

The Nexus Between Green Energy, Energy Economics, and Sustainable Development: A Bibliometric Review

Ho Tran Quoc Hai¹, Vuong Khanh Tuan^{2*}

¹Faculty of Business Administration, Ho Chi Minh City University of Law, Vietnam, ²Faculty of Marketing and International Business, HUTECH University, Ho Chi Minh City, Vietnam. *Email: vk.tuan@hutech.edu.vn

Received: 17 June 2025

Accepted: 23 October 2025

DOI: <https://doi.org/10.32479/ijep.21396>

ABSTRACT

Despite sustainability research being one of the fastest-growing themes, most existing analyses either focus on specific themes or regional contexts, failing to provide a view of the broader global landscape or the linkages among economic, technological, and policy-oriented perspectives. This study conducts a deep bibliometric analysis of the intellectual structure, trends, and worldwide dynamics of research related to sustainable development, energy economics, and environmental management. The analysis aims to highlight how the discourse has evolved over time and identify the institutions and countries that drive the discourse, as well as the journals that represent the most common knowledge outlets. A total of 309 articles published from 1998 to 2025 were identified on the Web of Science database and selected for analysis. A sharp increase in indexed publications is observed after 2019, led by China, the United States, and India. Keyword mapping and bibliographic coupling show that terms such as “sustainable development,” “energy,” “climate change,” and “innovation” are at the core of increasingly interdisciplinary and empirical research. In practical terms, the study informs policymakers, funding institutions, and academic institutions on how to better target collaborations, set research priorities that meet global sustainability agendas, and translate knowledge into policy and innovation outcomes. In theoretical terms, it articulates how sustainability-related research has moved from conceptual debates to evidence-based and policy-relevant applications of data-driven analyses, enriching the emerging academic discourse on sustainable transformation and the global energy transition.

Keywords: Energy Economics, Green Energy, Sustainable Development, Bibliometric Review

JEL Classifications: Q40, Q43, Q49

1. INTRODUCTION

The quest for sustainable energy systems has become one of the prime issues in this new century. Increasing concern over climate change, resource shortages, and energy security has made green energy a key topic of interest in global academic research and policy development, along with energy economics. Green energy includes utilizing renewable energy sources, increasing energy efficiency, and finding paths for decarbonization. An in-depth, holistic understanding of the relationship between energy and sustainable development is crucial as clean energy systems become increasingly important around the world (Pan et al., 2023). Ongoing global sustainable development efforts

targeting climate change and decarbonization are founded on the relationship between green finance and energy efficiency (Liu et al., 2024). Policymakers must align technology deployment with green economy instruments to make innovation accountable in actual decarbonization (Afzal et al., 2025).

Sustainable development has become one of the main principles associated with the clean energy transition and is also a cross-cutting theme of core importance (Garcia-Lillo et al., 2023). Climate change not only affects ecosystems, but is also one of the primary threats to economic stability and human health worldwide. Promoting the United Nations' Sustainable Development Goals (SDGs) requires both direct financing and establishing an enabling

economic environment through sustainable financial products and services supplied by sustainability-oriented financial markets (Ziołko et al., 2025). While a wealth of previous studies have covered renewable energy technologies, efficiency strategies, and the economics of the clean energy transition, few have applied a bibliometric approach to synthesize these streams. Existing literature reviews privileged either the technological dimensions of renewable adoption or the modeling of economic mechanisms, paying insufficient attention to the role their intersection plays in advancing sustainability. In addition, most prior assessments were narrative-based with limited methodological rigor, reproducibility, or systematic coverage, so large blind spots remain in mapping the intellectual foundations of the field.

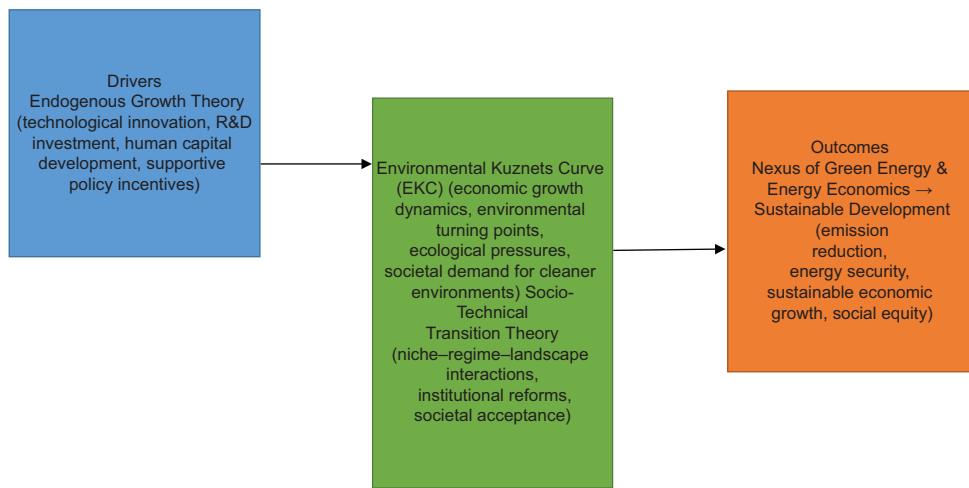
Globally, green energy has gained widespread support as a major tool for confronting environmental degradation (Qin et al., 2022). Renewable energy remains a top priority on the global agenda for sustainable development, for its ability to reduce global warming, improve energy security, and foster economic growth (Sreenivasan and Suresh, 2024). Green and renewable energy sources such as hydropower, solar power, wind power, and tidal power create little environmental damage and present an attractive option to practitioners, policymakers, and academic investigators who wish to reduce global reliance on fossil fuels while advocating for a cleaner, more sustainable energy future (Buri et al., 2024). Green energy and energy economics are vital in the attainment of sustainable development.

