact of exports is weak and mixed.
During the break period, a one-off negative shock is observed.

4.6. Diagnostic Tests

The results of the diagnostic tests are summarized in Table 7.
According to the LM test, no serial correlation is detected up to
the first order. In the Breusch—Godfrey LM test, both the F-form
(F=0.211; P=0.726) and the ¥*-form (Obs*R?=2.616; P=0.1006)
do not reject the null hypothesis of “no serial correlation.” Since
the Durbin—Watson statistic is = 2.33, this result is consistent.
This means that the model residuals are not AR(1). Therefore, the
standard errors and p-values of the ARDL results are reliable with
respect to AR(1) violations. In the test equation, the coefficient
of RESID(—1) is not significant (P = 0.726), which supports the
same conclusion. Thus, the Breusch—Godfrey LM test (lag = 1)
shows that there is no serial correlation (F = 0.211, P = 0.726;
Obs*R?=2.616, P=0.106). The Durbin—Watson ~ 2.33 result is
also consistent with this finding. Hence, the ARDL residuals are
robust against AR(1) concerns.

According to the results of the heteroscedasticity test, no
heteroscedasticity was detected. In the Breusch—Pagan—Godfrey
(BPG) test, both the F-form (F = 0.165; P=0.985) and the y*>-form
(Obs*R? = 7.465; P = 0.825) do not reject the null hypothesis of
homoscedasticity (constant variance). The “Scaled explained
SS” statistic supports the same conclusion (P = 1.000). Thus, the
variance of the residuals is not systematically dependent on the
explanatory variables, and the standard errors from OLS/ARDL are
reliable with respect to heteroscedasticity. The auxiliary regression
on RESID? shows that none of the explanatory variables has a
statistically significant P-value, which also provides no signal of
structural variance violations.

The negative Adjusted R? is simply the result of low power in
a small sample (df: = 2; many regressors) and does not alter

Table 7: Residual diagnostics

Test Statistic df P-value
Breusch—Godfrey F=0.211; Obs: (1, 1)1 0.726; 0.106
LM (AR (1)) R*=2.616

Ramsey RESET F (1, 1)=25.57; (1, 1) 0.1243
(fitted?) t=5.06

Jarque—Bera JB=2.69 2 0.261
(normality)

Breusch—Pagan— F=0.165; (12,2); 12 0.985; 0.825
Godfrey (hetero.) Obs-R?>=7.465

CUSUM - - -
CUSUMSQ - - -

the conclusion. Thus, the Breusch—Pagan—Godfrey test does
not indicate heteroscedasticity: F(12,2) = 0.165, P = 0.985;
Obs-R? = 7.465, P = 0.825. The result is also supported by the
CUSUMSQ graph. For robustness, heteroskedasticity-robust (HC3)
standard errors were reported, and the results remained unchanged.

According to the results of the residual normality test, the
Jarque—Bera test yields P = 0.261, so we do not reject the null
hypothesis of normal distribution. In other words, Jarque—
Bera = 2.69, P = 0.261. Thus, the ARDL/ECM residuals are
approximately normal, with no strong evidence of normality
violation. The residuals are centered around zero (mean = 0),
show slight left skewness (skewness = —1.01), and somewhat
leptokurtic tails (kurtosis = 3). Heteroskedasticity-robust standard
errors remain unchanged.

According to the results of the Ramsey RESET test, there is no
clear evidence of functional form misspecification. Since the
p-value for both the t- and F-forms is 0.1243 (df: = 1), the null
hypothesis of “correct specification/no omitted variables” is not
rejected. Thus, when the squared fitted values (FITTED?) are
added, the model does not improve significantly, indicating that
the functional form is correct and no additional nonlinear terms
are required.

The Ramsey RESET test (omitted: fitted?) shows no functional
form error: F(1,1) = 25.57, P =0.1243; t = 5.06, P = 0.1243.
Although the LR statistic may yield a different result due to
the small sample size, in the OLS context the decision is based
on the F/t versions. Furthermore, the stability and residual
diagnostics confirm that the specification is acceptable. According
to the CUSUM (Brown-Durbin—Evans) diagnostic, when the
cumulative recursive residuals remain within the 5% confidence
bands, the null hypothesis of parameter stability over time cannot
be rejected.

