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ABSTRACT

The apparent randomness of financial market led some economists to approach chaos theory as a theoretical framework able to explain those 
fluctuations. This interest is because some nonlinear deterministic systems with few degrees of freedom create signals that mimic stochastic signals 
from the point of view of traditional time series analysis but with a deepener analysis performed by adequate tools could be chaotic. The aim of this 
paper is explorative in its nature, pointing to investigate chaos literature in order to grasp the difficulties typical of these applied researches and to see 
if something new is happening.
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1. INTRODUCTION

For a long time, the efficient market hypothesis (EMH) has 
been the dominant theory used to explain the mechanism of 
stocks’ prices formation. In this framework, the assumption 
of perfect rationality of investors with an unbiased behaviour, 
able to manage full and instantaneously any new information 
implies that the prices level is determined by all the information 
available to economic agents and any change is a consequence 
of new information entering in the market. Since the arrival of 
new information is random, as consequence any price change 
will be random (Pasca, 2015). Therefore, the logic of the random 
walk is that if the flow of information is immediately reflected 
in stock prices, then tomorrow’s price change will reflect only 
tomorrow’s news and will be independent of the price changes 
today. Consequently, stock returns are considered Independent 
and Identically Distributed (IID) random variables that move as 
a random walk (Aparicio et al., 1999; Gilmore, 1993; Kyrtsou 
et al., 2004; Muckley, 2004; Sewell et al., 1996; Varson and Doran 
1995). Nevertheless, the restricted assumptions and the presence 
of irregularities in financial time series have led to criticise the 

validity of EMH theory. The main argument against was that a 
martingale model cannot explain anomalies of financial market 
such as high volatility, abnormal returns or the bubbles formation. 
Therefore, the statistical analysis of financial time series began 
to dismiss this model as a good solution for describing the price 
formation mechanism. In particular, many empirical studies 
showed that stochastic processes do not always describe the 
dynamics of financial series, so that price changes are not always 
random (Pasca, 2015). From this critique many other approaches 
have been developed.

Starting from Fama (1965) many authors confirmed empirically 
the existence of fat tails in the distribution of financial return 
series. Since then a multitude of models explaining the dynamics 
of financial returns emerged, primarily based on the assumption 
that the distribution of price returns follows a power law.

Some others, instead, showed that prices changes can be modelled 
by α-stable Levi processes or Pareto stable processes (Mandelbrot, 
1963), often associated with fractals and fractal Brownian 
motion. Mandelbrot (1967) showed that irregular financial time 
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series are scale invariant, mimicking a fractal behaviour. From 
this pioneering work, Peter (1994) proposed the fractal markets 
hypothesis as alternative to the EMH, highlighting that the 
liquidity1 not the efficiency is the main driving force of market 
equilibrium.

The fractal market hypothesis (FMH) is based on the laws of non-
linearity, chaos and complexity theories. If financial market is in 
the calm periods, both the fractal market hypothesis and efficient 
market hypothesis produce similar results. The difference among 
them are evident when the market becomes more turbulent. In 
this case, as the equilibrium upon which the Efficient Market 
Hypothesis is grounded, is vanishing, the fluctuations and 
movements of the market become non-continuous and this 
turbulence it could be quoted as chaotic. Therefore, if the efficient 
market hypothesis regards those behaviours as outliers, the fractal 
market hypothesis is able to describe them and, more in general, 
to take into account a vast variety of irregular and unexpected 
behaviours. In such a scenario, the utility of deterministic models 
in to determine the dynamics of financial price series comes under 
question, as the dynamics of financial time series resembles a 
stochastic process characterized by the seeming unpredictability 
of future trends.

This apparent randomness led some economists to approach the 
chaos theory as a theoretical framework able to explain financial 
market fluctuations. Much of this interest was inspired by the 
fact that some nonlinear deterministic systems with few degrees 
of freedom create signals that mimic stochastic signals from 
the point of view of traditional time series analysis, but with a 
deepener analysis performed by adequate tools could be chaotic 
(Klioutchnikova et al., 2017). In this view those sequences 
apparently random can be not random because they may rise 
from deterministic nonlinear dynamical systems and, thus chaotic.

