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ABSTRACT 

El Paso Electric Company (EPEC) is the sole commercial electricity provider for two metropolitan economies in the southwestern desert region of 
the United States: El Paso, Texas and Las Cruces, New Mexico. A publicly traded corporation, EPEC employs a structural econometric system of 
equations model to forecast energy sales for various customer classes. Although the modeling system has provided reliable inputs to annual corporate 
planning efforts at EPEC, its historical track record has not previously been formally assessed for forecast accuracy. Both descriptive and inferential 
statistics are used to evaluate the EPEC model’s forecasting performance. Results indicate that accurate prediction of electricity usage in this service 
area is an elusive target. Those results are similar to what has been documented for other regional economic variables.

Keywords: Energy Forecasting, Statistical Tests, Forecast Accuracy Evaluation 
JEL Classifications: Q47 Energy Forecasting, M21 Business Economics, R15 Econometric and Other Models

1. INTRODUCTION

Electricity sales forecasts are typically utilized for planning 
of generation capacity as well as for revenue and expenditure 
planning at electric utility companies. It has long been recognized 
that sales volumes are affected by numerous factors such as 
income growth, prices, and weather (Taylor, 1975; Lee and Chiu, 
2011). For border economies, currency market fluctuations plus 
international, regional, and local business cycles also influence 
the demand for electricity (Fullerton, 1998). The service territory 
of El Paso Electric Company (EPEC), the Rio Grande Valley of 
far west Texas and southern New Mexico, is affected by all of 
these factors. Weather often affects energy sales in this region 
during summer months when maximum daily temperatures can 
exceed 100°F (37.8°C) for multiple consecutive days throughout 
the EPEC service area.

Similar to many public utilities, EPEC has long utilized econometric 
models to forecast its customer base and energy sales. Those 
forecasts are employed in annual corporate budgeting exercises 
as well as medium- and long-term generation, transmission, and 
distribution network capacity planning efforts. Separate models 

and forecasts are developed for each of the metropolitan economies 
in the EPEC service area: El Paso, Texas and Las Cruces, New 
Mexico. Although econometric forecasts have been prepared 
by corporate economists at EPEC for more than 35 consecutive 
years, the historical track record of this ongoing enterprise has 
not previously been formally assessed. EPEC and other electric 
utilities are not unique in this regard and a similar paucity of 
empirical evidence also exists for natural gas companies and 
municipal water utilities (one recent attempt to address this issue 
for water is Fullerton and Molina, 2010).

This paper attempts to partially fill this gap in the applied economics 
literature by analyzing the predictive accuracy associated with the 
annual econometric forecasts developed by the corporate planning 
department at EPEC. EPEC is an investor-owned private utility 
whose service area covers parts of Texas and New Mexico with 
a long history of econometric forecasting analysis. Because of 
its multi-state service area, the data set analyzed is a fairly broad 
one. It includes residential, small commercial and industrial, 
large commercial and industrial, and non-profit categories. That 
results in eight different sets of megawatt hour (MWH) electricity 
usage forecasts, one for each customer category in each of the two 
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states. These forecasts can then be combined to estimate aggregate 
regional electricity demand. The sample is also interesting because 
it encompasses both a large metropolitan economy (El Paso, Texas) 
and a small metropolitan economy (Las Cruces, New Mexico). 
The latter is potentially useful because prior studies have shown 
that regional differences in electricity consumption patterns within 
countries and among sectors may be substantial (Chern and Just, 
1980; Badri, 1992; Winebrake and Sakva, 2006; Contreras et al., 
2009).

Subsequent sections of the study are organized as follows: The 
next section provides an overview of prior electricity demand and 
regional econometric studies. Data and methodology are discussed 
next. Empirical results are summarized in the fourth section. 
Concluding observations and suggestions for future research make 
up the final part of the paper.

2. LITERATURE REVIEW

Research on the demand for electricity occurs in a wide variety 
of contexts. Businesses rely on the accuracy of these models to 
help improve planning efforts while public institutions use both 
estimation and simulation results from these models to help design 
more effective policies (Brown and Koomey, 2003). Many research 
efforts support generation, transmission, and distribution grid 
investment decisions and management efforts (Fatai et al., 2003; 
Mohamed and Bodger, 2005; Bogetic and Fedderke, 2006). Much 
of this research has been conducted using national data aggregates 
(Contreras et al., 2009; Athukorala and Wilson, 2010), but a fair 
amount has also been directed toward regional and metropolitan 
electricity markets, as well (Roth, 1981; Fullerton et al., 2012).

