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ABSTRACT

This paper uses different multivariate GARCH models to model conditional correlations and analyze the volatility spillovers between cryptocurrency 
time series. The dynamic conditional correlation GARCH model is found to fit the data the best. Our empirical results are fourfold. First, on average, 
a $1 long position in BitShares (BTS) can be hedged for 15% with a short position in MonaCoin (MONA), while a $1 long position in MONA can 
be hedged for 14% with a short position in Ripple (XRP). Second, the average weight for the BTS/MONA portfolio is 0.48, indicating that for a $1 
portfolio, 48% should be invested in BTS and 52% invested in MONA. Third, the average weight for the BTS/XRP portfolio indicates that 27% 
should be invested in BTS and 73% invested in XRP. Finally, the average weight for the MONA/XRP portfolio indicates that 33% should be invested 
in MONA and 67% invested in XRP.

Keywords: Cryptocurrencies, Multivariate GARCH, Volatility Spillover, Hedging, Portfolio Designs 
JEL Classifications: C5, C22, C32, G1

1. INTRODUCTION

Cryptocurrencies have received much attention by the media and 
investors alike, which can be attributed to their innovative features, 
transparency, simplicity and increasing popularity (Urquhart, 
2016; 2017). A cryptocurrency is defined as a digital asset designed 
to work as a medium of exchange that uses cryptography in order 
to secure its transactions, to control the creation of additional units, 
and to verify the transfer of assets. Besides, cryptocurrencies are 
a kind of digital currencies, alternative currencies and virtual 
currencies. Furthermore, bitcoin, created in 2009, was the first type 
of cryptocurrency (for more details on bitcoin, Selgin, 2015; Baeck 
and Elbeck, 2015; Yermack, 2015; Pieters and Vivanco, 2017; 
Katsiampa, 2017). Since then, numerous other cryptocurrencies 
have been created.

The literature on cryptocurrencies was initially dominated 
by studies on the safety, ethical and legal aspects of Bitcoin. 
Otherwise, recent literature has examined cryptocurrencies from 
an economic viewpoint. However, little is known about the 

behaviour of price returns and volatilities of the cryptocurrencies. 
Undoubtedly, cryptocurrencies evolved from a niche existence 
to a new asset class for which price time series are increasingly 
available by now and can be used for empirical analyses (Brauneis 
and Mestel, 2018). One particularly interesting aspect is whether 
the highly volatile prices of cryptocurrencies evolve randomly 
over time or show some predictability. As argued by Cheah and 
Fry (2015), if bitcoin were a true unit or account, or a form of 
store of value, it would not display such volatility expressed by 
bubbles and crashes. According to Dwyer (2015), the average 
monthly volatility of bitcoin is higher than that of gold or a set 
of foreign currencies. Besides, he finds that the lowest monthly 
volatility for bitcoin are less than the highest monthly volatility 
for gold and currencies. Furthermore, Brière et al. (2015) show 
that bitcoin offers significant diversification benefits for investors, 
while Urquhart (2016) shows that bitcoin returns do not follow 
a random walk. Using an asymmetric GARCH model, Dyhrberg 
(2016a) shows that bitcoin may be useful in risk management and 
ideal for risk averse investors in anticipation of negative shocks 
to the market. Moreover, Dyhrberg (2016a,b) show that Bitcoin 
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has similar hedging capabilities as gold and the dollar, and as 
such can be employed for risk management. In addition, Balcilar 
et al. (2017) show that bitcoin volume can predict returns except 
in bear and bull market regimes and that volume cannot predict 
the volatility of bitcoin returns.

This empirical research aims to explore if cryptocurrencies behave 
like a well-known financial asset by analyzing their price returns 
and volatilities. This analysis will therefore suggest the economic 
abilities of cryptocurrencies in risk management, portfolio 
analysis and hedging capabilities. To date, however, very little 
is known about the volatility dynamics of cryptocurrency prices 
and the possible correlations, dynamic relationships, and volatility 
spillover effects between those cryptocurrencies. To the best of our 
knowledge, this is the first study that aims to fill this void. In this 
paper, multivariate GARCH models are used to model dynamic 
correlations and the volatility spillovers between cryptocurrencies. 
Four multivariate GARCH models (BEKK, diagonal BEKK, 
constant conditional correlation, and dynamic conditional 
correlation [DCC]) are compared and contrasted. It is found that 
the VARMA-GARCH DCC model fits the cryptocurrencies data 
best and this model is then used to construct hedge ratios and 
optimum portfolio weights.