Traditional economics literature tends to consider each market as 
converging towards a stable equilibrium, constantly perturbed by 
external shocks that trigger its dynamic behaviour and fluctuations. 
In chaotic models, nonlinear dynamics are internally generated 
and are not dependent upon exogenous shocks. Markets are 
significantly influenced by human behaviour and, therefore, they 
are considered complex and their dynamic, characterized by the 
large number of economic, financial, political and psychological 
variables that may fluctuate over time. It follows that stochastic 
models are unable to manage the massive amount of information 
needed for an accurate forecasting and an effective representation 
of the relationship existing between variables. In many cases, the 
selection of key variables is based just on the correlation with 
each other, on the relevance and degree of variance as well as on 
the neglecting of the time-relation of variables’ cause and effect 
behaviour. This is a critical issue for the assessment of dynamic 
systems, especially when the analysis is also, focused on human 
behaviours, where learning and cognition capacities evolve 
through time.

1 This aspect is very important considering that the most dramatic crashes are 
caused by the lack of liquidity that constrains investors to accept any price 
whether it is fair or not.

After a brief review of chaos literature and its tools, this paper aims 
at pointing out the critical issues that affect the research on the 
topic, underlining that unfortunately, since when the first studies 
on financial time series were conducted, nothing new is happened 
and no new tools have been developed.

2. FINANCIAL DATA ANALYSIS: AN 
OVERVIEW

The approaches used to address the analysis of time series can 
be classified into two main categories: Linear and nonlinear. 
Moreover, to explain randomness observed in real-life data, 
economists have included stochastic considerations in their 
speculations.

Linear stochastic models, in particular the class of ARMA models, 
have been considered a practical tool for financial analysis and 
forecasting but they suffer from a number of serious shortcomings 
for studying financial fluctuations (Potter, 1995). They let just 
to generate realizations with symmetrical cyclical fluctuations, 
being not able to accommodate large shocks, shifting trends, 
and structural changes. Moreover, exogenous disturbances were 
superimposed upon usual linear deterministic models to mimic 
the financial time series, leaving, often, significant features 
unexamined and unexploited. Therefore, alternative answers have 
been searched in the nonlinear approach. The ARCH processes 
proposed by Engle (1982) and generalised by Bollerslev (1986) 
are nonlinear stochastic models that let to grasp the dynamics 
occurring within data and which might, otherwise, be obscured 
by systematic noise, time varying volatility, and non-stationary 
trends. It follows that these models are currently, used for 
analysing financial time series. Among the “ARCH-type” models 
Exponential GARCH, Asymmetric Power ARCH, Threshold 
GARCH, IGARCH, and FIGARCH are the most popular. They 
are grounded on the assumption that data are nonlinear stochastic 
functions of their past values. By using these models, researches 
on financial data pointed out a widespread stochastic non-linearity, 
even though the main effects seem to rise from the variances of 
the respective distributions. Nevertheless, some studies (Brock 
et al., 1991; Frank and Stengos, 1988) indicated that generalized 
ARCH models still show some evidence of nonlinearities in the 
data. What this nonlinearity is and how it should be modelled is 
still an open question. Chaos theory could allow for detecting this 
nonlinearity but using nonlinear deterministic models.

In the literature, there is no standard definition of chaos (Ditto and 
Munakata, 1995). However, it is possible to define it, outlining its 
typical features: Nonlinearity, dependence on initial conditions, 
and presence of a strange attractor. Based on these signs and in 
order to investigate the chaotic dynamics in the time series, tools 
as correlation dimension, Lyapunov exponent, and BDS test have 
been developed.