Favorable forecasting results have been documented for many of 
the regional models (Leung and Miklius, 1994; Arsenault et al., 
1995; Sharma and Nair, 2002). Econometric evidence generally 
supports breaking down total electricity demand into residential, 
commercial, industrial, and non-profit or similar categories 
(Winebrake and Sakva, 2006). As noted above, explanatory 
regressor variables frequently include population, personal 
income, average price of electricity, average price of natural 
gas as a substitute good, climate variables, and other economic 
indicators. Predictive accuracy is influenced by a wide variety of 
factors that include technological change as well as reverberative 
simulation errors associated with regressor series forecasts (Smil, 
2000; Craig et al., 2002; Linderoth, 2002; O’Neill and Desaib, 
2005). Industrial electricity use may generally be more difficult 
to predict than either residential or commercial demand (Thoma, 
2004; Dilaver and Hunt, 2011).

EPEC has a fairly long history of short-, medium-, and long-
range econometric forecasting analysis in support of its corporate 
planning efforts. Those exercises involve developing load forecasts 
for one large metropolitan economy (El Paso, Texas) and one 
small metropolitan economy (Las Cruces, New Mexico). To date, 
the historical accuracy of those projections has not been formally 
assessed. Because both urban economies are characterized by 
relatively high unemployment rates and fairly substantial historical 
population estimate revisions, accurate econometric forecasts 

for this region may be difficult to obtain (Charney and Taylor, 
1984; West, 2003; Fullerton and Molina, 2010). The track record 
of EPEC as a privately owned electric utility is also of interest 
because most of the prior electricity forecast records analyzed 
have been for either academic research centers or public sector 
agencies. It is also of interest because data sets of this nature are 
very difficult to assemble (Lady, 2010). Although some internal 
company documentation may exist, corporate sector econometric 
predictive accuracy for electricity demand remains largely 
uncharted. This paper attempts to at least partially fill that gap in 
the energy economics literature.

3. DATA AND METHODOLOGY

This study analyzes the accuracy of load forecasts produced for the 
1999-2010 period using the El Paso Electric econometric modeling 
system. Each year during the sample period a complete set of 
10 years forecasts is produced by EPEC for short- and medium-
range planning purposes. To provide sufficient observations for 
statistical analysis of the data, the sets of forecasts produced each 
year are pooled together, resulting in a sample of 78 previously 
utilized structural econometric forecast observations for each 
variable included in the empirical accuracy analysis. The EPEC 
service area is a challenging one to model and analyze. A key feature 
of the region is that it is geographically adjacent to an international 
border and measurably influenced by economic conditions in 
Mexico (Fullerton, 2001; Fullerton and Novela, 2010).

Table 1 lists the variables for which the forecast accuracy 
assessments are carried out. In all, there are nine variables included 
in the sample. Four of the variables are for the El Paso portion 
of the EPEC service area, four are for the Las Cruces portion of 
the service area, and one is for both areas combined. For each 
geographic segment, the usage data are measured in MWH 
for each of four customer categories. From a utility planning 
perspective, separate examination of the out-of-sample simulation 
performances of the MWH usage projections are generally utilized 
for short- and medium-range budget and operational management 
exercises. Medium- and long-term transmission and generation 
capacity planning efforts also rely upon usage forecasts. As has 

Table 1: Variable names and units of measure
Variable Definition and unit of measure
ERMWH El Paso residential electricity usage in megawatt hours
ESMWH El Paso small commercial and industrial electricity 

usage in megawatt hours
ELMWH El Paso large commercial and industrial electricity 

usage in megawatt hours
EGMWH El Paso government and non-profit electricity usage in 

megawatt hours
LRMWH Las Cruces residential electricity usage in megawatt hours
LSMWH Las Cruces small commercial and industrial electricity 

usage in megawatt hours
LLMWH Las Cruces large commercial and industrial electricity 

usage in megawatt hours
LGMWH Las Cruces government and non-profit electricity 

usage in megawatt hours
TMWH Total combined EPEC electricity usage in megawatt hours
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been documented for other public utilities, the relative predictive 
accuracies of each modeling category may vary (Fullerton and 
Molina, 2010).

