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ABSTRACT

This research examined energy sources that can be employed in a region to assist policymakers in determining energy priorities. Three key components 
were analyzed in this research to rank these energy sources: Levelized Cost of Energy (LCOE), CO2 emissions, and power density. A combination of 
multi-criteria decision-making (MCDM) methods, namely the Analytical Hierarchy Process (AHP)-Entropy-the Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS), was used to assess these criteria, which had not been previously applied to rank energy sources. Additionally, 
the Monte-Carlo method was utilized to detect changes in sensitivity throughout the rankings. Results of the study indicated that gas energy topped 
the list, followed by Solar Photovoltaic (PV)-crystalline, geothermal, wind, nuclear, Solar PV Commercial and Industrial (C&I), Solar Thermal Tower 
with Storage, and residential PV rooftop solar. Moreover, nuclear energy ranked the highest when looking at the sensitivity of parameters, while 
utility-scale Solar PV and wind energy ranked the next highest. Thus, this research can be used to increase objectivity in the assessment and selection 
of power generation technology to be implemented.

Keywords: Energy Ranking, CO2 Emission, Levelized Cost of Energy, Power Density, Sensitivity Analysis, Multi-Criteria Decision-Making 
JEL Classifications: Q01, Q48

1. INTRODUCTION

Developing countries must strategically position themselves to 
align with the green revolution’s targets swiftly; otherwise, the 
green process will not effectively reduce global inequalities but 
may widen the gaps. As an illustrative example, Indonesia aims to 
achieve a 23% share of renewable energy in its energy mix by 2025 
(National Energy Council (DEN), 2014). However, attaining this 
target poses significant challenges due to the dominance of coal 
business interests in its energy policies, limited understanding of 
existing local potential, and inadequate information on selecting 
compatible power generation technologies to support clean energy 
development. The urgent need to phase out coal and embrace 

renewable energy sources is apparent in a world constrained by 
carbon emissions. However, it is important to acknowledge that 
developing countries may require additional time to fully adopt 
and integrate new technologies that can replace the long-standing 
reliance on fossil fuels. One such example is the ASEAN region’s 
photovoltaic (PV) market, which is still evolving into a stable 
and self-sustaining industry (Sreenath et al., 2022). Therefore, 
it becomes crucial to establish effective policies and support 
mechanisms within ASEAN countries to facilitate the transition to 
renewable energy sources. The developing nations, on their own, 
may struggle to fully capitalize on the benefits of transitioning 
energy systems, making immediate support from the international 
community imperative.
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Furthermore, the successful transfer of green technology from 
developed to developing nations holds significant importance. 
However, it is essential to recognize that the impact of such 
technology deployment can vary based on the local context 
and how it is utilized. Technological advancements often bring 
positive and negative consequences, depending on factors such 
as the availability of resources, infrastructure capabilities, and 
socioeconomic conditions of the target region. Therefore, when 
transferring green technology, it is crucial to carefully assess and 
tailor the implementation strategies to suit the specific needs and 
challenges of the receiving developing nations. This approach 
will help maximize the positive impact of the technology while 
mitigating any potential negative consequences.

Data and information related to the performance of power plants 
from various types of technology have been widely published. 
These power plants tend to perform similarly in multiple places 
if the technology and environmental conditions are the same. 
Technology assessment and selection usually focus on only 1 
(one) data variable, for example, economic or environmental 
aspects. It is necessary to consider several data variables to be 
more objective in choosing the right power generation technology, 
especially to produce a performance that accelerates the energy 
transition process. Furthermore, ranking the various technologies 
to be used can determine priorities and increase the effectiveness 
and efficiency of their utilization.

Renewable Energy (RE) has lower power densities than non-RE. 
As a result, RE systems often require more surface area to produce 
the same amount of power as non-RE systems (Smil, 2010) (van 
Zalk and Behrens, 2018). Power density is the quantity of power 
processed per unit volume of the unit area. While power density 
is measured in various ways, it is most commonly represented in 
watts per square meter (W/m2) or square inch (W/in2). Because 
modern engineering is driven by cost-efficiency, it is the key to 
generating more electricity in a smaller space while lowering 
prices, meaning more significant power density is better than 
less one. The National Renewable Energy Laboratory (NREL) 
in the United States uses power densities to estimate the energy 
generated by each recognised technology, considering system 
performance, topographic restrictions, and environmental and 
land-use constraints (Lopez et al., 2012). Examining the trade-
off between land use and its social implications can help improve 
understanding of power densities. (Buceti, 2014) has researched 
the needs of land use related to power density, as shown in Table 1.