The correlation dimension test, developed in physics by 
Grassberger and Procaccia, (1983), is used for measuring the 
dimension of strange attractor. A pure stochastic process will 
spread all space as evolving, but an attractor will restrict the 
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movements of a chaotic system. Moreover, in the long-run 
trajectories, which tend to converge on the attractor showing that 
global stability are sign of chaotic motion. A necessary but not 
sufficient condition in order to define a system as chaotic is that the 
attractor has a fractal dimension. The notion of dimension refers to 
the degree of complexity of a system expressed by the minimum 
number of variables needed to replicate the system (Schwartz 
and Yousefi, 2003). While the topological dimension is always 
an integer, a chaotic system has non-integer dimensionality called 
fractal dimension. The major advantage of correlation dimension 
is the simplicity of calculating but it provides necessary, but not 
sufficient conditions for testing the presence of chaos. Moreover, 
designed for very large and clean data sets, its application to short 
time series remains a tricky problem. Thus, data sets with few 
hundred or even few thousand observations might be inadequate 
and not fitting with this procedure (Ruelle, 1991).

The Lyapunov exponent provides a more useful characterisation 
of chaotic systems because unlike the correlation dimension, 
which estimates the complexity of a nonlinear system, it indicates 
a system’s level of chaos. In particular, it measures average 
exponential divergence or convergence between trajectories that 
differ only in having an “infinitesimally small” difference in their 
initial conditions. Based on time evolution of these values, it can 
be positive or negative, but at least one exponent must be positive 
for classifying a system as chaotic. As in the case of correlation 
dimension, also the estimation of Lyapunov exponent requires a 
large number of observations.

The BDS2 test by Brock et al. (1996) is not properly a test for 
chaos3 but using the correlation dimension checks the much 
more restrictive null hypothesis that the series is independent and 
identically distributed. This test can detect the presence of some 
types of non-IID behaviours resulting from a non-stationarity of 
the series: A linear stochastic system (such as ARMA processes), 
a nonlinear stochastic system (such as ARCH/GARCH processes), 
or a nonlinear deterministic system, which could feature low-order 
chaos. Nevertheless, some of the most common problems of 
application of this test are related to the presence of the noise in 
financial data and the requirement of large data sets for obtaining 
a reliable analysis (Brock and Sayers, 1988).

In this scenario, the researches on chaos in finance have followed 
two different directions. The first one based on non-linear 
deterministic theoretical model and pointed to demonstrate that 
specific configurations can create chaotic behaviours; the second 
one pointed to test time series through specific tools designed for 
detecting chaotic behaviours.

From this latter point of view, in the 1989 Scheinkman and 
LeBaron published the first article on the application of chaos 
tests to financial data. Analysing the United States weekly returns 
on the Centre for Research in Security Prices (CRSP) with BDS 

2 “Details of which may be found in Dechert (1996). Subsequent to its 
introduction, the BBS test has been generalised by Savit and Green (1991) 
and Wu et al. (1993) and more recently, DeLima (1998) introduced an 
iterative version of the BBS test” McKenzie (2001).

3 LeBaron (1994).

test, the authors found out a strong evidence of nonlinearity and 
some evidence of chaos. From this paper, there was a flourishing 
of applications (Faggini and Parziale, 2016) aimed at detecting 
chaos in financial data. In the following table, the results of some 
financial applications are reported.

Table 1 depicts not only the tests mainly and widely used for 
detecting chaos in financial time series, as correlation dimension, 
Lyapunov exponent, and BDS test but also topological tools. In 
fact, recently, another kind of tests have been considered, the so-
called topological tools (Faggini, 2014). These tests are typically 
intended to study the organisation of the strange attractor, and 
they include close returns plot and recurrence plot. They exploit 
an essential property of a chaotic system, e.g. the tendency of 
the time series to nearly, but not exactly, repeat themselves over 
time. This property is known as recurrence property. It has been 
successfully applied in order to detect chaos in experimental data, 
but it can also provide information about the underlying system, 
which is responsible for chaotic behaviour (Mindlin et al., 1990; 
Mindlin and Gilmore, 1992). This method is particularly fitting for 
the analysis of quite small data sets, being robust against the noise.

3. OPEN QUESTIONS

Chaos theory has attracted researchers for its ability to explain 
complicated behaviour by equations with only a few degrees of 
freedom, without assuming random forces acting on the system. 
The attractiveness of this new paradigm and the failure of standard 
time series methods have raised high expectations. Nevertheless, 
the problems related to the quality and the lack of acceptable 
amounts of data, the appropriate level of disaggregation, and the 
proper definition of methods used for detecting chaos created 
highly constrains to development of financial analysis based 
on this theory. In particular, the difficult to use chaos theory in 
financial market is a direct consequence of some problems related 
to the application of its tools to financial time series (Faggini and 
Parziale, 2016).