Our results (Graph 1) also do not cross the boundaries, indicating
that the coefficients are stable. According to the CUSUMSQ
diagnostic, if the cumulative sum of squared residuals lies
within the 5% confidence bands, there is no sharp regime shift
in the residual variance and no evidence of heteroskedasticity or
structural breaks. In our results (Graph 2), no boundary exceedance
is observed either. In both the CUSUM and CUSUMSQ graphs,

Short note
Consistent with DW~2.33

Decision (0=0.05)

Ho is not rejected, i.e., there is no
serial correlation

Ho is not rejected, i.e., there is no
functional form misspecification
Ho is not rejected, i.e., the
residuals are approximately

Small sample—F/t criterion
is used as the basis
Skew=—1.01;
Kurtosis=3.45.

normal
Ho is not rejected, i.e., White/ARCH LM (optional)
homoskedasticity holds may be added

Parameter stability is confirmed
within the 5% boundaries
Variance stability is confirmed
within the 5% boundaries

There is no crossing

There is no evidence of
structural variance change

Calculated by the authors using Eviews-12 software
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Graph 1: Results of CUSUM

Graph 2: Results of CUSUM of squares

2022 2023

—— CUSUM - 5% Significance

the cumulative residual paths remain within the 5% significance
bands throughout the entire observation period. Thus, there is no
evidence of violations of parameter stability or variance stability,
and the model is structurally stable. It should be noted that in
small-sample settings (n = 15), these results, combined with the
already presented LM (no serial correlation) and RESET (no
functional form misspecification) diagnostics, further confirm the
robustness of the findings.

S. DISCUSSION

This study investigated the key determinants of emission intensity
in Azerbaijan’s light industry (C13—-C15) using the ARDL
framework with structural breaks. Three main findings emerged.

First, higher sectoral output (as confirmed by logC1315) is
associated with lower emission intensity in the long run. This
reflects evidence that, once firms invest in efficiency and best
available technologies, economies of scale, learning effects,
and technology diffusion can reduce energy use and emissions
per unit of value added (Pan et al., 2019; Chen et al., 2022). For
example, in Bangladesh and China, larger-scale industrialization
accompanied by openness and technological upgrading has been
linked to declining energy intensity, once compositional effects are
controlled for (Pan et al., 2019; Chen et al., 2022). Our findings
indicate the existence of a similar “efficiency-dominant” channel
in Azerbaijan’s light industry.

Second, we find that currency depreciation (a higher exchange rate)
increases emission intensity. In a small open economy that relies
on imported energy, machinery, dyes, and chemicals, this outcome
is economically intuitive. Depreciation raises the local currency
cost of energy and capital upgrading, delays reductions in intensity,
and locks firms into older, more energy- and emission-intensive
technologies. Related time-series and quantile-ARDL studies
show that exchange rate movements significantly affect energy
demand and emissions; depreciation often worsens environmental
footprints through cost and operational channels (Peng et al.,
2022; Smaili AND Gam, 2023). In G7 economies, the effects of
exchange rate movements on emissions are heterogeneous across

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0
2022 2023

—— CUSUM of Squares  ------ 5% Significance

demand states, underscoring the usefulness of flexible models
such as ARDL. In the Mediterranean, exchange rate—emission
linkages are also observed despite asymmetries in the level of
development. This reinforces the importance of country-specific
structures, such as those in Azerbaijan’s energy- and import-
intensive light industry.

Third, the weak and negative long-run association between C13—
C15 exports and emission intensity is consistent with technology
transfer facilitated by trade, as well as process upgrading. Research
shows that export orientation can reduce energy/emission intensity
when meeting standards in foreign markets drives the adoption
of cleaner technologies and stricter quality control (Pan et al.,
2019). Moreover, studies on textile production in Asian countries
indicate that although the sector is energy-intensive, targeted
upgrading and green technologies can bend the intensity curve
downward (Haseeb et al., 2020). Our findings suggest that for
Azerbaijan’s light industry, the export channel may operate more
through “standards/efficiency” mechanisms rather than through a
“pollution haven” effect.

The identified structural breaks coincide with the macro shocks
to Azerbaijan’s trade sector and exchange rate regime in 2015.
This aligns with the literature linking such breaks to strong
spillovers into the real economy (Mukhtarov et al., 2021). In such
contexts, ARDL with structural breaks is particularly informative,
as it allows for parameter shifts without discarding long-run
information.