Like its power density, renewable power generation costs have 
fallen sharply over the past decade, but RE’s Levelized Cost of 
Energy (LCOE) is still higher than fossil fuel (IRENA, 2020), as 
shown in Figure 1. Some efforts must be made to reduce RE’s 
LCOE because a lower LCOE will make energy investment more 
attractive to investors (IRENA, 2020). LCOE is an economic 
statistic that compares the lifetime costs of generating electricity 
across different production methods (Raikar and Adamson, 2020).

In contrast to those factors, all the RE had a significantly lower 
impact than the non-RE in terms of emission (Hung, 2010), which 
aligns with the goal of the Paris Agreement. LCOE, emission 

and power density of power plants are the essential factors for 
policymakers to determine which power plant is the best to use 
in a specific area. Numerous research studies compare types of 
power plants with each factor separately. Most of the research is 
a comparative study between types of power plants or a causal 
analysis between chosen factors to develop a framework for 
decision-making.

(van Zalk and Behrens, 2018) has done a PRISMA transparent 
meta-analysis using snowball sampling. This study shows that 
increasing the RE portfolio will increase land use, presenting 
challenges for other sectors, such as agriculture and biodiversity. 
Formerly, (Matsuo et al., 2013) researched evaluating 9 
(nine) different power sources in Japan based on their LCOE, 
sustainability and cost estimation. The study shows that the 
RE cost has decreased over the years, and Japan is massively 
developing their RE. Finally, (Abdallah and El-Shennawy, 2020) 
mentioned that emissions from power plants would be evaluated 
for Egypt’s future development based on three scenarios. The 
result shows that the RE scenario will decrease Egypt’s emissions 
below 30% by 2030. The above research shows that power 
densities, LCOE and emission are the main factors determining 
RE development.

Formerly, Multi-Criteria Decision Making (MCDM) strategies 
have gained favor in energy supply systems, according to (Şengül 
et al., 2015), this article aims to create an MCDM framework for 
evaluating RE supply systems in Turkey. According to the findings, 
the amount of energy produced is the first criterion in Turkey’s 
preference ranking of Renewable Energy Sources (RES), followed 
by ranking systems, land use, operation, and maintenance costs, 
installed capacity, efficiency, payback period, investment cost, job 
creation, and CO2 emission value (Şengül et al., 2015). As a result 
of the MCDM analysis, the Hydro Power Station was declared 
Turkey’s most RE supply system. Furthermore, the second, third, 
and fourth places are assigned to the Geothermal Power Station, 
Regulator, and Wind Power Station (Şengül et al., 2015). (Ulewicz 
et al., 2021) proposes an MCDM selection method that combines 
a qualitative pricing analysis with a fuzzy Analytical Hierarchy 
Process (AHP) and the technique for preference by similarity to 
an ideal solution (TOPSIS), integrated with a qualitative price 
analysis (ACJ). A  case study on selecting a suitable RES in 
Polish industrial conditions was used to test this novel technique. 
According to the research, the proposed approach of determining 
the preferable RES can be applied in industrial firms that try to 
meet their energy needs while adhering to social responsibility 
standards (Ulewicz et al., 2021).

The process of choosing an appropriate power generation 
technology is intricate. It involves the consideration of diverse 
factors that are specific to each country. Policymakers typically 
conduct comprehensive feasibility studies and evaluations to 
determine the technology most effectively aligns with their 
country’s requirements and circumstances. Policymakers should 
heavily rely on scientific research during their energy decision-
making process to mitigate biases and promote decisions based 
on factual evidence and objective analysis. The method proposed 
in this research paper aims to attain an accurate solution.
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This research will conduct a further analysis regarding a combined 
ranking of LCOE, emission and power density since the former 
research not considering power density and factors within LCOE such 
as payback period, investment cost, installed capacity and efficiency 
are separated in developing research. For instance, policymakers or 
prospective investors might wish to see measures of power plant 
suitability, given that constructing different types of energy sources has 
been shown to have a causal impact on power generation outcomes. 
Therefore, the ranking will be necessary to be analyzed. Hence, this 
paper expects to create an MCDM support framework for ranking 
optimum energy sources based on LCOE, power density and CO2 
emission. Firstly, the AHP method will select the parameter and 
alternatives based on the literature study. Next, the entropy method 
will obtain objective parameter weights from the information available 
within the data. At last, the TOPSIS method will be used to select the 
best RE alternative based on the performance of the three-parameter 
factors. In addition, there is a sensitivity analysis to test the effect of 
changes in factor parameters on changes in ranking.