Given sustainability's high priority across the globe, understanding the evolution and themes of green finance is necessary (Chandran and Chandran, 2024). Therefore, this study conducts a systematic bibliometric review illustrating how scholarship has developed at the intersection of green energy, energy economics, and sustainable development. By tracking publication trends, major contributors, core journals, and thematic clusters, this paper provides insight into the intellectual structure and epistemic evolution of the field. It presents not only the current state of research but also possible future paths for advancement.

The study makes four primary contributions. First, it presents the first comprehensive bibliometric analysis that systematically incorporates green energy and energy economics, integrating fragmented bodies of scholarship into a coherent knowledge domain. Second, it highlights the most influential works, scholars, and publication outlets in the field, equipping researchers with the navigational tools needed to engage with research in the field. Third, by identifying thematic clusters and emerging research fronts, it provides new insights into theoretical and empirical pathways that can advance both academic and applied agendas. Finally, it provides practical recommendations for policymakers, emphasizing an energy strategy that integrates technological innovation with strong economic structures to support equity and sustainability.

2. THEORETICAL BACKGROUND

The interrelated concepts of green energy, energy economics, and sustainable development are united by well-founded


theoretical frameworks that explain the mechanisms of the clean energy transition. Three dominant theories form the conceptual foundation for examining this nexus: endogenous growth theory, the environmental Kuznets curve (EKC) hypothesis, and socio-technical transition theory.

Endogenous growth theory emphasizes the central role innovation, knowledge accumulation, and human capital play in supporting long-term economic growth (Aghion and Howitt, 1998). Whereas technological change is normally considered an external factor in neoclassical models, endogenous growth theory views technological advancements, such as renewable energy innovations, as internal factors within the economic system itself. It views these advancements as the result of policies, investments, and market structures inherent to the system. Applying endogenous growth theory to green energy highlights how the diffusion of renewable technologies can cause both an increase in output and a decrease in fossil fuel use, leading to sustainable economic development.

The EKC provides another perspective to understand the relationship between energy use and development and environmental degradation. According to the EKC (Stern, 2014), in the initial phases of industrial development, environmental pressures increase with industrialization. Once a society has surpassed a particular income level, however, environmental pressures begin to decline due to increasing societal demand for clean environments and the imposition of strict environmental policy measures. In this phase of development, economic improvement can lead to the conversion of carbon-intensive energy systems into renewable, efficient systems, and economic growth becomes linked with sustainability objectives.

Adding to these economic perspectives, socio-technical transition theory highlights the systemic nature of energy transformation (Geels, 2002). More specifically, the multi-level perspective frames transitions as being carried out at the levels of niches (spaces for innovations), regimes (dominant systems and institutions), and landscapes (broader social and political contexts). The perspective strongly implies that cultural acceptance, institutional inertia, and regulatory frameworks help determine the speed with which renewables enter the market. In this respect, socio-technical transition theory calls for coordinated reforms in which economic instruments align with social values to activate large-scale adoption of renewable energy.

In general, theories form a strong analytical base for exploring the connection between green energy and energy economics. Endogenous growth theory brings to light the innovation-driven nature of sustainability, the EKC hypothesis provides a channel for environmental sustainability through economic development, and socio-technical transition theory explains large-scale energy transformation as a multi-dimensional systemic change. Together, these theories form a foundation for this bibliometric review to follow scholarly discussion over time and identify windows for furthering theory and practice. More details can be seen in Figure 1.

Figure 1: Nexus of green energy and energy economics → pathways to sustainable development

