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ABSTRACT

We investigate the multi-scale information transmission between two implied volatilities in the energy markets (crude oil volatility and volatility in 
the energy market) and energy commodities returns (global energy commodity, brent, heating oil, natural gas and petroleum). The Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) based Rényi transfer entropy approach is employed to accomplish the research 
objective. The study’s outcome underscores that information flow between implied volatilities and energy commodities is negative with significance 
being scale-dependent. Especially, significant negative information flow is found at specific intrinsic mode functions (IMFs) such as IMF1, and 
from IMFs 6-9 suggesting short-, upper medium and long-term energy markets dynamics. Comparatively, we find profound negative information 
flow with the crude oil implied volatility than the volatility in the entire energy market implying the former’s strong hedging benefits. Investors and 
policymakers should have knowledge about the dynamics of implied volatilities, particularly, the crude oil implied volatility when designing strategies 
for the energy commodities markets.

Keywords: Crude oil Implied Volatility, Bi-directional Causality, Rényi Transfer Entropy, Heterogeneity 
GEL Classifications: G10; G15; G19; O13

1. INTRODUCTION

Energy commodities are traded across international markets. 
Due to their enormous demand and restricted supply in a few 
nations, energy commodities’ prices are largely influenced 
by economic, financial, geopolitical, and geological factors 
(Shaikh, 2018). Geopolitical events as the Arab oil embargo of 
1973–1974, the Gulf War of 1990, the Iraq War, and the Ukraine 
War are to blame for the multiple bouts of price instability 
(Narayan and Narayan, 2007; Arouri et al., 2011; Baffes and 
Nagle, 2022). For instance, the price of energy commodities 
increased in the first quarter of 2022, reflecting the effects of 
the Ukraine War as well as persistent demand increases and 
numerous supply constraints.

The commodities most impacted by the current price spike are 
those that Ukraine and Russia export in greater quantities, such 
as energy, fertilizers, certain cereals, and metals (Baffes and 
Nagle, 2022). The commodity price increases in 2022 came on 
top of a surge in commodity prices that started in the middle of 
2020 as a result of concerns about the COVID-19 pandemic. The 
research has documented significant variations in oil prices prior 
to COVID-19, during the global financial crisis, and between 
2014 and 2015. During the global financial crisis, the price of 
Brent crude oil rose from 60 to 145 dollars before rapidly falling 
to 30 dollars. Oil prices fell by about 75% between 2014 and 
2015 following the global financial crisis (Degiannakis et al., 
2018). Hamilton (1983) asserts that because the crude oil market 
is oligopolistic, significant disruptions in oil production cause 
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notable price shocks. In addition to causing abnormalities in the 
energy markets, these price shocks raise prices for importers, 
exporters, and private consumers.

The conventional method for market participants to protect 
themselves against changes in the price of oil and disruptions in 
supply is to purchase crude oil futures. The Crude Oil Volatility 
Index (OVX) and the Energy Market Volatility Index (EMV), 
however, are currently used to measure the expected volatility 
of crude oil. The discussion above informs a strong link between 
various turbulences in the global environment and uncertainties 
in the energy commodities market. These indices serve as the 
benchmark for measuring the amount of fear generated from 
the market instabilities. As a market benchmark, the indices are 
important in the decision-making process of emerging market 
participants to a great degree. This chain can be described as 
the data-generating process for energy commodities prices in 
the global marketplace. More importantly, we surmise that this 
process is analogous to the updating belief system based on 
information (evidence/data) flowing from economic, financial, 
geopolitical, and geological disturbances (Shaikh, 2019), to Crude 
Oil Volatility Index (OVX) and the Energy Market Volatility Index 
(EMV), and eventually to the prices of energy commodities. This 
is the foundation of the information theory by Shannon (1948). 
Hence, the discourse naturally necessitates the investigation of 
information flow between implied energy volatilities and energy 
commodities to inform energy market participants about risks, 
rewards, and strategies.

Several studies investigated the drivers of energy commodity 
price connectedness and their co-movements (Vacha and Barunik, 
2012; Amoako et al., 2022; Umar et al., 2022). Nonetheless, a few 
studies focused on the information flow between implied energy 
volatilities and energy returns (Asafo-Adjei et al., 2022). This is 
despite the role information content plays in market dynamics, 
especially in the era of one crisis after another. Because economies 
are interconnected through trade and investments, there is a basic 
connection between returns and volatility in the energy market. 
As a result, any information about supply and demand in one 
country has consequences for others (Hernandez et al., 2014). 
This study investigates the information content of two implied 
energy volatilities, OVX and EMV, and the important commodities 
(Brent, global energy, heat oil, natural gas, and petroleum) returns.