Table 2 summarizes the historical values for each of the variables 
in the sample. Period coverage is from 1980 through 2010. Good 
variability is observed among the different variables comprising 
the sample. The greatest annual average MWH consumption 
category in El Paso is small commercial and industrial. The fastest 
growing MWH categories in that urban economy are residential 
consumption and government and non-profit consumption. In Las 
Cruces, the largest annual average MWH consumption category 
is residential. It is also the most rapidly growing consumption 
category in that metropolitan economy.

The accuracy performances of the nine different sets of MWH 
econometric forecasts recorded by El Paso electric are assessed 
relative to random walk (RW) and RW with drift forecasts for 
each variable in the sample. RW forecasts have frequently been 
shown to provide stiff competition for structural econometric 
model projections of regional variables. The latter circumstance 
has also been documented for the Borderplex region that comprises 
the EPEC service area (Fullerton and Molina, 2010; Fullerton 
and Novela, 2010). Given the high rates of joblessness in El Paso 
and Las Cruces, plus the degree to which preliminary population 
data are revised, it is very possible that the RW forecasts may 
outperform the annual econometric forecasts generated by the 
utility (Charney and Taylor, 1984; West, 2003).

The descriptive metrics utilized to assess the accuracy of the 
EPEC econometric forecasts relative to the RW benchmarks are 
root mean square error (RMSE) statistics and Theil inequality 
coefficients. RMSE provides a measure of the deviation of 
forecasted values from the actual values for a particular variable 
(Pindyck and Rubinfeld, 1998). RMSE can be hard to interpret 
because it is unbounded from above. Given that, the Theil 
inequality coefficient and its 3 s moment proportions are also 
employed due to ease of interpretation (Stekler, 1968). Based on 
RMSE calculations, the Theil inequality coefficient ranges in value 
from 0 to 1. Zero indicates absolute forecast accuracy (Leuthold, 
1975). The calculation of RMSEs is shown in Equation (1). In 
equation (1), Y

n

s represents the out-of-sample forecast value of a 
variable Y in period n and Yn

a represents its actual value. N is the 
number of forecast observations in the sample. For purposes of 
this study, Y is MWH consumption for a given rate class.

RMSE N Y Y= −∑1
2
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n
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Theil inequality coefficients are also known as U-statistics. The 
manner in which they are calculated forces them to range from 0 
to 1. The closer U is to zero, the better the predictive accuracy of 
the model, while the closer it is to one, the worse its predictive 
performance (Leuthold, 1975). Equation (2) shows how to 
calculate a U-statistic.
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Theil U statistic second moments can be decomposed into 
three separate proportions of inequality: UM, US, and UC. They, 
respectively, represent bias, variance, and covariance proportions. 
As indicated in Equation (3), the inequality coefficient proportions 
sum to one.

UM + US + UC = 1 (3)

The bias proportion, UM, measures systematic error based on the 
difference between the average forecast values from the model and 
the actual values for the dependent variable. The optimal value of 
UM is zero, in which case no bias is present in the out-of-sample 
simulations for the variable of interest. Equation (4) summarizes 
the formula for the bias proportion of the U-statistic.
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The variance proportion, US, shown in Equation (5) measures 
the ability of the projections to mimic the variability of the actual 
values. The standard deviations of Yn

s  and Yn
a are represented by 

σs and σa respectively. The optimal value of US is zero, in which 
case the fluctuations of the simulated values are identical to 
those of the actual value. The covariance proportion, UC, shown 
in Equation (6), measures unsystematic forecast errors. The 
correlation coefficient between Y

n

s  and Y
n

a

is represented by ρ. 
UC is rarely expected to be zero since out-of-sample simulations 
will probably never be perfect. Given that, the optimal value for 
UC is one so that UM and US can equal zero. Thus, the preferred 

Table 2: Historical usage data descriptive statisticsa

Series Mean SDb Maximum Minimum CVc CAGRd

ERMWH 1,179,799 775,688 1,853,887 752,005 0.657 0.0293
ESMWH 1,367,694 690,513 1,795,593 819,059 0.505 0.0256
ELMWH 919,334 295,142 1,267,038 604,047 0.321 0.0171
EGMWH 715,921 468,819 1,119,842 456,246 0.655 0.0293
LRMWH 385,098 310,968 654,947 214,482 0.808 0.0366
LSMWH 328,998 236,068 499,944 166,094 0.718 0.0362
LLMWH 52,674 34,042 108,685 16,043 0.646 0.0431
LGMWH 348,327 140,406 427,755 223,983 0.403 0.0207
TMWH 5,297,845 2,951,647 7,434,173 3,259,915 0.557 0.0269
aAnnual frequency historical data for 1980-2010 yield 31 observations per variable, bSD is the standard deviation of the variable, cCV is the coefficient of variation calculated as the ratio 
of the standard deviation to the mean, dCAGR is the 1980-2010 compound annual growth rate of the variable