The proposed technique can systematically handle the green 
energy sources selection process’s contradictory, unstructured 
MCDM environment. This work is critical for decision-makers 
since it aims to provide critical insights for the administration 
of government, non-government, and corporate organizations 

working in the RE sector. The findings of this study can help 
governments and the public sector make informed decisions about 
various energy projects.

2. LITERATURE STUDY

2.1. Power Density
Comparing different energy sources has difficulty, like different 
dimensions—physics dimension account for their classification, 
either volumetric or flowing sources (Buceti, 2014). Energy 
density is the standard measurement used in comparisons between 
energy sources. Energy density is the energy (time rate of energy 
transfer) per unit volume (Jelley, 2019). The world is shifting from 
fossil-based fuels to clean energy systems, leading to a higher land 
use effect of energy systems (Bridge et al., 2013; Fouquet, 2016). 
(Smil, 2015) informs that RE produces energy in urban areas and 
industry at a small fraction of current power densities.

(van Zalk and Behrens, 2018) examines power densities in the United 
States for nine energy kinds and various sub-types (for example, solar 
power: PV, solar thermal). First, his study presents the aggregated 
results for all energy types and the underlying patterns. The power 
densities for renewable and non-RE resources are then studied within 

Table 1: Land use for each energy technology (Buceti, 2014)
Technology Gagnon/Bertani 

2005 (Geothermal)
Fthenakis McDonald (2030) Smil MacKay Selected 

Values
Land 
Use as 

m2/kWh

W/m2 Land Use 
as m2/
kWh

W/m2 Land Use 
as km2/
TWh/y

W/m2 Min (W/m2) 
(MW/km2)

Max (W/m2) 
(MW/km2)

W/m2 W/m2

Biomass Crops 5,33E‑01 2,08E‑01 1,25E‑02 8,89E+00 5,43E+02 2,05E‑01 5,00E‑01 6,00E‑01 5,00E‑01 5,00E‑01
Geothermal 5,00E‑02 2,22E+00 7,50E+00 1,48E+01 2,22E+00
Hydro 1,52E‑01 7,31E‑01 4,00E‑03 2,78E+01 5,40E+01 2,06E+00 2,40E‑01 2,40E‑01
Wind 7,20E‑02 1,54E+00 1,50E‑03 7,41E+01 7,21E+01 1,54E+00 5,00E‑01 1,50E+00 2,00E+00 2,00E+00
Photovoltaic 4,50E‑02 2,47E+00 3,00E‑04 3,70E+02 3,69E+01 3,01E+00 4,00E+00 9,00E+00 1,00E+01 1,00E+01
Coal 4,00E‑03 2,78E+01 4,00E‑04 2,78E+02 9,70E+00 1,15E+01 1,00E+02 1,00E+03 2,78E+02
Gas 3,00E‑04 3,70E+02 1,86E+01 5,97E+00 2,00E+0,2 2,00E+03 3,70E+02
Nuclear 5,00E‑04 2,22E+02 1,15E‑04 9,66E+02 2,40E+00 4,63E+01 9,66E+02

Figure 1: Global weighted average levelized cost of energy from utility-scale RE (IRENA, 2020)
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energy sub-types (van Zalk and Behrens, 2018). The time series 
regression and land-use projection results are then presented, finally 
Figure 2 shows an example application of these power densities to 
future NREL scenarios (van Zalk and Behrens, 2018).

2.2. Levelized Cost of Energy (LCOE)
The LCOE is a standard metric for evaluating the costs of various 
power production systems (Raikar and Adamson, 2020). The value 
can be easily compared, which can assist people in business and 
policymakers in making decisions. The annuity technique is commonly 
used to compute LCOE because it allows for easy recalculation and 
assessment of the sensitivity of different factors to the LCOE outputs.
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Graph of LCOE (starting with LCOE 15.0, October 2021) for 
various energy sources as a function of the year, derived from 
Lazard’s LCOE data (Lazard, 2021), Figure 3. With the increased 
implementation of RES, costs have declined in recent years, most 
notably for electricity generated by solar panels and wind turbines.