The remainder of the paper is organized as follows. 
Section 2 provides a description of the data and summary statistics. 
Section 3 discusses the empirical methodology used in this study. 
Section 4 discusses the empirical results. Section 5 provides 
the economic implications of the results for designing optimal 
portfolios and formulating optimal hedging strategies. Section 6 
gives some concluding comments.

2. DATA DESCRIPTION AND SUMMARY 
STATISTICS

In this paper, cryptocurrency data covers the period from August 
01, 2014 to February 27, 2018. Data, which are sourced from the 
website www.coinmarketcap.com, comprise open, high, low and 
close prices, as well as dollar volume and market capitalization 
on a daily basis. These data are volume weighted averages from 
a large number of different exchanges.

For each cryptocurrency’s data series, continuously compounded 
daily returns are calculated as rt=100×ln(pt/pt-1) where pt is the 
daily closing price. Table 1 reports the summary statistics for the 
three cryptocurrency returns series. The standard deviation is larger 
than the mean value. Besides, Student t statistics indicate that the 
mean is not statistically significant for both BTS and MONA series. 
However, Student t statistics indicate that the mean is statistically 
significant at the 10% level for XRP series. Furthermore, each 
series displays a large amount of both skewness and kurtosis and 
the returns are not normally distributed.

Descriptive properties of discrete daily returns for three of biggest 
cryptocurrencies are depicted in Table 1. The mean return is 
positive and quite small, whereas the corresponding standard 
deviation of the returns is substantially higher. Moreover, extreme 

changes in cryptocurrency prices are substantial. Indeed, we 
observe maximum day to-day losses exceeding 50%. Besides, the 
return series exhibit positive skewness for all cryptocurrencies. 
This implies large positive price changes to be more likely than 
large negative changes. Furthermore, kurtosis is significantly 
higher than 3 for all cryptocurrencies, implying fat tailed 
distributions. In addition, the normality tests are performed. The 
results of the Jarque-Bera test (Jarque and Bera, 1987) show strong 
departure from normality.

We also examine the null hypothesis of a white-noise process for 
sample returns using the Ljung-Box test (Ljung and Box, 1978) for 
both return and squared return series. As shown in Table 1, both 
return and squared return series provide the rejection of the null 
hypothesis of no serial correlation at the 1% significance level. This 
evidence indicates significant evidence of serial dependence in the 
cryptocurrency return and squared returns series. Therefore, the 
cryptocurrency return series has statistically significant first order 
autocorrelation, which can be removed by fitting an autoregressive 
AR(1) model to this series.

Otherwise, the Ljung-Box statistic for up to twentieth order 
serial correlation of squared return series is highly significant, 
suggesting the presence of strong nonlinear dependence in the 

Table 1: Summary statistics for daily returns
Variables BTS MONA XRP
Mean 0.2400 0.1563 0.3961
Median −0.2922 −0.2405 −0.2334
Maximum 51.9989 85.2212 102.7356
Minimum −39.1702 −84.7036 −61.6273
Variance 66.2402 90.2327 53.6046
SD 8.1388 9.4991 7.3215
Skewness 1.0777*** 0.5239*** 3.0714***

0.0000 0.0000 0.0000
Kurtosis (excess) 7.1939*** 18.2294*** 42.0584***

0.0000 0.0000 0.0000
Jarque-Bera 3068.9741*** 18142.9269*** 98311.5815

0.0000 0.0000 0.0000
t-statistic  
(Mean=0)