The algorithms summarised in the previous section have been 
developed to find out chaos in experimental data. Because 
physicists can often generate huge samples of high-quality data 
form laboratory experiments, they consider these algorithms as 
directly applicable to their research.

In economic time series, small and noisy data sets are more 
common. Therefore, correlation dimension, Lyapunov exponent, 
and BDS test designed for very large, clean data sets, was found 
to be problematical when applied to these time series. Data sets 
with only a few hundred or even a few thousand observations may 
be inadequate for these procedures4 because the shortness and the 
noise may render any dimension calculation useless5. Therefore, 
testing financial series is often approached in a suspicious way 
because the gathered data are insufficient to get long sampling 
intervals (Hsieh, 1991), and involve mixed effects. In fact, not 
only the distinction between noise and nonlinearities must be 

4 Ruelle (1991).
5 Brock and Sayers (1988).
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determined, but also the eventual source of nonlinearity because 
these data are usually gathered from a system whose dynamics 
and measurement mighty be changing over time. Moreover, the 
presence of measurement noise may also hinder any attempts to 
identify chaotic behaviour from nonlinear stochastic processes 
(Guégan, 2009; Granger, 2001). For this reason, the current tests 
used to detect chaotic structure often fail to find evidence of chaos 
in the data even if generated from nonlinear deterministic process.

Controversial results are also due to an inappropriate use of 
analytical methodologies, which are more similar to standard 
statistical protocols. To distinguish between chaotic and non-chaotic 
behaviours, all researchers, before applying chaos tests, filtered the 
data using both either linear and/or nonlinear models (Frank and 
Stengos, 1989; Blank, 1991; Cromwell and Labys, 1993; Yang and 
Brorsen, 1992; 1993), often doing this through the implementation 
of ARCH or ARFIMA and FIGARCH models (Günay, 2015). 
When these models fail to do grasp all of the nonlinearities existing 

in financial data (Hsieh, 1991; Vaidyanathan and Krebhiel 1992), 
chaos analysis is conducted on the residuals (Frank and Stengos, 
1989; DeCoster et al., 1992; Chavas and Holt; 1991; Bask, 2002). 
Assuming that the residuals are filtered for linear dependence, 
means that any resulting dependence found out in the residuals must 
be nonlinear. Then, when nonlinearity is found, ARCH-type models 
can be applied to detect the source. If unexplained nonlinearity 
remains, chaos tests are applied. The application of this procedure 
opens the question: Are the chaotic properties of a process invariant 
to linear and nonlinear transformations?

It has been proved that linear and nonlinear filters can mislead 
potential chaotic structures (Chen 1993, Wei and Leuthold, 1998) 
and may affect the dimensionality of the original data (Chen, 1993, 
Panas and Ninni, 2000; Panas, 2002), providing a false indication 
of chaos. Chen (1993) showed that the correlation dimension is not 
invariant to the filtering through the MA (moving average model) 
because, in this way, the fractal structure of the dynamics is lasting.

Table 1: Results of researches of chaos in financial data
Year Author(s) Tools Results
1989 Scheinkman and LeBaron BDS test Evidence of chaos
1991 Blank Correlation dimensions and Lyapunov tests Evidence of chaos
1991 Hsieh BDS test Evidence of chaos
1992 DeCoster et al. Correlation dimensions Evidence of chaos
1992 Vaidyanathan and Krehbiel Correlation dimensions and  Lyapunov test Evidence of chaos
1992 Mayfield and Mizrach Correlation dimensions and  Lyapunov test Evidence of chaos
1994 Brorsen and Yang BDS test Deterministic chaos cannot be dismissed
1995 Abhyankar et al. Hinich test, BDS test and Lypunov test No evidence of chaos
1995 Varson and Doran BDS test No evidence of chaos
1997 Abhyankar et al. Lypunov test No evidence of chaos
1997 Serletis and Gogas BDS test, the NEGM test, Lyapunov test Evidence of chaos in two out of the seven 