2.3. Emission
Our current electrical supply networks are material, fuel, and 
carbon-intensive, affecting the planet’s greenhouse gas (GHG) 
balance (Stocker et al., 2013). When fossil fuels are burned, they 
release a substantial amount of carbon dioxide, one of the carbon 
emissions. Climate change is caused by carbon emissions, which 
trap heat in the atmosphere. A significant global effort is being 
conducted to decarbonise our energy system, to reduce global 
GHG emissions by at least 80% by 2050 (UNFCCC, 2016; Rogelj 
et al., 2016). Electrical sector emissions must be lowered to half 
of present levels by 2030 and to 85% by 2050 (OECD/IEA and 
IRENA, 2017). Based on the Intergovernmental Panel on Climate 
Change (IPCC) report, electricity and heat production contributed 
25% of global GHG emissions, the highest among other economic 
sectors. There are many ways to reduce emissions from this 
sector, including RES and fossil fuels technology development. 
Hydropower, thermal- and PV-solar, onshore and offshore wind, 
biomass, geothermal, nuclear plants, natural gas, and clean 
coal with carbon capture and storage have all been modelled 
individually to achieve a low-carbon electricity system, with 
varying outcomes and accuracy for different technologies (Eom 
et al., 2015; Kis et al., 2018). In order to find out the impact of 
global warming caused by each power generation technology in 
the world, it is necessary to collect and compare the data on CO2 
emissions produced by each type of power plant. In this research, 
the data on CO2 emissions (starting with LCOE 13.0, October 
2019) for various energy sources as a function of the year are 
derived from Lazard’s LCOE data (Lazard, 2019), Figure 4.

2.4. Rankings
According to the Oxford Dictionary, a ranking is a relationship 
between a set of items such that, for any two, the position of 

Figure 2: Average power density from various energy sources  
(van Zalk & Behrens, 2018)

Figure 3: Graph of levelized cost of energy (Lazard, 2021)
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something on a scale shows how good or critical they concern 
other similar things (Oxford University Press, n.d.). A  rank 
reversal is a change in the rank ordering of the preferability of 
feasible alternative decisions when the technique of choosing 
or collecting other accessible alternatives changes, for example. 
Many discussions in decision-making, particularly MCDM, 
focused on the subject of rank reversals.

MCDM techniques are popular in energy-policy-making and 
policy ranking (Kumar et al., 2017). In addition, MCDM methods 
such as AHP have been used within the energy area analyses 
(Alizadeh et al., 2020). AHP is a simple yet powerful tool to 
support decision-makers in making more effective decisions by 
structuring and evaluating the relative attractiveness of competing 
preferences or alternatives (Handfield et al., 2002).

On the other hand, MCDM entropy has been used within energy 
area analyses to determine the weight of a criterion and estimate the 
preference of a parameter weight (Rubinstein and Kroese, 2004). 
The advantage of the entropy method is that the entropy method 
uses objective approaches to produce parameter weights based 
on data characteristics while simultaneously accommodating the 
subjective preferences of decision-makers (Figueira et al., 2016). 
Therefore, combining AHP with Entropy will allow decision-
makers to subjectively and objectively evaluate parameter weights 
depending on various forms of decision data and levels of choice 
expertise (Al-Aomar, 2010).

After assessing criterion weight, another method is required to 
rank energy alternatives. Technique for Order of Preference by 
Similarity to the Ideal Solution (TOPSIS) will be used to select 
the best option from a finite set by maximising distance from the 
ideal negative point while reducing the distance from the ideal 
positive point (Datta et al., 2014). In this case, TOPSIS requires 
a priority weight obtained from the entropy parameter weight to 
process further data.

Based on a literature study, the combination MCDM: AHP-Entropy-
TOPSIS has never been used for RES ranking. This MCDM 
combination in research has been validated and recommended by 

experts. Furthermore, sensitivity analysis will be carried out to 
evaluate the robustness of the proposed methodology. The study of 
how the uncertainty in a mathematical model’s output, system, or 
output variable can be allocated to multiple sources of uncertainty 
in its input variables is known as a sensitivity analysis (Saltelli 
et al., 2007). One of the sensitivity analysis methods that will be 
performed in this research is the Monte-Carlo simulation, which is 
included in global sensitivity analysis. (Saltelli et al., 2000) claim 
that Global Sensitivity Analysis (GSA) is the popular paradigm 
that has dominated modern-era sensitivity analysis for the past two 
decades. The four primary GSA methodologies are derivative-based, 
distribution-based, variogram-based, and regression-based GSA 
approaches (Tsvetkova and Ouarda, 2021). In this research, an expert 
team will be set up to determine initial subjective criteria weights then 
the entropy method will enhance it into objective criteria weights. 
This objective weight will rank the parameter of energy sources. 
Then, energy alternatives will be ranked based on the criterion weight.