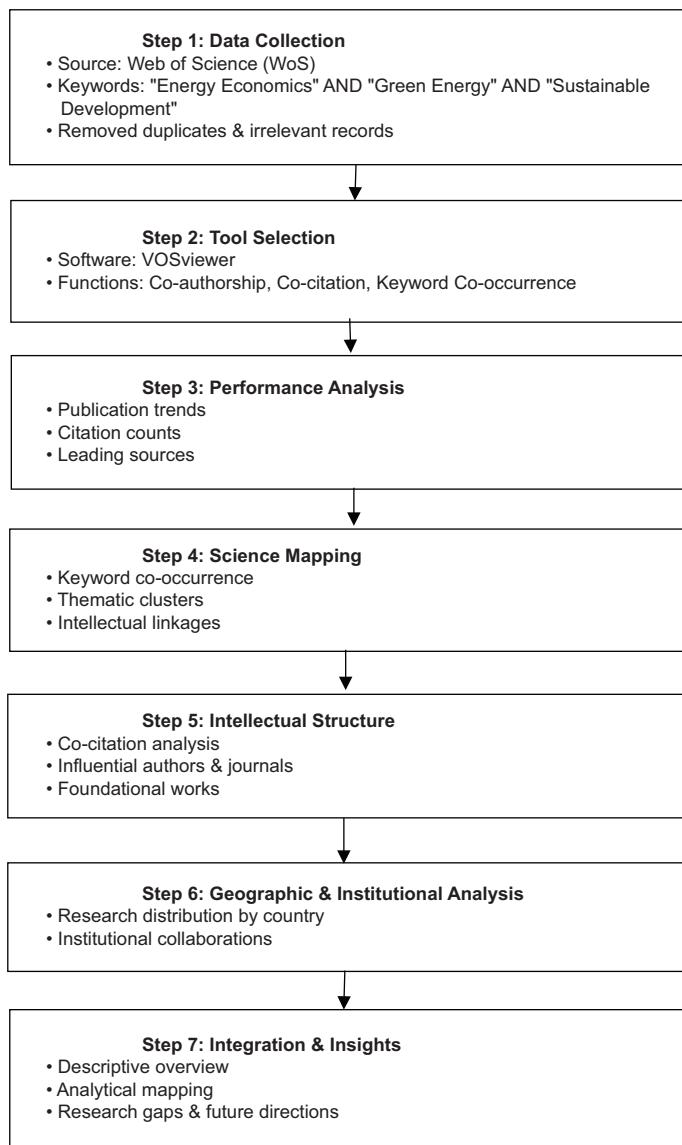
3. MATERIALS AND METHODS

Resource and environmental conservation require the development of a green economy. To achieve sustainable development, firms must adjust their economic activities and interactions with the environment, minimizing environmental degradation (Zhu et al., 2023). The world is facing multiple acute problems, including extreme poverty and inequality, climate change, environmental degradation, and social injustice. In response to these issues, the United Nations designed the SDGs as a global call to action aimed at ending poverty, protecting the planet, promoting social well-being, and ensuring peace and prosperity for all by the year 2030 (Yumnam et al., 2024). This paper conducts a bibliometric analysis to systematically study the intellectual relationship between energy economics, green energy, and sustainable development. Bibliometric methods are ideal for tracing the evolution of scientific thought, identifying milestone works, and discovering nascent thematic directions within an academic field, using a quantitative and reproducible analysis.

The dataset was obtained from the Web of Science Core Collection (WoS). WoS is an academic citation indexing database that is a highly trusted source for bibliometric research. The search strategy was designed to retrieve academic publications that explicitly integrate the three focal dimensions of energy economics, green energy, and sustainable development. The Boolean query applied was topic search (TS) = (“Energy Economics” AND “Green Energy” AND “Sustainable Development”).

To enable a full account of the evolution of the discipline, no publication year filters were applied to the search. Only peer-reviewed English language articles and reviews were retained to ensure the dataset included only validated scholarly contributions. The dataset was then cleaned by removing duplicate and irrelevant records to generate the final body of literature for analysis. For the results of a bibliometric analysis to be accurate and dependable, a large dataset that includes major developments in the lifespan of the research topic is critical (Raji and Demehin, 2023).

The analysis took place in key stages. First, performance analysis examined publication trends, citation patterns, and top outlets to determine the field's productivity and impact. Second, keyword co-occurrence networks were created to visualize thematic clusters and knowledge links. Third, the intellectual structure of the field was analyzed via co-citation analysis of authors and journals to reveal basic texts and major scholars. Lastly, geographical and institutional output trends were analyzed to show the research activity by country and organization, helping identify collaboration networks and regional research strengths. Bibliometric mapping was done using VOSviewer, a powerful tool used for building and visualizing bibliometric networks. Analyses performed with this tool included structural, intellectual, and thematic analyses of co-authorship, co-citation, and keyword patterns within the field. Utilizing VOSviewer allowed the study to go beyond an ordinary narrative review, providing transparent, reproducible, data-driven insight into the intellectual development of this field. More details can be seen in Figure 2.


4. RESULTS

4.1. Publication Trends

As shown in Figure 3, the publication trend of research in energy economics, green energy, and sustainable development from 1998 to 2025 demonstrates a steadily increasing volume of publications. Between 1998 and 2010, the number of publications per year was relatively constant at less than five papers annually, likely reflecting initial exploratory work in the field. A slight increase in publications begins after 2011, with gradual growth up to 16 annual publications in 2018. The field began to develop rapidly from 2019, with particular growth over the years 2020-2025. This increase in publications reflects not only growing academic interest but also practical interest. Publications peaked in 2024 with 54 papers, but 2025 is on track to sustain the momentum with 42 publications as of October 2025. This rapid growth may be due to technological developments or changes in policies that have created avenues for new interactions between the three disciplines of interest.

4.2. Top 10 Institutional Affiliations

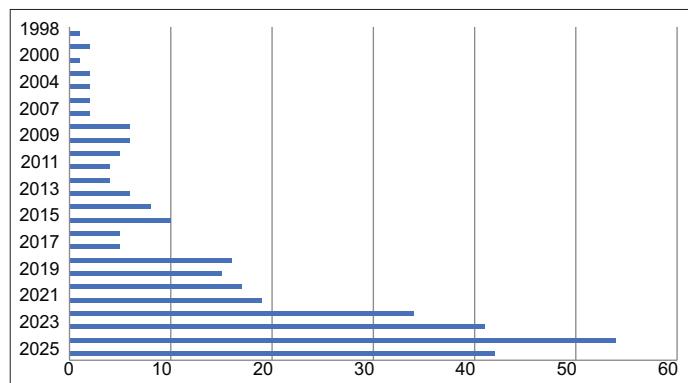

Table 1 shows the top 10 institutional contributors in terms of the number of publications. While research output on this topic

Figure 2: Research methodology

is globally distributed, it is strongly concentrated among the top universities in Asia and the Middle East. The Indian Institute of Technology System (IIT System) leads with eight publications, indicating India's growing academic influence and the country's investment in this research area. Beijing Institute of Technology, Egyptian Knowledge Bank, Ministry of Education and Science of Ukraine, and National Institute of Technology (NIT System) each have five publications, demonstrating a good balance between academic and government research institutions. King Saud University, North China Electric Power University, Shandong University, Tsinghua University, and Universiti Teknologi Malaysia round out the top 10 with four publications each. There is particularly strong involvement of institutions from China, Saudi Arabia, and Malaysia. These affiliations help to show the changing relationship between new and old research centers around the world, increasing the global footprint of the field.