International Journal of Energy Economics and Policy | Vol 5 • Issue 3 • 2015 741

Fullerton, et al.: Metropolitan Econometric Electric Utility Forecast Accuracy

values of the proportions are: UM = US = 0 and UC = 1 (Pindyck 
and Rubinfeld, 1998).
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Theil inequality statistics are useful, but are descriptive, only. 
In general, error structures associated with forecasting make 
statistical inference difficult, so descriptive measures are 
frequently utilized. When degree of freedom constraints are not 
binding, some formal tests can be employed (Ashley et al., 1980; 
Diebold and Mariano, 1995). The error differential regression 
is designed to test a null hypothesis of MSE equality between 
competing sets of forecasts (Ashley et al., 1980). This test helps 
further assess the accuracy performance of the structural forecasts 
relative to the RW benchmark. The null hypothesis tested is shown 
in Equation (7).

H0: MSE (e1) = MSE (e2),  (7)

Where MSE refers to the respective mean-squared error of two 
competing forecast errors, e1, e2. In this regard, MSE (e1) represents 
the MSE for a random-walk benchmark and MSE(e2) represents 
the MSE for the EPEC electricity usage and customer forecasts.

By defining,

Δt = e1t – e2t and ∑t = e1t + e2t, (8)

Equation (7) can be re-expressed in the following manner,

MSE(e1)–MSE(e2) = [cov (Δ,∑)] + [m(e1)
 2 − m(e2)

 2],  (9)

where cov denotes sample covariance for the simulation period and 
m denotes sample mean. Forecasts from the EPEC econometric 
model will be judged as superior if the joint null hypothesis 
that μ(Δ) = 0 and cov (Δ,∑) = 0 can be rejected in favor of the 
alternative hypotheses discussed below.

Two regression equations can be extracted from (7) to test if the 
MSEs differ significantly in value. The structure of the regression 
equation used to test the null hypothesis depends on the signs 
of the error means. When the error means have the same sign, 
the following regression equation is used to test the joint null 
hypothesis:

Δt = β1 + β2[∑t–m(∑t)] + ut, (10)

Where ut is a randomly distributed error term. The test for μ(Δ) = 
0 depends on the interpretation of β1, while the test for cov (Δ,∑) = 
0 is determined by the interpretation of β2.

A positive value for β2 will always indicate that the variance 
of the RW forecast errors (e1) is larger than the variance of the 

EPEC structural equation model forecast errors (e2). Given 
that, a significantly positive β2 will indicate EPEC structural 
equation model superiority. The interpretation of β1 will depend 
on the signs of the error means. When both error means are 
positive, EPEC econometric forecast superiority results when 
the joint null hypothesis that β1 = β2 = 0 is rejected in favor of the 
alternative hypothesis that both are non-negative and at least one 
is positive. If either β1 or β2 are significantly negative, the EPEC 
econometric forecast cannot be considered more accurate than its 
RW benchmark. If one of the estimates is insignificantly negative 
and the other is positive, a one tailed t-test can be performed to 
test for significance. Lastly, if both estimates are positive, an 
F-test can be used to test if they are jointly different from zero. 
However, because the F-test does not take sign into account on 
4-pronged test results, the true significance that both estimates are 
positive will not be more than half the probability obtained from 
the F distribution (Ashley et al., 1980).

When both error means are negative, (10) is still used to test (7) 
but the interpretation of β1 changes. In this case, if β1 is found to be 
significantly negative, and β2 is either insignificant or significantly 
positive, the EPEC structural equation forecasts are most accurate. 
Conversely, a significantly positive β1 will indicate RW superiority.