The literature studies document a strong asymmetric negative 
association between implied volatility index based on other 
markets such as stock (VIX), Euro (EZV), and Gold (GVZ) and 
the underlying index returns (Giot, 2005; Car and Wu, 2006; 
Whaley, 2009; Chiang, 2012; Pathak and Deb, 2020; Amoako 
et al., 2022) and all reported significant negative relations 
between the implied volatility indexes and underlying stock index 
returns. The four papers that come close to the current paper 
are Chen and Zou (2015), Shaikh (2019), Boateng et al. (2021), 
and Echaust and Just (2021), and all also identified a significant 
inverse contemporaneous relationship between the asymmetric 
relationship between the OVX and energy commodity returns. 
Different models applied by these studies include GARCH 
models (Whaley, 2009), Granger causality (Chiang, 2012), Pooled 

regression models (Chiang, 2012), Kalman filter (Chen and Zou, 
2015), Quantile regressions (Boateng et al., 2021; Shaikh, 2019), 
and Value-at-Risk (Echaust and Just, 2021). While these studies 
enjoin important findings for both policy and investment, they 
fail to address the role of information content in the nexus. This 
is critical because the energy market is largely driven by fear 
(information) emanating from economic, financial, geopolitical, 
and geological shifts.

The current study, in contrast to earlier works, uses the Complete 
Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN) based entropy approach to investigate the 
multi-frequency information flow in the energy market. This 
method decomposes the data time series into intrinsic mode 
functions (IMFs), which represent time horizons across the 
short-, intermediate-, and long-run. The strongest characteristics 
of the CEEMDAN-based entropy approach are its support 
for asymmetric, nonlinearity relationships, and nonstationary 
difficulties as well as its removal of noise anchored in the data 
resulting from market anxiety that encourages irrational behavior 
by market players (Owusu Junior et al., 2021). We denoise the data 
to get the fundamental relationship between the variables and cater 
to different investment horizons (short-, medium-, and long-term) 
addressing the heterogeneous market hypothesis (HMH) (Müller 
et al., 1993). Regarding Adaptive Market Hypothesis (AMH), 
Lo (2004) contends that markets change with varying degrees 
of efficiency, with the intensity of market efficiency being more 
influenced by adaptation, innovation, competition, and mutation. 
In line with CMH of Owusu Junior et al. (2021), this suggests that 
profit-making chances are a dynamic process that needs optimal 
timing for implementation and active portfolio management. 
The HMH assume that investors will study events and news and 
consider the implications of various time horizons as part of their 
trading strategy and this is known as intrinsic time.

The authors of the current study can thus comprehend the 
information flow in light of reduced noise and various investor kinds 
by using the CEEMDAN-based entropy technique. The closest 
study to ours is that of Asafo-Adjei et al. (2022) who investigated 
information transfer between commodities and uncertainties in the 
COVID-19. Outcome from this study was interesting to reveal the 
delayed volatility of market competitiveness and external shocks 
(DVMCES) hypothesis. However, analysis from this study was 
restricted to the COVID-19 pandemic and considered a cluster of 
intrinsic mode functions (IMFs) demonstrating high-, medium-, 
and low-frequencies. This was executed without considering the 
impulse responses of the distinct IMFs to facilitate the information 
flow. Additionally, the estimations were performed without 
incorporating the global implied volatility index from the energy 
sector. As far as the authors of the current study are aware, no 
other study has examined the information transfer between implied 
volatilities and energy commodity returns using the CEEMDAN-
based entropy technique while treating each IMFs as distinct; 
incorporating the implied volatilities from the energy sector, thus, 
the gap and contribution of our study.

The rest of the research is organized as follows. Data issues and 
methods are presented in Section 2. In Section 3, the study presents 
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the analysis of the empirical results, and in Section 4, we offer our 
conclusions and policy recommendations.