4.3. Top 10 Countries

Table 2 demonstrates that research outputs are mostly concentrated within the Asian region. The People's Republic of China accounts

Figure 3: Number of publications by year**Table 1: Top 10 institutional affiliations**

Affiliations	Number of publications
Indian Institute of Technology System (IIT SYSTEM)	8
Beijing Institute of Technology	5
Egyptian Knowledge Bank (EKB)	5
Ministry of Education Science of Ukraine	5
National Institute of Technology (NIT System)	5
King Saud University	4
North China Electric Power University	4
Shandong University	4
Tsinghua University	4
Universiti Teknologi Malaysia	4

Table 2: Top 10 countries

Countries	Number of publications
People's Republic of China	94
USA	32
India	31
England	24
Pakistan	21
Italy	14
South Korea	14
Australia	13
Germany	13
Saudi Arabia	12

for a substantial share of total output, leading with 94 publications. Dominance by China reflects the country's substantial investments in research and innovation, as well as policy-driven initiatives promoting sustainability and technology-related studies. Other top contributors include the United States (32) and India (31), reflecting their established academic ecosystems and increasing focus on interdisciplinary research. England (24) and Pakistan (21) are next among the major players, representing an interesting dynamic of involvement from both developed and developing economies. Europe and the Asia-Pacific region are important regional players, with Italy (14), Germany (13), South Korea (14), Australia (13), and Germany (13) also in the top 10. Saudi Arabia (12) is the final country in the top 10, representing its increasing investment in research and higher education. The significant involvement of both Western and Asian countries is reflective of an international interest in energy economics, green energy, and sustainable development, as the field appears to be high on the global agenda.

4.4. Top 10 Publishers

The integrated research field of energy economics, green energy, and sustainable development has clear academic support from a diverse group of reputable publishers, dominated by a few top global academic publishers. As shown in Figure 4, Elsevier publications are the principal contributor to the field with 96 articles, emphasizing the publisher's key role in the diffusion of high-impact research and strong presence in science, technology, and environmental studies. MDPI is second with 38 publications, reflecting the trend toward open-access publishing, as its fast turnaround supports new emerging research topics. The inclusion of Springer Nature (29) and IEEE (26) in this list proves the interdisciplinarity of the field, ranging from environmental sciences to technological innovation. Well-established global publishers Taylor & Francis (17), Frontiers Media SA (11), Wiley (11), and SAGE (10) are other major contributors. The inclusion of Emerald Group Publishing (8) and American Chemical Society (5) in the top 10 publishers illustrates cross-disciplinary integration between management, sustainability, and chemical sciences. There seems to be a healthy balance between traditional and open-access publication models, suggesting the research in this field is rigorous yet accessible.

4.5. Co-occurrence Analysis

The keyword co-occurrence network in Figure 5 shows the main themes and links within the research on energy economics, green energy, and sustainable development. Unsurprisingly, the largest node is "sustainable development," meaning the term is the most frequently used keyword and acts as a main concept connecting different threads of research. Closely related keywords include "economics," "energy," "energy economics," "climate change," and "innovation." These keywords are indicative of a strong interdisciplinary integration of environmental, technological, and policy-related issues.

Overall, the keyword co-occurrence network displays a compact, close association, demonstrating the integration of economic, technological, and environmental approaches in sustainability development research with a strong emphasis on energy systems, policy frameworks, and empirical analysis. The visualization in