3. RESEARCH METHODOLOGY

To attain unity of subjective and objective and to make the results 
more realistic and reliable, the entropy assessment approach 
considers the data and subjective preferences (Chuansheng et al., 
2012). The step of this unified method is as follows:

Step 1 – Set an Expert Team: The team of experts consists of a 
group of people who are experts from several multi-disciplines 
related to energy, energy management, power systems, smart grid 
and distribution.

Step 2 – Establish a Hierarchical Model of the Problem: The first 
level of the hierarchical model states the goal, next level of the 
hierarchical model consists of policy parameters and is followed 
by the number of alternatives.

Step 3 – Determination of subjective criteria weight (AHP) using 
Pairwise Comparison: The initial weights of policy parameters are 
determined using a subjective method of AHP. AHP is commonly used 
to determine weights based on judgments (Basak and Saaty, 1993).

Figure 4: Data on CO2 emissions (Lazard, 2019)
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•	 AHP’s purpose is to deconstruct the assessment framework 
into a hierarchical structure and compare each component 
against a set of guidelines. After that, get the comparison 
matrix components and figure out the relative and overall 
weights (Chuansheng et al., 2012).

•	 First, we must gather expert votes on each criterion and 
alternative. Each will then compare among measures and 
options to derive priorities using pairwise comparison.

•	 Then, we must compute subjective, relative importance 
weights (WS). If each expert’s vote has equal importance, 
according to (Aczél and Saaty, 1983), geometric means the 
correct way for synthesising the judgments given by the 
experts as reciprocal matrices

f x x x q x q x q xn
y y

n n
yy( , ,.., ) ..1 2 1 1 2 2= + + + � (3)

Where q1 + q2 + qn = 1, qk > 0 (k = 1, 2, n), y ≠ 0. Otherwise, q1, 
q2, qn, and y are arbitrary constants.
•	 At last, we need to check the Consistency Ratio (CR) of 

synthesised pairwise judgments. CR denotes that the experts 
make a consistent decision by pairwise comparing parameters 
or options. If the level of inconsistency is acceptable, the 
synthesis stage combines the weight of parameters and options 
to compute an overall rating (CR ≤ 10%) (Chuansheng et al., 
2012).

Steps 4 – Using Initial subjective criteria weight in Entropy and 
Determination of overall weight: The first step of Entropy is to 
determine parameters and initial weights of parameters carried 
out subjectively by the experts. These initial weights are derived 
from the Expert team’s subjective weights. The following are the 
next steps in the Entropy method:
•	 After determining the parameter and initial parameter 

weights, a matrix must be made for each criterion, followed 
by normalisation of the weights specified in the initial matrix. 
Normalisation is the process of normalising the benefits and 
costs of each parameter.

•	 In case of the relative significance of indicators has nothing 
to do with that point, the relative significance of indicator j is 
measured by the following equation:
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•	 According to the nature of the entropy method, the equation 
above can be standardised at that point to get the Entropy 
which represents the significance of indicators:
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•	 According to the nature of Entropy, the smaller the esteem 
of e(yj), the greater the relative importance of indicator 
j. Therefore, in order to encourage the comprehensive 
assessment, the weight θj of indicator j can be calculated with 
the following equation:

 j
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Where 0 ≤ θj ≤ 1 and 0 1
1
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m
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Step 5 – Rank the power density, LCOE, and emission for every 
power generation: The analysis will get the evaluation results by 
using the value of entropy method, which means that the value of 
Entropy is the final weight of each parameter. Then the decision-
maker can take this weight with their preference and get the final 
evaluation results using the TOPSIS method.

Step 6 – Alternative data normalisation: First, a decision matrix 
will be made based on the existing criteria information and then 
normalised using equation (7) to obtain a normalised decision 
matrix.