2. METHODOLOGY

2.1. Ceemdan
In contrast to wavelet analysis, empirical mode decomposition 
techniques have gotten a lot of attention from researchers because 
they use a purely data-driven algorithm to separate scales that 
aren’t defined by predefined basis functions. In spite of this, the 
EMD strategy resorts to the scale mixing issue. The ensemble 
empirical mode decomposition method (EEMD), created by Wu 
and Huang (2009), was used to address this issue by incorporating 
a randomly produced white-noise series into the original signal. 
To address the residual noise in the reconstructed signals inside 
the EEMD, Torres et al. (2011) developed the CEEMDAN by 
attaching the noise to the residual of the prior iteration rather than 
the original signal (Peng et al., 2021). In comparison to EMD, 
EEMD, and perhaps CEEMD, the CEEMDAN reduces the signal 
reconstruction error to zero, improves completeness, to mention 
a few (See, Asafo-Adjei et al., 2022).

The CEEMDAN decomposition was performed with the help of 
the libeemd R package (Helske and Luukko, 2018).

The algorithm’s application can be summarised as follows:

Begin the number of realizations N, noise parameters, index for 
IMF j =1

Perform the EMD for N realizations; Sm(t) = S(t) + δo 
Wn(t),i = 1,2,3,…,N, where n refers to the index for realizations; 
Wn(t) is the white noise series added to the candidate signal, and 
δo is the noise parameter for the first step.

The ensemble mean IMF are calculated as

  IMF t
N

IMF t
n

N

n1

1

1
( ) ( )�

�
�  (1)

The exclusive first residue can be determined as:

  r t s t IMF tn1 � � � � � � ( )  (2)

Evolve N number of realisations, then the operator Ej(.) produces 
Jth the mode obtained by EMD.
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The final step is to calculate the jth residue, where j=j+1:

  r t r t IMF tj j j� � � � � ��1 ( )  (5)

2.2. Rényi Effective Transfer Entropy (RETE)
The Shannon entropy (SE) (1948) is a foundation for the Rényi 
transfer entropy (RTE) (1970), which reveals uncertainty within 

a system (Behrendt et al., 2019). Several experiments (pj) are 
performed due to the investigation of a probability distribution. 
As provided by Hartley (1928), symbols have the following form 
if the average information is determined

  2
1

1 
=

 
=   

 
∑

n

j
jj

H P log
P  bits, (6)

where n is being represented as several symbols’ observations 
based on probabilities Pj.

The SE shows a discrete random variable (j). This variable has a 
probability distribution (P(j)). In this case, the average number 
of bits needed for encoding independent draws at the maximum, 
according to Behrendt et al. (2019) can be represented as

  H P j log P jJ
j

n

� �
�
�
1

2( ) ( )  (7)

Under the Markov framework, SE took insights from the Kullback-
Leibler distance (1951) concept to measure information flows 
amid two-time series. The study considers two discrete random 
variables, I and J (which are the equity indices), and corresponding 
marginal probabilities of P(i) and P(j). Simply, the joint probability 
of the discrete variables can be seen as P(i,j). It has a dynamic 
structure that resembles a stationary Markov process of order k 
(Process I) and I (process J). The Markov property implies that the 
probability of spotting I at time t+1 in state i dependent on the k prior 
observations is 1 1 1( , , )  ( , , )+ − + + −… = …t t t k t t t kp i i i p i i i . In encoding 
the observation in t+1, the mean number of bits needed given that 
the ex-ante k observations are obtained can be offered in the form

  h k P i i logP i ij
i

t t
k

t t
k� � � � � �� �

� �
�

� �
( , )1 1|  (8)

Where ( )
1( , , − += …k

t t t ki i i ) (for process J). Under the Kullback-
Leibler distance phenomenon in the context of two random 
variables, the flow of information from process J to process I 
is estimated through quantification of the deviation from the 
generalized Markov property ( )( ) ( ) ( )( )1 1|  | ,  + +=k k I

t t t t tP i i P i i j . 

Regarding what is presented earlier, the SE is then shown as
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Where TJ⟶I estimates information flows from J to I. Harmoniously, 
information flows TI⟶J, can be realised as from I to J. Quantifying 
the differential can disclose the prevailing direction of the 
information transmission between TJ⟶I and TJ⟶J.

Taking insights from the SE, the RTE can then be presented. 
An important quality of the RTE is the opportunity to model 
information flows regarding market conditions. This is conditioned 
on a weighting factor q, and can be computed as

  H
q
log P jJ

q

j

q�
� �1

1
( )  (10)
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With q>0. For q→1, RTE converges to SE. For 0<q<1, hence, 
extra weights are attributed to low probability events, while 
for q>1 the weights benefit outcomes j with a higher original 
probability. Consequently, based on factor q, RTE allows for 
revealing oscillating distribution sections (Behrendt et al., 2019; 
Adam, 2020).