1.0657 0.5948 1.9551*
0.2868 0.5521 0.0508

Ljung-BOX 
Q(20) test

60.9217*** 18.2428 68.2013***
0.000 0.5714 0.0000

Ljung-BOX 
Q2 (20) test

256.548*** 196.187*** 198.995***
0.0000 0.0000 0.0000

ADF unit root 
test

−34.0906*** −35.8436*** −22.6293***
0.0000 0.0000 0.0000

PP unit root test −34.3833*** −35.844*** −36.9909***
0.0000 0.0000 0.0000

KPSS unit root 
test

0.2892 0.0733 0.2819

ARCH (1)-LM 
test

53.346*** 91.652*** 68.244***
0.0000 0.0000 0.0000

ARCH (10)-LM 
test

13.365*** 24.220*** 15.408***
0.0000 0.0000 0.0000

Observations 1306 1306 1306
The Jarque-Bera test corresponds to the test statistic for the null hypothesis of normality 
in the distribution of sample returns. The Ljung-Box statistics, Q(n) and Q2(n), check 
for serial correlation of the return series and the squared returns up to the nth order, 
respectively.*,** and ***Significance levels of 10%, 5%, and 1%, respectively. 
MacKinnon’s (1991) 1% critical value is−3.4352 for both the ADF and PP tests. The 
critical value for the KPSS test is 0.739 at the 1% significance level. Numbers in 
parentheses are P values
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data. Since nonlinear dependence and heavy-tailed unconditional 
distributions are characteristic of conditionally heteroskedastic 
data, the Lagrange Multiplier (LM) test (Engle, 1982) can be used 
to formally test the presence of conditional heteroskedasticity and 
the evidence of ARCH effects. The LM test for a first-order linear 
ARCH effect (Table 2) suggests that cryptocurrency return series 
exhibit ARCH effects, implying that nonlinearities must enter 
through the variance of the processes (Hsieh, 1989). Such behavior 
can be captured by incorporating autoregressive conditional 
heteroskedasticity (ARCH) or generalized autoregressive 
conditional heteroskedasticity (GARCH) structures in the model. 
This result is similar to that reported by Dyhrberg (2016a) and 
Katsiampa (2017) (Figure 1).

Table 1 also depicts the results of three types of unit root tests for 
the sample crytocurrency return series: Augmented Dickey-Fuller 
(ADF), Phillips-Perron (PP), and Kwiatkowski, Phillips, Schmidt, 
and Shin (KPSS) tests. On the one hand, large negative values for 
the ADF and PP tests support the rejection of the null hypothesis 
of a unit root at the 1% significance level. On the other hand, the 
statistics of the KPSS test indicates that all cryptocurrencies returns 
series are insignificant to reject the null hypothesis of stationarity, 
implying that they are stationary processes, i.e. I(0).

As shown in Table 2, unconditional correlations show that there is 
a positive correlation between all pairs of crypto currency return 
series. Figures 2 and 3 plots the time series graph of the squared 
daily returns and show how volatility has changed across time. 
Notice that all three graphs show pronounced volatility clustering. 

In addition, the cryptocurrencies series show some big spikes 
in volatility in different periods. Otherwise, the unconditional 
correlations between the squared daily returns show a similar 
pattern as for the unconditional correlations between the returns 
(Table 3). Volatility clustering and cross-correlations in volatility 
are shown from the information presented in both Figure 3 and 
Table 3.

3. EMPIRICAL METHODOLOGY

Multivariate GARCH (MGARCH) models have been found to 
be very useful in studying volatility spillover effects in financial 
markets. In this paper, five multivariate GARCH models could 
be used to model the volatility dynamics as well as the volatility 
spillover effects between the cryptocurrencies prices. These 
include the VEC (Bollerslev et al., 1988), BEKK (Engle and 

Figure 1: Time series plots of BitShares (BTS), MonaCoin (MONA) and Ripple (XRP)

Figure 2: Daily returns of BTS, MONA, and XRP

Table 2: Correlations between daily returns
BTS MONA XRP

BTS 1 0.1211 0.3641
MONA 0.1211 1 0.0704
XRP 0.3641 0.0704 1

Table 3: Correlations between squared daily returns
BTS MONA XRP

BTS 1 0.0209 0.3317
MONA 0.0209 1 0.0003
XRP 0.3317 0.0003 1
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Kroner, 1995), diagonal BEKK (Engle and Kroner, 1995), constant 
conditional correlation (Bollerslev, 1990), and DCC (Engle, 
2002) models, respectively. While, popular, MGARCH models 
do have limitations. First, VEC model has a large number of free 
parameters, which makes it impractical for models with more than 
two variables (Bauwens et al., 2006). Second, diagonal VEC model 
lacks correlation between the variance terms (Bauwens et al., 
2006). Third, BEKK model can have a poorly behaved likelihood 
function, making estimation difficult, especially for models with 
more than two variables (Bauwens et al., 2006).