Figure 4: Top 10 publishers

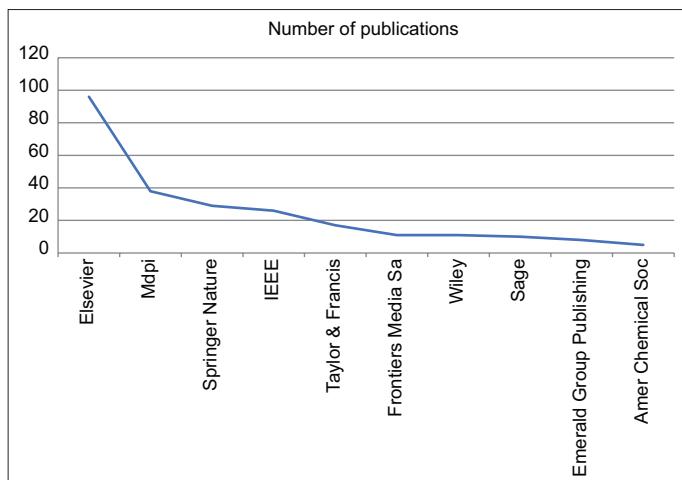


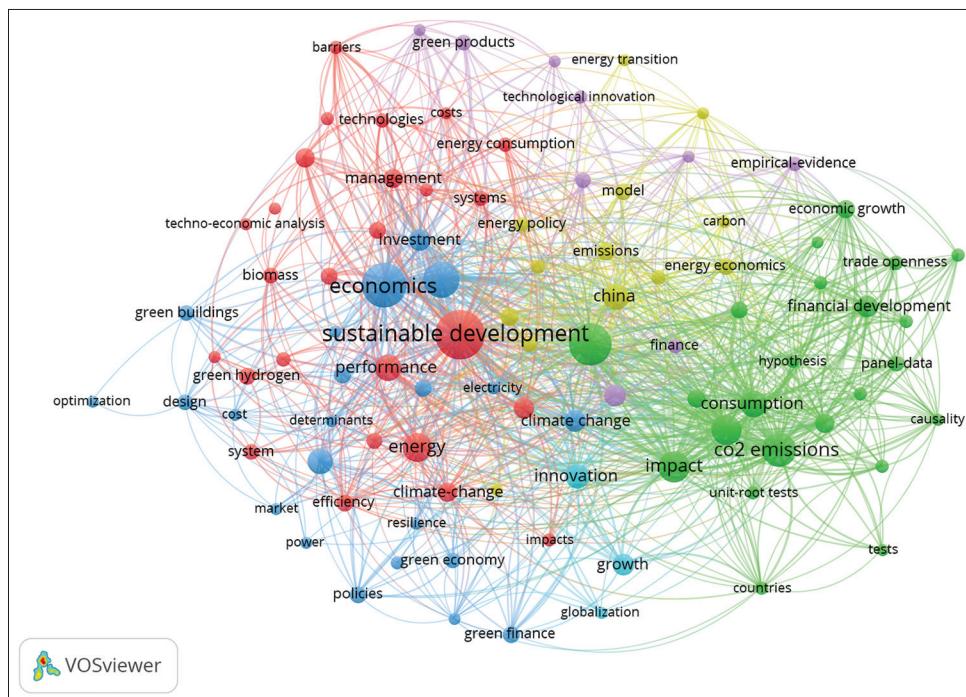
Figure 5 and Table 3 underline the interdisciplinarity of the field while exposing main areas of research focus and emerging hot topics.

4.6. Bibliographic Coupling Analysis

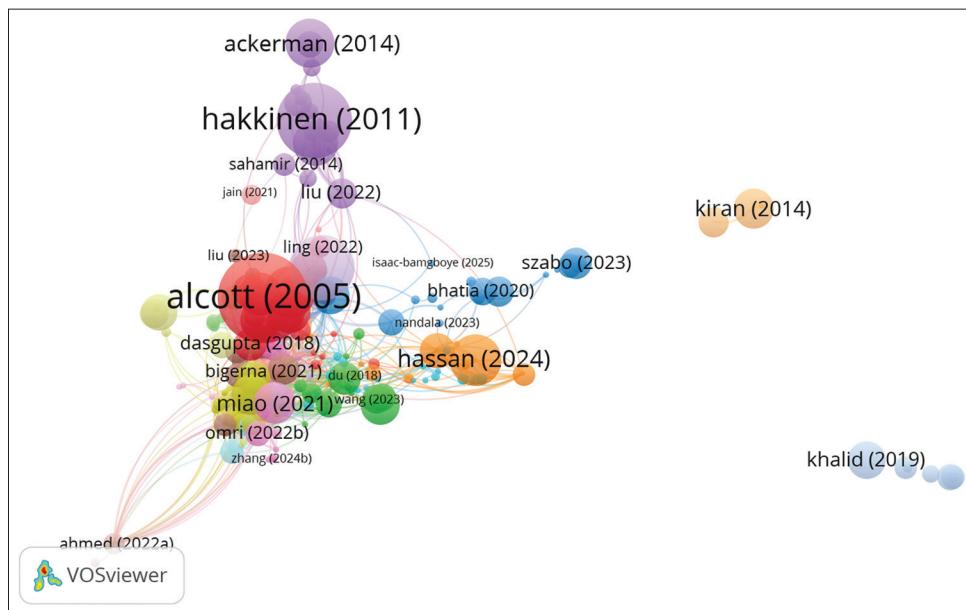
The bibliographic coupling analysis shown in Figure 6 displays clusters of studies that refer to similar reference citations. It helps visualize the evolution and amalgamation of research on sustainable development and energy economics over time. Several major clusters are visible, each representing distinct yet related research trajectories. The most influential node is Alcott (2005), around which a large cluster of works dealing with theories of sustainability and economic decoupling has formed, representing later discourse on consumption, decoupling, and growth limits. Closely linked works such as Hakkinen and Belloni (2011) and Ackerman et al. (2014) extend these themes into empirical contexts, integrating environmental economics and policy evaluation.

A more recent paper delivers a turning point summary in clusters which include renewable energy, green finance, and new developments in econometric modeling of environmental impacts. These are the works of Hassan et al. (2024), Miao et al. (2021), and Szabo et al. (2023). Emerging works such as Liu et al. (2022) and Liu et al. (2023) show the growing academic interest in regional and sectoral applications, reflecting the diversification of research focuses. Peripheral nodes such as Kiran et al. (2014) and Khalid et al. (2019) indicate independent, less-connected contributions that nonetheless broaden the thematic scope of the field.

The bibliographic coupling map illustrates how intellectual development has occurred within the original sustainability theory to create modern interdisciplinary versions of sustainability theory that integrate economics, policy, and technology. The field displays theoretical continuity with growing methodological complexity.


4.7. Cited Source Analysis

The cited source analysis map in Figure 7 displays the intellectual base and publication venues (e.g., journals) that have heavily influenced the research landscape of sustainable development, energy economics, and environmental management. Results can be seen as a well-structured network with a few core journals acting as knowledge hubs at the center of an integrated discipline environment. The Journal of Cleaner Production is the largest node and connects several clusters to create an influential network. The


Table 3: Major research themes

Clusters	Research themes	Top keywords
Cluster 1 (Green)	Empirical and quantitative research	"CO ₂ emissions," "consumption," "financial development," and "causality."
Cluster 2 (Red)	Management and technology	"Energy policy," "investment," "technologies," and "energy consumption."
Cluster 3 (Blue)	Sustainability strategies	"Green finance," "energy systems," "energy economics," "energy policy," and "energy transition."
Cluster 4 (Purple)	Innovation and energy transition	"Technological innovation," "green products," and "energy transition."