R
D

d
ij

ij

j

M
ij

=




=∑ 1

2

1

2 � (7)

And then, the weighted normalised matrix is computed by 
multiplying the entropy criterion weights using the following 
equation.

hij = θj Rij� (8)

Step 7 – Performance and Distance measurement: The best 
and worst performance for each energy resource parameter is 
computed by choosing the maximum and minimum values using 
the following equations.

A A A A AM

+ + + + += …{ , , , , }1 2 3
� (9)

A A A A AM

− − − − −= …{ , , , , }1 2 3 � (10)

Because TOPSIS is a distance-based technique, all distances 
between the positive ideal solution (PIS) and negative ideal 
solution (NIS) are calculated using equations (11) and (12).

G h Ai ijj

f+ +
=

= +∑ ( )2
1 � (11)

Where 1 ≤ i ≤ f, 1 ≤ j ≤ e

G h Ai ijj

f− −
=

= −∑ ( )2
1 � (12)

Where (1 ≤ i ≤ f, 1 ≤ j ≤ e)
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Step 8 – Determine alternative ranking: For each energy resource 
option, relative closeness is calculated by multiplying the NIS 
value by the sum of the distances to the PIS, and the NIS value 
Ci is calculated using equation (13). Ci has a lot in common with 
the positive ideal solution. Alternatives are ranked according to 
the magnitude of Ci, with the option with the highest Ci receiving 
the top ranking among the others.

C G
G Gi

i

i i

=
+

−

+ −� � (13)

Where (1 ≤ i ≤ m)

Step 9 – Sensitivity analysis: Sensitivity analysis, which considers 
the risks of changing alternative values, is further analysed to 
predict what would happen if an alternative parameter such as 
LCOE changes. Monte-Carlo simulation, included in variogram 
and distribution-based global sensitivity analysis, will be 
performed to analyse the effect of changing the input alternative’s 
value on overall ranks.

4. RESULTS AND DISCUSSION

4.1. Set an Expert Team
The expert team consist of 30 persons from around the world 
from diverse educational backgrounds, such as a master, 
doctor and professor whose master in diverse disciplines such 
as power systems, energy system, energy management, and 
power distribution. In addition, these experts come from various 
institutions worldwide, such as government and professional, and 
contributed at all steps of our research where expert judgement 
is needed. The expert team will judge energy parameters and 
alternatives in this research as an input for AHP and entropy 
method.

4.2. Establish a Hierarchical Model of the Problem
In this step, the sequence of policy parameter and energy 
alternatives is structured into a hierarchy by building a problem 
framework of AHP that are easier to analyse and evaluate. The 
overall goal of this hierarchical model is to provide a decision-
support framework for policy maker. Furthermore, the hierarchy 

helps structure the problem for the decision maker to rank the 
best energy alternatives. Figure  5 is the hierarchical model of 
this research.

As shown in Figure  5, the hierarchy presents three energy 
feasibility parameters and nine alternative energy sources and 
consists of three levels: Decision goal, decision parameter, and 
decision alternatives.

4.3. Determination of Subjective Weight
We first need to gather subjective pairwise comparison data from 
the experts to develop the sequence of policy parameters on three 
energy parameters. The data is then calculated equally for each 
expert. Finally, equation (3) is used to synthesise the judgements 
given by the experts. At last, we check the level of inconsistency 
and whether it is acceptable. The subjective criteria weight result 
of AHP is shown in Table 2. It is displayed that CO2 emission level 
has the highest subjective criteria weight. The inconsistency ratio 
for the AHP subjective weight result is 0.04% which is acceptable 
because it is below 10%.

4.4. AHP’s weight in Entropy and Determination of 
overall weight (AHP-Entropy)
AHP’s subjective criteria weight will then become the initial 
weight in the entropy method, Table 3. Nine alternative energy 
sources will be judged based on the data provided by Lazard’s 
LCOE version  15.0 (Lazard, 2021) and 13.0 (Lazard, 2019) 
associated with LCOE, CO2 emission level and a paper from van 
Zalk and Behrens, which discusses the power density of energy 
sources. The initial weight data from Lazard’s report (Lazard, 
2019; Lazard, 2021) and van Zalk and Behrens’s paper (van Zalk 
and Behrens, 2018) will be normalised from the initial matrix. 
Table 4 shows the data normalisation of Entropy.