Following Beck and Schögl (1995), the escort distribution 

� � � �
�q

q

j
q

j p j
p j
( )

( )
with q>0 to normalize the weighted 

distributions, is applied, to emphasise the resultant RTE as
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It is worthy of note that the computation of the RTE can divulge 
inverse outcomes. Based on this, having knowledge about the 
record of J presents remarkably more uncertainty than knowing 
the record of I only would present. This is ideal for diversification 
potentials. Since the transfer entropies could be biased 
(Marschinski and Kantz, 2002) in tiny samples, a rectification 
factor is necessary with the effective transfer entropy calculated as

 ETE k l T k l T k lJ I J I Jshuffled I� � �� � � � � � � �, , ,  (12)

Where TJshuffled⟶I (k,l) represents the transfer entropy using a shuffled 
version of the time series J; that is, through a random selection of 
observations from the actual time series J and adjusting them to 
produce a fresh time series, causing chaos for the dependencies 
in time series J, but not superintending the statistical reliance 
between J and I.

This charges TJshuffled⟶I (k,l) to be closer to zero with increases in 
the sample size. On the other hand, any nonzero value of TJshuffled⟶I 
(k,l) is tantamount to tiny sample impacts. Recurring shuffles and 
the total replications of the mean of the transfer entropy shuffled 
estimates act as the small sample bias estimator, which is expunged 
from the ETE(s) estimated, to yield a bias-adjusted ETE estimate. 
The information transmission has a null hypothesis devoid of 
information flows and is determined by recurrent RTE estimations.

2.3. Data Sources and Description
The study’s analyses take into account implied volatility in 
the energy markets as well as prices for seven different energy 
commodities. Data is available from May 7, 2012, through 
March 31, 2021. The data were combined to create this period so 
that the dates were consistent. The variables used for the energy 
commodity prices include Brent, Global Energy Commodity 
(GEnergy), Heating Oil (HOil), Natural Gas (Ngas), and Petroleum 
(Pet) futures markets. Due to their large market capitalization and 
important role in portfolio diversification with other financial 
assets, these commodities were chosen (Rehman and Vo, 2021; 
Dmytrów et al., 2021; Sinha et al., 2022).

The suggested volatilities were selected to demonstrate information 
flow with global shock transmitters. Particularly, the volatility in 
the energy markets (VEnergy) and the implied volatility of crude 
oil (OVX) were chosen as forward-looking proxies relevant to 
the energy markets but having a similar impact on other financial 
time series through contagion (Boateng et al., 2021; Dutta et al., 
2021; Amoako et al., 2022; Asafo-Adjei et al., 2022). The entire 
collection of financial time series was taken from investing.com.

3. EMPIRICAL RESULTS

3.1. Preliminary Statistics
Plots of the prices, returns, and implied volatility for energy 
commodities are shown in Figure 1. Similar trends in the prices 
and returns of all energy commodities indicate that they are all 
trending downwards. The graph demonstrates a sharp decline in 
prices during both the 2016 BREXIT and the 2020 COVID-19 
pandemic crises, with the COVID-19 crisis phase appearing to be 
more severe than the BREXIT era. We see incredibly high implied 
volatilities during the COVID-19 crisis phase. This suggests that 
in times of crisis, the implied energy volatilities are inversely 
correlated with the energy commodities, and as a result, they 
may provide safe-haven benefits for inverters. In the COVID-19 
crisis era, all data returns demonstrate volatility clustering with 
excessive shocks.

All returns on energy commodities are negative, indicating 
poor performance. The energy volatilities, however, have 
positive meanings. With the exception of natural gas, all energy 
commodities show negative skewness, which indicates a severe 
lack of performance. In contrast, energy implied volatilities 
show positive skewness with a high likelihood of success. 
Leptokurtic distributions are indicated by kurtosis values 
greater than three. The time series is not normally distributed, 
according to the Jarque-Bera (JB) Statistics. The unit root 
tests that were adopted demonstrate that all data returns are 
stationary (Table 1).