Our findings are also consistent with the environmental profile
specific to the textile and apparel sectors. International evidence
highlights the contributions of combustion-related CO-, as well
as process emissions and volatile organic compounds (VOCs)
released during dyeing and finishing. Targeted process control
and substitution measures can significantly reduce these burdens
(Qian et al., 2022). Therefore, policy levers that stabilize firms’
access to efficient capital—such as currency risk management and
concessional green credit—and those that promote export—market
alignment—such as eco-labels and supplier development—should
reinforce the efficiency gains observed in Azerbaijan’s light industry.
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6. CONCLUSION

This study examined the determinants of emissions/energy
intensity in Azerbaijan’s light industry (NACE C13—C15) over the
period 2007-2023 using an ARDL framework explicitly adjusted
for structural breaks. After establishing that all series are at most
I(1) (with no 1(2)) based on ADF and break tests, the Bounds test
(F=12.83) confirmed the existence of a long-run relationship. The
associated ECM indicates rapid error correction (ECT =~ —1.90).
Thus, deviations from equilibrium are corrected quickly.

Three main findings emerge. First, a weaker currency (higher
EXCH) is associated with higher intensity in the long run, and
depreciation shocks amplify the effect, although partially reversed
after one year. Second, sectoral output growth (logC1315) is
linked to lower intensity in both the short and long run, consistent
with scale effects as firms expand and adopt better technologies.
Third, exports (logEXPC1315) show a small negative long-run
association with intensity, alongside mixed short-run effects,
suggesting improvements driven more by standards compliance
than by pollution-related behavior. Model diagnostics (LM,
RESET, CUSUM/CUSUMSQ) support the adequacy of the
specification despite the small sample size.

The policy implications follow directly. Exchange rate volatility
can temporarily link emissions with economic activity. Targeted
green financial instruments—including concessional loans, credit
guarantees, and currency risk management tools for upgrading
energy-saving equipment and processes—can buffer firms during
depreciation episodes. The analysis also has limitations. The
intensity metric was constructed in kgoe/AZN and is constrained
by the absence of pollutant-specific, firm-level data for C13—C15.
Hence, the results should be interpreted as sectoral intensity,
not absolute damage. The sample size is short (n =~ 17), and the
P-values do not fully account for model selection uncertainty.
Future work should test nonlinear/asymmetric responses (NARDL/
QARDL), apply open-band or Narayan small-sample critical
values as the main inference device, and incorporate input price
indices to disentangle price from activity channels. Where data
permit, results should be extended to particulate/VOC proxies.
Finally, micro-level energy audits or plant-level panels could
significantly strengthen identification.

The findings of this study further confirm that since depreciation
pressures worsen intensity, hedging programs for energy-efficient
machinery and green credit lines can mitigate macro-driven
downside risks (Peng et al., 2022). Support for compliance with
EU/EEA product and process standards (e.g., ZDHC, ISO 14001)
through technology and quality investments can also help reinforce
the negative export—intensity relationship (Pan et al., 2019).
Given the process-specific emission profile of the C13—-C15 sector
(thermal energy, dyes/solvents), policies focusing on heat recovery,
electrification, and low-VOC chemistry could reduce intensity
without sacrificing output (Haseeb et al., 2020; Qian et al., 2022).

The ARDL-Bounds results demonstrate the existence of a stable
long-run relationship between the exchange rate, production,
exports, and the ecological intensity indicator. In the long run,

higher production volumes are associated with reduced intensity
(efficiency/technological upgrading channel), a weaker exchange
rate increases intensity (cost channel of external shocks), while
exports show a weak negative effect. These findings suggest that
when production growth is combined with technological upgrading
and macro-financial conditions (particularly exchange rate risk)
are effectively managed, it is possible to reduce the intensity of
atmospheric emissions while sustaining output growth.

Extending the dataset for the indicators used in this study by at
least 10-15 years would allow for more robust results: a) While
the stationarity properties and bounds tests justify the use of
ARDL, future research could apply NARDL or QARDL in order
to capture the asymmetric effects of depreciation against price
increases, as suggested in multi-country evidence; b) The study
could also be expanded by incorporating input-price indices (e.g.,
imported energy and machinery) to disentangle price and activity
channels. Furthermore, in order to reflect a more comprehensive
external impact package in the light industry, environmental
outcomes could be broadened beyond intensity measures—for
example, by including particulates and VOC permits (Peng et al.,
2022; Qian et al., 2022).
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