The entropy method is used to specify the objective parameter 
weights for energy parameters. Equation (5) is used to calculate 
Entropy for each criterion entropy (e[yj]) as shown in Table 5. It can 
be inferred that parameter 2 has the highest entropy criterion value.

4.5. Rank The Energy Parameter
Equation (6) is then used to calculate the lambda value (θj), 
multiplied by the initial weight derived from AHP’s subjective 

Figure 5: Problem’s hierarchical model
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result. The table below shows the entropy objective weight result of 
the research, which determines the sequence of energy parameter.

Table 6 shows that parameter 1, LCOE, has the highest objective 
weight based on data provided by Lazard (Lazard, 2019; Lazard, 
2021) and van Zalk and Behrens’s paper (van Zalk and Behrens, 
2018).

4.6. TOPSIS Alternative Ranking
Entropy’s parameter weight will then become the reference in 
the TOPSIS alternative ranking. Nine alternative energy sources 
will be judged based on the data provided by Lazard’s LCOE 
version 15.0 (Lazard, 2021) and 13.0 (Lazard, 2019) for LCOE 
and CO2 emission levels and van Zalk and Behrens’ paper (van 
Zalk and Behrens, 2018) for power density. Table 7 shows the 

alternative’s initial weight. The initial weight data is in the form of 
uniform distribution, where the data has a minimum and maximum 
range. These data will then be normalised from the initial matrix. 
Table 8 shows the data normalisation of TOPSIS. TOPSIS method 
is then used to determine performance and distance measurement 
for each alternative. Equation 7 and 8 is then used to calculate the 
Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS), 
as shown in Table 9. Equation (9) is then used to calculate the Ci 
value, which resembles the positive ideal solution.

Alternatives with the biggest Ci will hold the highest rank among 
other alternatives. Table 10 shows the TOPSIS Alternative ranking. 
From Table 10, it can be inferred that alternative 9, combined cycle 
gas, has the highest weight. In this research, TOPSIS alternative 
weight is the final result of this research method. Furthermore, 
sensitivity testing will be performed to test the effect of changes 
in factor parameters in ranking change. The test will be performed 

Table 8: TOPSIS data normalisation result
Energy sources Data normalisation

C1 C2 C3

Solar PV‑rooftop residential 0.518 0 0.012
Solar PV‑rooftop C&I 0.348 0 0.008
Solar PV‑crystalline utility scale 0.091 0 0.007
Solar PV‑thermal tower with storage 0.397 0 0.007
Geothermal 0.21 0 0.009
Wind 0.233 0 0.002
Nuclear 0.472 0 0.186
Coal 0.305 0.874 0.125
Gas combined cycle 0.167 0.484 0.974
TOPSIS: Technique for order of preference by similarity to ideal solution

Table 6: Entropy objective weight result
Parameter C1 C2 C3

θj
0.402 0.219 0.377

Rank 1st 3rd 2nd 

Table 9: TOPSIS performance and distance measurement
Energy sources Data normalisation

Dj+ Dj‑
Solar PV‑rooftop residential 0.402 0.205
Solar PV‑rooftop C&I 0.378 0.217
Solar PV‑crystalline utility scale 0.365 0.268
Solar PV‑thermal tower with storage 0.385 0.211
Geothermal 0.367 0.241
Wind 0.367 0.266
Nuclear 0.334 0.217
Coal 0.390 0.099
Gas combined cycle 0.081 0.414
TOPSIS: Technique for order of preference by similarity to ideal solution

Table 7: Alternative initial weight (Lazard, 2019; Lazard, 
2021; van Zalk and Behrens, 2018)
Energy sources Initial weight

C1 C2 C3

Cost Cost Benefit
Solar PV‑rooftop residential 18.4 0 9.9
Solar PV‑rooftop C&I 12.35 0 6.85
Solar PV‑crystalline utility scale 3.55 0 5.95
Solar thermal tower with storage 14.1 0 5.95
Geothermal 7.45 0 7.51
Wind 3.8 0 2.185
Nuclear 16.75 0 148
Coal 10.85 11 100
Gas combined cycle 5.95 4.12 775Table 4: Entropy data normalisation result

Energy sources Data normalisation
C1 C2 C3

Cost Cost Benefit
Solar PV‑rooftop residential 0.2 1 0.6
Solar PV‑rooftop commercial and 
industrial (C&I)