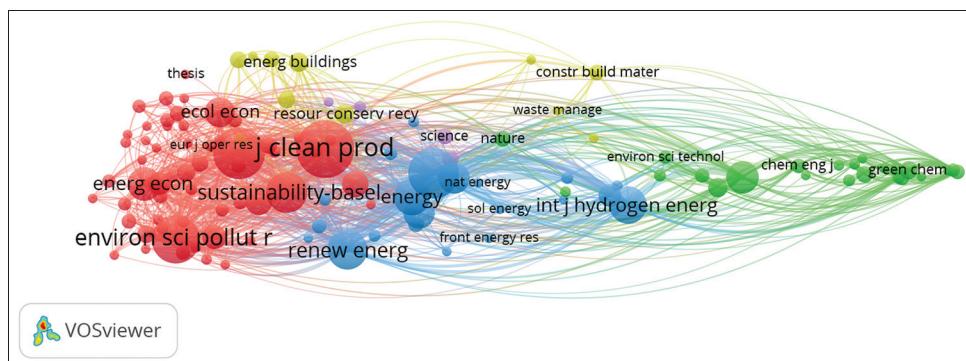

Figure 5: Co-occurrence analysis

Figure 6: Bibliographic coupling analysis

Figure 7: Cited source analysis

dense red cluster surrounding the Journal of Cleaner Production node includes frequently occurring sources that focus on sustainability assessment, circular economy, and country-oriented environmental studies.

Renewable Energy and the International Journal of Hydrogen Energy appear at the heart of a second blue cluster with an obvious focus on techno-engineering, involving systems of renewables, clean fuels, and green innovation. Chemical engineering journals Green Chemistry and Environmental Science & Technology are reflective of a growing focus on sustainability, green materials, waste valorization, and clean production technologies in the fields of materials science and chemical engineering. A smaller yellow cluster contains the journals Energy and Buildings, Construction and Building Materials, and Waste Management, representing applied research related to sustainable infrastructure development and resource efficiency.

The overall cited-source network is highly interdisciplinary, containing journals in the fields of economics, engineering, and environmental science. The domination of journals such as the Journal of Cleaner Production, Renewable Energy, and Energy Economics demonstrates how integrated sustainability solutions that link technological innovations with economic and environmental performances are discussed in current research within an integrated framework.

5. DISCUSSION AND CONCLUSION

Bibliometric analysis provides a quantitative, scientific approach to understanding communication within a field by outlining the structure, themes, and links among research works (Indiana and Pahlevi, 2023). Mishra et al. (2024) explained the SDGs as “a global call to protect the environment and reduce climate change while ending poverty with good quality of life and shared prosperity for all.” Identifying highly cited works through bibliometric analysis can shed light on the global evolution and trends of sustainability scholarship through patterns of international collaboration (Osman et al., 2025). The results of this study provide a clear picture of both the intellectual and structural evolution of research on sustainable development, energy economics, and environmental management. There is a clear upward trend in publication output beginning in 2011, with another substantial increase between 2019 and 2025. This is likely in response to growing global momentum behind the SDGs and a growing number of policies that emphasize green growth and energy transitions. The continuation of this high productivity into 2024 and 2025 suggests that the field is entering a phase of dynamic growth and maturity, characterized by methodological diversification and deeper interdisciplinary integration.

Geographically, the sustainability-oriented scientific publication largely flows out of Asia, with China leading, followed by the United States and India. The Asian region has been rapidly industrializing in recent years, and local government commitments toward environmental governance, including in renewable energy, are steadily growing. Other significant national contributors to the field include England, Pakistan, Italy, and Germany. Institutional

analysis revealed the Indian Institute of Technology System, Beijing Institute of Technology, and King Saud University as major emerging collaborators from developing economies with established academic networks.

In terms of publication channels, Elsevier, MDPI, and Springer Nature, publishers that dominate the global landscape of scholarly communications, publish the majority of works related to sustainability. The academic prestige and accessibility of these publishers allow for the wide dissemination of research in the field and encourage cross-disciplinary involvement. Influential journals strongly oriented toward sustainability transitions and clean technologies foster new modes of thinking about the links between environmental and economic systems within this particular field.

The results of the keyword co-occurrence analysis show the concept of sustainable development to be the core concept around which the intellectual structure of the field is built, together with associated topics such as energy, innovation, and climate change. The analysis reveals four major thematic clusters: (1) Sustainability policy and economics, (2) technological innovation and renewable energy, (3) environmental impact and CO₂ emissions, and (4) green finance and performance evaluation. The strong links between these clusters are indicative of an emerging research ecosystem wherein energy services, economic systems, and environmental management policies are increasingly conceived as belonging to an integrated framework of sustainability.

The bibliographic coupling analysis highlights the intellectual evolution within the field. Primary works such as Alcott (2005), Hakkinen and Belloni (2011), and Ackerman et al. (2014) provide theoretical anchors for the research conducted in more recent works. Newer references, including Hassan et al. (2024), Miao et al. (2021), and Szabo et al. (2023), represent a new generation of data-driven, explicitly policy-oriented, and region-specific analyses that emphasize renewable energy adoption, green financing, and climate resilience. These newer works, paired with the original conceptual arguments, have helped the field mature toward empirical validation.