series analyed 
1998 Barkoulas and Travlos BDS test No evidence of chaos
1999 Gao and Wang BDS test No evidence of chaos
2000 Andreou et al. Correlation dimensions and Lyapunov tests Evidence of chaos in two out of four cases 

analysed
2001 Adrangi et al. BDS test, correlation dimensions and Kolmogrov 

entropy
No evidence of chaos

2001 Gilmore Close returns test No evidence of chaos
2001 McKenzie Close returns test No evidence of chaos
2002 Urrutia BDS test Evidence of chaos 
2002 Belaire-Franch and Contrera Recurrence analysis Evidence of chaos 
2002 Bask Lypunov test No evidence of chaos
2003 Serletis and Shintani Lyapunov test No evidence of chaos
2004 Kyrtsou et al. Correlation dimensions and Lyapunov tests Evidence of noisy chaos
2004 Shintani and Linton Lypunov exponent No evidence of chaos
2004 Muckley BDS test Evidence of chaos 
2005 Antoniou and Vorlow BDS test No evidence of chaos
2006 Urrutia BDS test Evidence of chaos 
2007 Das and Das Lyapunov test Evidence of chaos 
2007 Torkamani et al. Correlation dimensions and Lyapunov tests Evidence of chaos 
2009 Liu BDS test Evidence of chaos 
2010 Özer and Ertokatli BDS, Hinich Bispectral, Lyapunov and NEGM tests Evidence of chaos 
2010 Adrangi et al. Correlation dimension and BDS test No evidence of chaos
2011 Mishra Test of independence and Lyapunov test Evidence of chaos 
2011 Bastos and Caiado Recurrence analysis Evidence of chaos 
2013 Diaz BDS test, Hurts Exponent and Correlation dimension Evidence of high-dimensional noisy chaos
2014 BenSaida Lyapunov test No evidence of chaos
2015 Günay Lyapunov and BDS test Weak evidence of chaos
2016 Sümer Correlation dimension, BDS and Lypunov tests Weak evidence of chaos
2017 Tsionas and Michaelides Lyapunov test Weak evidence of chaos
2017 Limam The BDS and Lyapunov tests No evidence of chaos
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Same conclusions both for and against chaos are reached applying 
a single type of chaos test. To produce convincing and reliable 
results, all tests for chaos have to be implemented in order to exploit 
their different potentials and limits. Few published papers have 
jointly applied the BDS test, the correlation dimension test, and 
the test for a positive Lyapunov exponent. Moreover, controversies 
are also due to the nature of the tests themselves. There may be a 
poor degree of robustness of such tests across variations in sample 
size, test methods, and data aggregation methods.

As Barnett (2006) stated “…the economics profession, to date, 
has provided no dependable empirical evidence of whether or not 
the economy itself produces chaos, and I do not expect to see any 
such results in the near future.” Moreover, up until to now, much 
of research has been mainly focused on low-deterministic chaos. 
The failure into detecting low-dimensional chaos does not inhibit 
the possible existence of high-dimensional chaos in economic 
variables (Day, 1994). It follows that underlying nonlinear structure 
of the economy might be even more complex and that the related 
chaotic dynamics are characterized by of a higher dimensionality.

The failure in finding out convincing and reliable evidence of 
chaos in financial and, more in general, in economic time series, 
redirected research efforts in modelling nonlinearity shifting from 
conditional mean, properly of chaotic systems toward conditional 
variance, that’s, ARCH-type models (Prokhorov, 2001). However, 
it worth noting that many researches pointed out that several are the 
weaknesses typical of these models, which are mainly due to the 
strong assumptions on which they are built (Urrutia et al., 2002; 
2006; Schittenkopf et al., 2000) and the evidence of unexplained 
nonlinearities in the data residuals. Nevertheless, the depicted 
state of the art of the application of chaos theory to financial time 
series supports that neither naive enthusiasm to explain all kinds 
of unsolved time series problems by nonlinear determinism, nor 
is the pessimistic view that no real system is ever sufficiently 
deterministic and thus out of reach for analysis is justified.