0.25 1 0.6

Solar PV‑crystalline utility scale 1 1 0.4
Solar thermal tower with storage 0.25 1 0.2
Geothermal 0.5 1 0.2
Wind 0.333 1 0.2
Nuclear 0.2 1 1
Coal 0.333 0.25 1
Gas combined cycle 0.5 0.333 1
Total 3.567 7.583 5.2

Table 2: AHP subjective weight result
Parameter C1 C2 C3 Weight
LCOE (C1) 1 0.96 1.19 0.347
CO2 emission level (C2) 1.03 1 1.35 0.37
Power density (C3) 0.83 0.73 1 0.282
AHP: Analytical hierarchy process, LCOE: Levelized cost of energy

Table 3: Entropy initial weight
No Parameter Code Category Weight
1 Levelized cost of electricity C1 Cost 0.347
2 CO2 emission C2 Cost 0.37
3 Power density C3 Benefit 0.282
Total 1

Table 5: Entropy criteration value
Entropy criterion value

Parameter Value
C1 0.931
C2 0.964
C3 0.92
Total 2.816
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Table 11: Rank change possibility
Energy sources alternatives Number of 

rank changes
% change

Solar PV‑rooftop residential 0 0.0
Solar PV‑rooftop C&I 4 19.0
Solar PV‑crystalline utility scale 5 23.8
Solar PV‑thermal tower with storage 3 14.3
Geothermal 3 14.3
Wind 4 19.0
Nuclear 9 42.9
Coal 0 0.0
Gas combined cycle 0 0.0

in Table 10’s “Normalised Dj” value for 1000 iterations through 21 
simulations. Each simulation result will be ranked, and the number 
of alternatives rank change will be calculated. This simulation will 
test changing the alternative value’s effect on the alternative rank. 
Figures 6 and 7 show the tornado diagram and per cent change 
diagram of coal and wind energy, while Table 11 will show the 
rank change possibility of alternatives in this research.

As shown in the tornado diagram in Figure 6, can be inferred 
that LCOE is the most sensitive factor for coal energy, the most 
significant ranking change factor, followed by its power density 
and emission level. Tornado diagrams have the function of 
comparing the relative importance and impact of various variables 
with uncertainty. One difference between fossil energy and RE in 
sensitivity analysis is that there is no change in emission levels in 
RES because the minimum and maximum values are 0.

From Figure 7, it can be inferred that LCOE from wind energy 
sources has a significant range of Normalised Dj changes 
compared to its power density. As mentioned before, RE does not 
emit emissions during its operation, so that the emission value 
will remain 0. Therefore, the range of changes in the average 
“Normalised Dj” means from wind energy sources caused by 
changes in LCOE ranges from 0.110 to 0.114, while the change 
caused by power density ranges from 0.1122 to 0.1123.

From Table  11, it can be inferred that nuclear energy has the 
highest rank change possibility with 42.9%, followed by solar 
PV-crystalline utility scale with 23.8% and solar PV-rooftop C&I 
with wind energy with 19.0% rank change possibility. The per cent 
rank change is derived from the number of rank changes divided 
by the number of simulations, which is 21. This result can be used 
as a consideration for decision-makers in deciding on policies to 
be implemented based on ranking and sensitivity analysis results.

5. CONCLUSION

From the comprehensive evaluation result, LCOE weight is the 
highest among the three parameters, followed by power density and 
CO2 emission level. After analysing a set of multiple energy source 
data related to LCOE, CO2 emission, and power density provided by 
Lazard (Lazard, 2019; Lazard, 2021) and a paper from van Zalk and 
Behrens (van Zalk and Behrens, 2018), gas combined cycle ranks the 
highest among other alternatives, followed by solar PV-crystalline 
utility-scale, geothermal, wind, nuclear, solar PV-rooftop C&I, 
solar PV-thermal tower with storage, solar PV-rooftop residential.

Sensitivity analysis shows that only gas combined cycle, coal and 
solar PV-rooftop residential will remain in the same rank if input 
changes. Meanwhile, nuclear energy has the highest possibility of 
rank change with 42.9% of change based on the simulation, followed 
by solar PV-crystalline utility-scale, wind and solar PV-rooftop C&I.

This energy ranking serves as an initial reference for stakeholders 
in the energy sector to develop power generation infrastructure 
that optimises local energy utilisation. Thus, this research can be 
used to increase objectivity in the assessment and selection of 
power generation technology to be implemented.
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