The cited source analysis is reflective of such intellectual evolution. The Journal of Cleaner Production serves as the main node, linking the domains of economics, energy, and environmental sciences to demonstrate the interdisciplinarity of sustainability research. The key role of the journals of Renewable Energy, Energy Economics, and Ecological Economics suggests that sustainability research sits high on the current academic agenda. At the same time, chemical-engineering-oriented journals like Chemical Engineering Journal and Green Chemistry represent a new bridge being constructed between technological innovation and environmental policy.

These patterns demonstrate how sustainability scholarship is becoming a multidimensional, systems-oriented paradigm involving environmental engineering, economic modeling, and social innovation. However, several important gaps remain. Greater contributions are needed from developing regions outside Asia, such as Africa or South America. A stronger integration of behavioral and social perspectives is also critical. Finally,

outcome-based approaches that identify the actual impacts of policy and technological interventions are missing from the field. Future research should focus on connecting conceptual models to actual implementation pathways, particularly in the global energy transition and emerging post-carbon economies.

5.1. Conclusion

The bibliometric analysis reveals strong, rapidly developing global research trends at the intersection of energy economics, green energy, and sustainable development. The sharp increase in publications beginning in 2022 signals substantial academic and policy interest toward the field, as it relates to contemporary issues of sustainability and technological change. The rapid growth of this relatively young domain, coupled with theoretically and methodologically diverse scholarly inquiry, demonstrates the dynamism and increasing maturity of the field.

China, the United States, and India, nations that emphasize sustainable and strategic innovation and digital transformation, account for the bulk of the published research. Other complementary players include European nations, such as England, Italy, and Germany, and new Asian contributors, including South Korea and Saudi Arabia. The geographic diversity of these contributors suggests the emergence of a global research network.

The Indian Institute of Technology System is the top-producing institution in the field, reflecting India's strong academic infrastructure and an innovation-oriented government that invests in research and development. Leading Chinese universities, including the Beijing Institute of Technology and Tsinghua University, also demonstrate a constant, substantial level of engagement with the field. Intellectual leadership related to sustainability is quickly growing within Asia. Other top institutional contributors, like the Ministry of Education and Science of Ukraine and the Egyptian Knowledge Bank, provide evidence of developing economies' growing involvement in the global research landscape and the democratization of knowledge production.

Elsevier is the leading publisher in the field, followed by MDPI, Springer Nature, and IEEE. The large proportion of total publications from these reputable major international publishers gives scientific legitimacy to the discipline and provides global visibility.

Overall, the bibliometric analysis suggests that this field has entered a phase of global integration, with collaboration between disciplines and institutional diversity. To further deepen theoretical research and enhance collaborations between different regions and sectors, future efforts should be made to bridge the gap between research findings and proposed policies and technological innovations for the implementation of sustainable development.

5.2. Practical Implications

This study has several practical implications for researchers, policymakers, and industry practitioners working on sustainable energy and environmental governance. First, it provides an introductory guide to the top publishers and high-impact journals for scholars searching for reputable publication avenues or

potential collaborators at the individual or institutional level. The findings of this analysis could serve to help target policies related to publishing, research partnerships, and capacity-building activities within the globally significant sustainability domain. Second, the clustering of cited sources highlights increasing convergence between environmental economics, energy transition, and green innovation. Policymakers can utilize this integration to develop cross-sectoral frameworks that align economic incentives with environmental objectives to accelerate the achievement of the SDGs. Third, the analysis highlights growing trends in clean energy technologies, hydrogen energy, and the circular economy. Enterprises and investors can use these findings as guidance for prioritizing research and development investment in areas with strong academic momentum and high policy relevance. Finally, the geographic and thematic imbalances identified in this study should encourage funding bodies and research consortia to support cross-border collaborations, particularly with emerging economies that are just beginning their sustainability transitions. Successfully scaling innovation and transforming scholarly knowledge into measurable sustainability outcomes depends on strengthening international collaboration that emphasizes open data-sharing platforms.

5.3. Limitations and Directions for Future Studies

One major limitation of this study is that the analysis only considered documents indexed within a single bibliographic database (WoS). It is possible that other relevant works from different repositories and non-English sources may have been overlooked. Emerging economies and other non-Western research systems, which strongly contribute to the diversity of scholarly work worldwide, may be inadequately represented in this analysis. Additionally, while bibliometric analysis can be used to efficiently expose quantitative patterns, it cannot judge the qualitative depth, methodological rigor, or theoretical innovation of the studies reviewed. This limits the ability of bibliometric studies to fully explain the intellectual development and conceptual foundations of the field. Finally, citation and publication metrics may also be influenced by database coverage and self-citation practices. There is also an element of temporal bias as newer works have had less time to accumulate citations.

Future studies should adopt a more comprehensive and multidimensional approach. Combining bibliometric analysis with content analysis, text mining, or a systematic literature review could provide multiple perspectives of the intellectual structure and thematic development of the field. Cross-country collaboration network analysis that incorporates national policies and funding would help contextualize the productivity of researchers within their institutional and economic environments. Advanced machine learning and modeling tools could be used to identify emerging research frontiers in sustainability scholarship within the broader context of global digital transformation over time.

REFERENCES

Ackerman, K., Conard, M., Culligan, P., Plunz, R., Sutto, M.P., Whittinghill, L. (2014), Sustainable food systems for future cities: The potential of urban agriculture. *The Economic and Social Review*,

45(2), 189-206.

Afzal, M. A., Rahman, S. U., & Aslam, M. T. (2025). Mapping the Nexus of Sustainability, Innovation, and Renewable Energy: A Bibliometric Analysis of Green Technology Research. *The Critical Review of Social Sciences Studies*, 3(2), 1176-1200. <https://doi.org/10.59075/2p6sns08>

Aghion, P., Howitt, P. (1998). Endogenous Growth Theory. Cambridge, MA: MIT Press.