If the error means of the forecasts have opposite signs, a different 
regression equation must be employed to test (7). For such a case, 
the dependent variable becomes the sum of the forecast errors and 
the regression equation is:

∑t = β1 + β2[Δt–m(Δt)] + ut (11)

Once again, if β1 = β2 = 0, the test fails to reject (7). As before, 
interpretation of the β2 coefficient is the same, but interpretation 
of the β1 depends on which of the error means is positive and 
which is negative. One possibility is that the RW counterpart has 
a negative error mean and the EPEC forecast has a positive error 
mean. In this case, β1 significantly negative, with β2 insignificant or 
significantly positive, points to superior EPEC structural equation 
model forecast accuracy. Further, if β1 is insignificant while β2 is 
significantly positive, the EPEC structural model is still deemed 
superior. Lastly, if β1 is significantly positive, or β2 is significantly 
negative, the RW forecasts are most accurate. The final case is 
when the RW extrapolation has a positive error mean and the EPEC 
forecast has a negative error mean. Under these circumstances, a 
significantly positive β1 with a significantly positive or insignificant 
β2 points to EPEC accuracy. Alternatively, if either of the equation 
parameters is significantly negative, the RW predictions are 
favored (Ashley et al., 1980; Kolb and Stekler, 1993).

Tables 3 and 4 can be used to determine which, if either, of two 
sets of forecasts is more accurate based on error differential 
regression results. To make a determination, it is necessary to 
know the algebraic sign of the mean of the RW forecast errors. 
If the mean is positive, then Table 3 should be used; if it is 
negative then Table 4 is applicable. The block of cells on the 
lower right-hand side of the Table 4 indicates which forecasting 
model dominates given the signs and statistical significance of 
both estimated parameters.
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4. EMPIRICAL RESULTS

As shown in Table 5, only one of the eight customer category 
econometric forecasts is judged as superior using the descriptive 
statistics described above. In four cases, the RW with drift 
forecasts is most accurate. In the remaining three categories, 
the RW extrapolations have the lowest RMSE and U-statistics. 
However, when electricity consumption is aggregated across 
customer categories and states, the EPEC forecasts outperform 
the RW benchmarks. The relative accuracy of the aggregate, 
region-wide econometric forecasts of electricity demand likely 
constitutes an important consideration for EPEC corporate 
planners in assessing the overall performance of the forecasting 
model. While electricity demand must be disaggregated into 
jurisdictional components for reasons related to regulatory 
oversight, EPEC administrators also evaluate system-wide 
demand when making decisions about expanding generation 
capacity and purchasing inputs.

In all nine cases, the U-statistics for the EPEC econometric 
forecasts are fairly low, <0.3. Bias is not found to be a problem, 
with UM statistics >0.5 occurring in only three instances. Beyond 
that, the EPEC forecasts do a very good job of replicating cyclical 
upswings and downswings in electricity usage in both metropolitan 
economies, never exceeding 0.3 for any of the variables in the 
sample. The majority of the EPEC structural econometric forecast 
errors are, thus, attributable to unpredictable sources of variation in 
the two service areas. The relatively good performance of the RW 
benchmarks is similar to what has been previously documented 
for other regional econometric forecasts (Fullerton et al., 2001; 
Fullerton and Molina, 2010; Fullerton and Novela, 2010). The 
lesson for EPEC economists, and analysts at other utilities, is 
that recent trends are important to monitor both quantitatively 
and qualitatively. Reliance on RW forecasting is probably not a 
viable strategy because scenario analyses are not really feasible 
and no single RW procedure is dominant.

RMSE and U-statistics are also calculated for a reduced sample of 
forecasts that includes only periods of pronounced business cycle 
fluctuations marked by distinct turning points in United States 
economic activity. During the sample period, macroeconomic 
activity peaked twice, first in March 2001 and again in December 
2007. Troughs occurred in November 2001 and June 2009. 
Because some of these turning points occurred during the first or 
last quarter of a particular year, the reduced sample includes the 

Table 3: Decision rules when the RW error mean is positive
m (e1)>0 β1>0 β1<0

β1 significant β1 insignificant β1 significant β1 insignificant
β2>0

β2 significant EPEC EPEC Indeterminate EPEC
β2 insignificant EPEC Indeterminate RW Indeterminate

β2<0
β2 significant Indeterminate RW RW RW
β2 insignificant EPEC Indeterminate RW Indeterminate

EPEC: El Paso Electric Company, RW: Random walk

Table 4: Decision rules when the RW error mean is negative
m (e1)<0 β1>0 β1<0

β1 significant β1 insignificant β1 significant β1 insignificant
β2>0

β2 significant Indeterminate EPEC EPEC EPEC
β2 insignificant RW Indeterminate EPEC Indeterminate

β2<0
β2 significant RW RW Indeterminate RW
β2 insignificant RW Indeterminate EPEC Indeterminate