The majority of the energy commodities are substantially 
positively correlated with one another, as shown by the correlation 
matrix in Table 2, indicating a high likelihood of the integration 
of the energy markets. On the other hand, implied volatility in the 
energy sector is inversely connected with energy commodities. 
As a result, investors can diversify, hedge, or seek safe haven, 
depending on the state of the market. The degree of linear 
relationship is measured using correlation analysis, which does 
not imply causality.

3.2. Results
In this section, the main findings and their discussions are 
presented. Particularly, the Rényi transfer entropy was used for 
the analysis. The conclusions of the study on information transfers 
between energy commodities and implied energy volatilities are 
presented. Using the Rényi transfer entropy framework, both 
negative and positive values are produced (Owusu Junior et al., 
2021; Asafo-Adjei et al., 2021; Bossman, 2021; Asafo-Adjei 
et al., 2022; Bossman et al., 2022; Agyei et al., 2022; Bossman 
and Agyei, 2022; Bossman et al., 2022). The pairing enables 
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Table 1: Descriptive statistics
Mean Median Max Min Std. Dev. Skewness Kurtosis JB Prob. ADF KPSS

Energy commodities
BRENT –0.0004 0.0005 0.1352 –0.2338 0.0224 –0.6758 14.712 0.00 –31.01*** 0.1162
GENERGY –0.0005 0.0005 0.1373 –0.2564 0.0208 –0.9215 19.8913 0.00 –31.22*** 0.0827
HOIL –0.0004 0.0004 0.1026 –0.177 0.0198 –0.243 9.1655 0.00 –49.08*** 0.0873
NGAS –0.001 –0.001 0.1664 –0.192 0.0264 0.1174 6.9675 0.00 –48.83*** 0.1164
PETROLEUM –0.0005 0.0005 0.146044 –0.24785 0.022191 –0.766 16.57319 0.00 –31.26*** 0.0766

Energy volatilities
VENERGY 0.0002 –0.004 0.3808 –0.3103 0.0592 0.701 7.0651 0.00 –47.92*** 0.0334
OVX 0.0002 –0.0036 0.8577 –0.6222 0.0587 1.6427 33.61 0.00 –29.78*** 0.0231

Asterisks ***, **, * represent 1%, 5%, and 10% level of significance

Figure 1: Time series plots of prices and returns

us to assess if diversification benefits exist for that market with 
the recipients in the situation of heightened uncertainty from a 
specific asset (Asafo-Adjei et al., 2022; Bossman et al., 2022; 
Agyei et al., 2022; Bossman and Agyei, 2022). Critical values 
between 1% and 10% are represented by the black bars’ ends. 
In order to reject the null hypothesis of no information flow, the 
black bars must be in one of the positive or negative regions. 

In Figure 2, the information flow between energy commodities 
and implied volatility in the energy sector in the short- (IMFs 
1-4), medium- (IMFs 5-7), and long- (IMFs 8-10) terms, and 
residue (fundamental feature). Figures 2 and 3 respectively 
show information flow between volatilities in the energy market 
(VEnergy) and energy commodities returns, and information flow 
between OVX and energy commodities returns through the Rényi 
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Table 2: Unconditional correlation matrix
Probability BRENT GENERGY HOIL NGAS PETROLEUM VENERGY OVX
BRENT 1.00
GENERGY 0.98*** 1.00
HOIL 0.94*** 0.93*** 1.00
NGAS 0.12*** 0.23*** 0.14*** 1.00
PETROLEUM 0.99*** 0.99*** 0.94*** 0.13*** 1.00
VENERGY –0.41*** –0.39*** –0.37*** –0.03 –0.40*** 1.00
OVX –0.45*** –0.47*** –0.41*** –0.06*** –0.46*** 0.49*** 1.00
Asterisks ***, **, * represent 1%, 5%, and 10% level of significance

transfer entropy approach. Table 2 further shows the Rényi transfer 
entropy estimates.

From Figure 2, significant negative information is transmitted 
from the VEnergy to most of the energy commodity returns, 
except for Ngas in the short-term (IMF1). We find a bi-directional 
relationship between VEenergy and two energy commodities 
(GEnergy and Brent). At IMF2, negative significant information 

is only transmitted to GEnergy. As the investment horizon is 
prolonged (from IMF3-IMF5), the negative information flows 
become insignificant for all assets. Contrarily, bi-directional 
causality is pronounced from IMFs 7-9 representing upper medium 
and long-term dynamics of the market. A saturated market in the 
very long-term expressive of the residual of a deterministic trend 
demonstrates no information flow between VEnergy and energy 
commodities returns. Hence, information flow between VEnergy 

Figure 2: Multi-scale information flow between volatilities in the energy market and energy commodities returns
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and energy commodities are scale-dependent. Investors of energy 
commodities can hedge against excess fluctuations in the short-
term (IMF1), medium-, and long-terms (IMFS 7-9). Nonetheless, 
portfolio diversification would be worthwhile across investment 
horizons due to most insignificant information flow, but prone 
to being negative. The significant impact of VEnergy on energy 
commodities at certain frequencies and quantile confirm the studies 
of Amoako et al. (2022), Alssubaie et al. (2022).