Alcott, B. (2005). Jevons' paradox. *Ecological Economics*, 54(1), 9-21.

Buri, Z., Sipos, C., Szűcs, E., Máté, D. (2024), Smart and sustainable energy consumption: A bibliometric review and visualization. *Energies*, 17(13), 3336.

Chandran, R., Chandran, M.C.S. (2024), Green finance and sustainability: Mapping research development through bibliometric analysis. *Discover Sustainability*, 5(1), 339.

Garcia-Lillo, F., Sanchez-Garcia, E., Marco-Lajara, B., Seva-Larrosa, P. (2023), Renewable energies and sustainable development: A bibliometric overview. *Energies*, 16(3), 1211.

Geels, F.W. (2002), Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. *Research Policy*, 31(8-9), 1257-1274.

Häkkinen, T., Belloni, K. (2011), Barriers and drivers for sustainable building. *Building Research and Information*, 39(3), 239-255.

Hassan, N.S., Jalil, A.A., Rajendran, S., Khusnun, N.F., Bahari, M.B., Johari, A., Kamaruddin, M.J., Ismail, M. (2024), Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. *International Journal of Hydrogen Energy*, 52, 420-441.

Indana, F., Pahlevi, R.W. (2023), A bibliometric approach to Sustainable development goals (SDGs) systematic analysis. *Cogent Business and Management*, 10(2), 2224174.

Khalid, A., Aslam, M., Qyyum, M.A., Faisal, A., Khan, A.L., Ahmed, F., Kim, J., Jang, N., Chang, I.S., Bazmi, A.A., Yasin, M. (2019), Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. *Renewable and Sustainable Energy Reviews*, 105, 427-443.

Kiran, B., Kumar, R., Deshmukh, D. (2014), Perspectives of microalgal biofuels as a renewable source of energy. *Energy Conversion and Management*, 88, 1228-1244.

Liu, T., Chen, L., Yang, M., Sandanayake, M., Miao, P., Shi, Y., Yap, P.S. (2022), Sustainability considerations of green buildings: A detailed overview on current advancements and future considerations. *Sustainability*, 14(21), 14393.

Liu, Y., Wang, Q., Huang, B., Zhang, X., Wang, X., Long, Y. (2023), Status and challenges of green manufacturing: Comparative analysis of China and other countries. *Resources, Conservation and Recycling*, 197, 107051.

Liu, Z., Zheng, H., Gu, J., Xu, S., Ye, Y. (2024), Exploring the nexus between green finance and energy efficiency: Unravelling the impact through green technology innovation and energy structure. *Heliyon*, 10(9), e30141.

Miao, C.L., Duan, M.M., Zuo, Y., Wu, X.Y. (2021), Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China's provinces. *Energy Policy*, 156, 112370.

Mishra, M., Desul, S., Santos, C.A.G., Mishra, S.K., Kamal, A.H.M., Goswami, S., Kalumba, A.M., Biswal, R., Da Silva, R.M., Dos Santos, C.A.C., Baral, K. (2024), A bibliometric analysis of sustainable development goals (SDGs): A review of progress, challenges, and opportunities. *Environment, Development and Sustainability*, 26(5), 11101-11143.

Osman, M.A., Sheikh Farah, A.A., Abdi, A.I. (2025), A bibliometric analysis of sustainable development research in higher education institutions (HEIs): Key trends, global collaborations and influential contributions (2015-2023). *Cogent Education*, 12(1), 2490436.

Pan, X., Shao, T., Zheng, X., Zhang, Y., Ma, X., Zhang, Q. (2023), Energy and sustainable development nexus: A review. *Energy Strategy Reviews*, 47, 101078.

Qin, Y., Xu, Z., Wang, X., Škare, M. (2022), Green energy adoption and its determinants: A bibliometric analysis. *Renewable and Sustainable Energy Reviews*, 153, 111780.

Raji, S.A., Demehin, M.O. (2023), "Long walk to 2030": A bibliometric and systematic review of research trends on the UN sustainable development goal 3. *Dialogues in Health*, 2, 100132.

Sreenivasan, A., Suresh, M. (2024), Energizing innovation: A bibliometric exploration of renewable energy entrepreneurship. *Journal of Responsible Production and Consumption*, 1(1), 177-205.

Stern, D.I. (2014), The Environmental Kuznets Curve: A Primer, CCEP Working Paper no 1404, June 2014. Crawford School of Public Policy, The Australian National University.

Szabó, L., Miltotskyi, R., Sharma, G., Takahashi, K. (2023), Cellulose processing in ionic liquids from a materials science perspective: Turning a versatile biopolymer into the cornerstone of our sustainable future. *Green Chemistry*, 25(14), 5338-5389.

Yumnam, G., Gyanendra, Y., Singh, C.I. (2024), A systematic bibliometric review of the global research dynamics of United Nations Sustainable Development Goals 2030. *Sustainable Futures*, 7, 100192.

Zhu, J.J., Zhang, R., Kanhalikham, K., Liu, Z., Shen, X. (2023), Green economy studies amongst the global climate change challenge between 2016 and 2022: A bibliometric review. *Frontiers in Ecology and Evolution*, 11, 1168437.

Zioło, M., Spoz, A., Szaruga, E. (2025), Nexus between financial development and Sustainable Development Goals (SDGs), European Union perspective. *Technological and Economic Development of Economy*, 31, 1401-1432.