EPEC: El Paso Electric Company, RW: Random walk

Table 5: Theil inequality coefficient accuracy comparisonsa

Variable Model RMSE U UM US UC

ERMWH EPEC 108,789 0.035 0.504 0.049 0.447
RW 282,922 0.095 0.698 0.006 0.296
RW drift 59,801 0.019 0.159 0.091 0.750

ESMWH EPEC 130,566 0.037 0.574 0.212 0.215
RW 113,355 0.034 0.672 0.004 0.324
RW drift 139,865 0.040 0.463 0.296 0.241

ELMWH EPEC 109,909 0.051 0.281 0.022 0.697
RW 103,145 0.047 0.402 0.018 0.580
RW drift 197,615 0.087 0.687 0.031 0.282

EGMWH EPEC 71,717 0.037 0.000 0.053 0.947
RW 162,630 0.090 0.660 0.065 0.275
RW drift 64,555 0.034 0.125 0.113 0.762

LRMWH EPEC 45,988 0.042 0.544 0.002 0.455
RW 116,743 0.112 0.711 0.003 0.286
RW drift 40,775 0.035 0.896 0.010 0.094

LSMWH EPEC 23,316 0.025 0.105 0.300 0.596
RW 65,087 0.074 0.696 0.013 0.290
RW drift 39,950 0.042 0.116 0.386 0.498

LLMWH EPEC 40,775 0.222 0.008 0.218 0.774
RW 36,931 0.209 0.188 0.082 0.731
RW drift 37,414 0.219 0.024 0.138 0.838

LGMWH EPEC 25,872 0.031 0.145 0.192 0.664
RW 37,542 0.048 0.653 0.001 0.347
RW drift 18,119 0.022 0.060 0.116 0.824

TMWH EPEC 211,220 0.015 0.084 0.167 0.749
RW 710,680 0.054 0.701 0.002 0.297
RW Drift 332,497 0.024 0.626 0.097 0.277

aBoldface type indicates best predictive accuracy, EPEC: El Paso Electric Company, 
RW: Random walk



International Journal of Energy Economics and Policy | Vol 5 • Issue 3 • 2015 743

Fullerton, et al.: Metropolitan Econometric Electric Utility Forecast Accuracy

usage customer class projections. While that raises a cautionary 
flag for utilities employing econometric models for planning 
purposes, the error differential regression outcomes also 
document overall statistical superiority by the EPEC structural 
forecasts relative to both benchmarks. While any given rate class 
may be difficult to model and simulate the aggregate econometric 
track record at EPEC compares favorably to those of the selected 
benchmarks.

Results for the EPEC econometric forecasts among customer 
classes for El Paso and Las Cruces indicate that this utility faces 
many of the same regional and sectoral forecast difficulties 
that confront analysts shouldering similar planning challenges. 
Although there are some areas in regional forecasting in which 
econometric models do comparatively well (employment and 
income), metropolitan electricity projections seem to be an area 
in which relative accuracy for individual customer categories is 
somewhat elusive. In the case of EPEC, however, total MWH 
sales forecasts have been anticipated with a fair amount of relative 
accuracy. Whether the results reported above are representative 
of other electric utilities is not known at this juncture, but this 
is a question that probably merits more scrutiny. Long standing 
regulatory and utility planning requirements effectively mean that 
econometric and other statistical means of forecasting electricity 
usage will be employed for many years (Gloze, 1973). Additional 
assessment of the historical track records for these efforts, 
including those for utilities whose services areas are not located 
along international borders, would be useful.

5. CONCLUSION

Electricity sales forecasts are commonly utilized for generation 
planning and budget year planning activities. While many utility 
companies have formal forecasting programs that date back several 
years or more, very few of these efforts have been assessed for 
historical accuracy relative to competitive benchmarks. This study 

Table 6: MSE differential regression results: Structural econometric versus RW forecastsa,b,c,d

Variable (t-statistic) F-statistic Most accurate
β1 β2 (P)