On the other hand, significant information flow is noticeable with 
OVX as shown in Figure 3 at most intrinsic times. For instance, in the 
short-term (IMF1), except for Ngas, negative significant information 
is transmitted between OVX and the energy commodities returns. 
The dynamics of information flow continues for IMF2. For IMFs 
3-5, information flows are negative but insignificant. Increase in the 
investment horizon from IMFs 6-9 lends to a bidirectional causality 
of negative information flow between OVX and energy commodities 
returns. This confirms the findings of Asafo-Adjei, Frimpong et al. 
(2022) in the multi-frequency (high-, medium-, and low) assessment 

of information flow between uncertainties and commodities during 
the COVID-19 pandemic. Similar to the VEnergy, no significant 
information is found at IMF 10 and the fundamental feature as 
the investment horizon is prolonged. The unpredictable patterns 
of information flow in this way succumbs to the efficient market 
hypothesis of Fama (1970).

Notwithstanding, the presence of a simultaneous unpredictable 
information flow and the significant information flow at varying 
investment horizons confirm the heterogeneous market hypothesis 
(Müller et al., 1993). This provides that the relentlessness 
search for competing risks and rewards by investors induce 
competitiveness (Owusu Junior et al., 2021) among the selected 
energy commodities facilitated by the irrational behaviour of 
market participants in line with the behavioural market hypothesis. 
Accordingly, it is not absolutely appropriate to assume that 
information flow between energy commodities returns and implied 
volatilities within the energy market is negative and significant 
across investment horizons of a stressed market outcome.

Figure 3: Multi-scale information flow between OVX and energy commodities returns
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Thus, despite the fact that information flow or spillover effects 
between implied volatilities and other financial assets are prone 
to being negative, and quantile or scale dependent (Boateng 
et al., 2021; Pham and Do, 2022; Asafo-Adjei et al., 2022; Li, 
2022; Chen et al., 2022; Amoako et al., 2022), investors need 
to be informed on the specific period assets redeployment, 
rebalancing, reallocation, to mention a few, is appropriate to 
enhance diversification or safe haven benefits in a stressed market 
outcome. It can be concluded that integration among energy 
commodities should not be entirely ignored but considered in 
tandem with implied volatilities, especially during markets stress 
of information flow (Table 3).

4. CONCLUSIONS

In this study, we explored the multiple frequency information 
transfer between selected energy commodities and implied 
volatilities using CEEMDAN-based Rényi transfer entropy. The 
unique contribution of this study to literature is the investigation 
of information flow between energy commodities returns and 
implied volatilities at investment horizons detailing the degree 
of heterogeneity and competitiveness at stressed market outcome 
(quantile = 0.3). It further addressed the susceptibilities of energy 
commodities to shocks from two implied volatilities to identify 
the specific implied volatility that exhibits more significant 
information flow.

We found bi-directional negative information flow between 
implied volatilities and energy commodities, but scale-dependent. 
This was revealed at specific IMFs such as IMF1, and from IMFs 
6-9 suggesting short-, upper medium and long-term energy markets 
dynamics. Hence, information flow at investment horizons of 
energy commodities and implied volatilities are heterogeneous. 
Also, noticeable negative information flow was found with the 
crude oil implied volatility than the volatility in the energy sector 
suggesting the former’s strong hedging benefits.

We come to the conclusion that, especially when markets 
are under information flow stress, integration among energy 
commodities should not be completely disregarded and should 
instead be taken into account alongside implied volatilities. It is 
advised that a portfolio that includes energy commodities and 
crude oil implied volatility be taken into account in comparison 
to implied volatilities from the overall energy market. When 
developing strategies for the energy commodities markets, 
investors and policymakers alike need be knowledgeable about 
the dynamics of implied volatilities, particularly the implied 
volatility of crude oil.
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