4. CONCLUSIONS

Chaos in financial markets has attracted many researchers, 
especially when stochastic systems have failed to provide reliable 
forecasts, giving rise studies, showing that financial dynamics are 
chaotic and not stochastic. On the other hand, some others are 
indecisive whether these markets are stochastic or chaotic, due 
to the used data, and to the applied test.

According to the studies discussed in the previous sections it has 
be underlined that no natural deterministic explanation can justify 
the observed financial fluctuations produced by external shocks 
or by inherent randomness. In contrast to laboratory experiments, 
through which a large amount of data points can be easily obtained, 
most economic time series consist of monthly, quarterly, or annual 
data, with the exception of some high-frequency financial series. 
In fact, the analysis of financial time series has led to results more 
reliable than those of rising from macroeconomic series (Faggini 
and Parziale, 2016). This is mainly due to the fact that a great 
amount of the data in financial market is available, even though 
the literature on this topic is not free of controversial results.

Then, during the last years, the search for chaos in financial data 
has gradually lose its momentum, because of the lack of empirical 
support able to justify the presence of chaotic behaviours in these 
data. The current stage of chaos theory could be resumed in the 
words of Granger and Terasvirta (1992): “Deterministic (chaotic) 
models are of little relevance in economics and so we will consider 
only stochastic models.” Jaditz and Sayers (1993) defined this issue 
and reviewed a huge amount of data conclude that there was no 
evidence for chaos, over many disaggregated time intervals, but, 
at the same time, the authors did not deny the indication of each 
sort of nonlinear dynamics. Actually it is possible conclude that 
there are news about chaos detecting in financial data.

Nevertheless, even if the evidences of chaos in time series data are 
weak, this does not imply that chaos is a not useful lens that let to 
approach economic activity (Brock, 1993). “The methodological 
obstacles in mathematics, numerical analysis, and statistics are 
formidable, we do not have the slightest idea of whether or not 
the economy exhibits chaotic nonlinear dynamics, and hence, 
we are not justified in excluding the possibility” (Barnett, 2006). 
Through the theory of chaos, it is possible to grasp the structure 
of unpredictability and to exhibit it in a variety of templates. The 
chaos theory is a revolutionary approach to understanding and 
forecasting the behaviour not only of financial and non-financial 
markets.

It is evident that until now, in economy, the chaos theory failed in 
providing effective responses able to overcome the mainstream 
approach. However, some additional response should come from 
the big data, which should counteract the main weakness of chaotic 
test tools (e.g. short data set), even if many aspects of chaos theory 
application to big data analytics is highly theoretical in its nature 
or still in their infancy. Therefore, almost all big data analysing 
systems currently active use the essential components of chaos 
theory (Gross, 2015).

In finance, because the debate still stands trying to find the answer 
whether stock movements are primary generated by stochastic or 
chaotic dynamics, the obvious goal for the near future is thus to 
enlarge the class of time series problems that are more efficiently 
solvable by the nonlinear approach. Many studies tried to identify 
the best model to predict future performance, but there is not 
clear evidence of the dominance of one approach with respect to 
others. If nonlinearity leads to better results with respect to the 
random walk hypothesis, the choice among different nonlinear 
approaches is not at all easy and the capability of different 
approaches to achieve good results is affected by the dynamics 
that characterizes the market. It is clear that the differences in the 
degree of nonlinearity identified in the financial market structure 
point to the impossibility of assuming that a single methodology is 
best without considering the specific characteristics of the market 
being analysed. “In fact, the different degree of nonlinearity 
implies a different length of the cycles that are relevant for all the 
forecasting methodologies and are likely to affect to a significant 
extent the results” (Mattarocci, 2006). In this view, chaos theory 
has inspired a new set of time series tools and provides a new 
language to formulate time series problems and to their solutions. It 
represents the best trade-off to establish fixed rules in order to link 
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future dynamics to past results of a time series without imposing 
excessively simple assumptions but assuming that their complex 
dynamics may be explained if considered as a combination of 
more simple trends.
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