ERMWH −159,138.5 0.367 144.995 EPEC
(Both error means negative) (−23.370) (12.041) (0.000)
ESMWH 5,945.2 −0.176 8.099 RW
(EPEC error mean positive; RW error mean negative) (0.729) (−2.846) (0.006)
ELMWH 7,108.2 −0.109 2.249 Indeterminate
(Both error means positive) (0.670) (−1.500) (0.138)
EGMWH −130,740.7 0.478 7.605 EPEC
(EPEC error mean positive; RW error mean negative) (−8.410) (2.758) (0.007)
LRMWH −64,569.4 0.365 140.534 EPEC
(Both error means negative) (−23.260) (11.855) (0.000)
LSMWH −46,774.7 0.462 19.405 EPEC
(EPEC error mean positive; RW error mean negative) (−10.725) (4.405) (0.000)
LLMWH −12,390.3 −0.104 17.635 Indeterminate
(Both error means negative) (−6.939) (4.199) (0.000)
LGMWH −20,499.4 −0.139 0.582 EPEC
(EPEC error mean positive; RW error mean negative) (−4.599) (−0.763) (0.448)
TMWH −533,917.8 0.769 41.264 EPEC
(EPEC error mean positive; RW error mean negative) (−11.791) (6.424) (0.000)
aOrdinary least squares is utilized for parameter estimation, bThe sample includes 78 observations, cDependent variable is Δt=e1t–e2t when the signs of the forecast error means are the 
same, dDependent variable is∑t=e1t+e2t when the signs of the forecast error means are opposite, EPEC: El Paso Electric Company, RW: Random walk

contiguous years of 2000, 2002, and 2008 in addition to those years 
that include at least one peak or trough. The results are largely 
similar to those reported in Table 5. The only noteworthy difference 
is that the EPEC forecasts become slightly more accurate than 
the RW alternatives in the case of El Paso area electricity sales to 
governmental and non-profit entities.

Of course, the accuracy results in Table 5 are descriptive. 
Estimation results for the error differential regression analyses 
for the RW (without drift) comparative forecasts are summarized 
in Table 6. A 5% significance criterion is used to classify the 
regression results as favoring either the RW or the EPEC forecasts. 
The statistical test results favor the EPEC forecasts in six of the 
nine categories for which the MWH projections are analyzed. In 
two categories the analysis yields indeterminate results and in 
only one is the RW judged to be more accurate by a statistically 
significant margin. For total MWH forecast accuracy, the EPEC 
econometric forecasts are also found to be most accurate by a 
statistically significant margin.

The estimation results for the error differential regression 
equations using RW with drift benchmarks are shown in Table 7. 
In four of the categories, the RW with drift prediction errors is 
found to be smaller than those of the EPEC econometric forecasts. 
In the remaining five categories, the EPEC econometric forecasts 
exhibit statistically superior track records over the course of the 
sample period. The latter include total MWH sales forecasts for 
the EPEC system as a whole.

Taken together, the results in Tables 6 and 7 indicate that there are 
only two individual categories, Las Cruces small commercial and 
industrial demand and total aggregate electricity consumption, 
for which EPEC forecast accuracy is statistically superior to that 
of both RW benchmarks. This is not an uncommon outcome for 
other types of regional econometric forecasts, but is one of the 
first times it has been documented for metropolitan electricity 
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attempts to partially fill that gap in the energy economics literature 
by taking advantage of well-documented forecast records across 
multiple customer categories in two service areas where EPEC 
operates.

The service areas are the metropolitan economies of El Paso, 
Texas and Las Cruces, New Mexico. The customer classes for 
which historical forecast data are assembled are residential, small 
commercial and industrial, large commercial and industrial, and 
government and non-profit. Benchmarks utilized are RWs and 
RWs with drift. The latter are selected because they have generally 
been found to provide exacting competition to regional forecasts 
and are not difficult to generate.

Two methods are employed to assess the El Paso Electric track 
record. One is descriptive and the other has formal hypothesis tests 
associated with it. In both cases, RW benchmarks are found to be 
more accurate than structural econometric forecasts for many of 
the customer categories in El Paso and Las Cruces. The strong 
performance of RW forecasts suggests the importance of closely 
monitoring recent trends when developing corporate outlooks. 
From an overall system planning perspective, it is also important 
to note that the EPEC structural econometric projections are found 
to be more accurate than those of the benchmarks for aggregate 
electricity demand in the entire service region.

Given the accuracy patterns documented for other categories of 
regional economic forecasts, the results obtained in this effort are 
in agreement with what is indicated by prior research. There have 
been, to date, however, relatively few accuracy assessments such 
as this one conducted for specific electric utilities. It is not known, 
therefore, whether the results discussed above are representative 
of the industry at large. Additional research regarding historical 
forecasting efforts at other electric companies will prove helpful 
in examining this topic.
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