In this paper, the BEKK model is used as a benchmark. The 
other models are computationally simpler and can be estimated 
in two steps. Univariate GARCH models are used to estimate 
the variances in the first step. In the second step, correlations are 
modeled based on the standardized residuals from step one.

Two components characterize the econometric specification 
used in this paper. A vector autoregression (VAR) with one lag 
is used to model the returns1. This allows for autocorrelations 
and cross-autocorrelations in the cryptocurrencies returns. The 
time-varying variances and covariances are modeled using a 
multivariate GARCH model. For the VEC, diagonal BEKK, 
constant conditional correlation and DCC models, the conditional 
variance is assumed to be VARMA-GARCH(1,1) process (Ling 
and McAleer, 2003)2.

 r m m ri t i ij j t i tj

n

, , ,= + +−=∑0 11
ε  (1)

	 εi,t|Ii,t-1~ST(0,hi,t) (2)

 εi t i t i tz h, , ,
/= 1 2  (3)

 zi,t~ST(0,1,v) (4)

 h c hi t ii ij j tj

n

ij j tj

n

, , ,= + +−= −=∑ ∑α ε β1
2

1 11
 (5)

1 In applied research, different criterion functions select different lag lengths 
for the VAR models. AIC chooses 2 lags, while both BIC and HQ choose 
0 lag. A Preliminary regression analysis showed very little differences 
between a VAR with one lag compared to a VAR with two lags. Therefore, 
in the interest of parsimony, a VAR with one lag is chosen.

2 Recent examples of the VARMA-GARCH approach include Hammoudeh 
et al. (2009).

Where ri,t denote the return for series i (∀i=1,…,n), εi,t is the 
random error term with conditional variance hi,t, the innovations 
{zit} follow student-t distribution3, and Ii,t–1 indicates the market 
information available at time (t–1). The relationship between the 
error term εi,t and the conditional variance hi,t is specified by Eq. 3. 
A GARCH(1,1) process with VARMA terms (Ling and McAleer, 
2003) is specified through Eq. 5. Ling and McAleer (2003) model 
the conditional variances by allowing large shocks to one variable 
to affect the variances of the other variables. This is a suitable 
specification that allows for volatility spillovers.

For the VEC model, we follow Bollerslev et al. (1988) in 
specifying the multivariate extension of the GARCH(p,q) model. 
To do so, we consider a system of n regression equations; then the 
general form of a VEC model is given by the following expression:

h vech H C A vech B vech Ht t i t i t ij

p

j t jj

p
= ( ) = + ( ) + ( )− −= −=∑ ∑  ’

1 1
 

 (6)

Where C is an 
n n +( )

×
1

2
1 vector; Ai and Bi are 

n n n n+( )
×

+( )1

2

1

2
 

matrices; and vech(•) is the column stacking operator of the lower 
portion of a symmetric matrix.

In the Eq. 6, H E It t i t i t= ( )− − −ε ε ’ | 1  is the n×n conditional variance 

matrix associated with the error vectorεt
’ , and vech(Ht) denotes 

the 
n n +( )

×
1

2
1  vector of all the unique elements of Ht obtained 

by stacking the lower triangle of Ht (Engle and Kroner, 1995).

In the VEC model, each element of the Ht matrix depends on the 
lagged squared residuals and past variances of all variables in the 
model as in Eq. 6. The VEC model is very flexible, but it requires 
restrictive conditions for Ht to be positive definite for all t, and the 
number of estimated parameters is large. For instance, the simplest 
bivariate model requires the estimation of twenty-one parameters.

3 The student-t distribution is estimated with the parameter (v) which 
represents the number of degrees of freedom (df) and measures the 
degree of leptokurtosis displayed by the density (Fiorentini et al. (2003) 
for multivariate student-t density function). This distribution allows for 
modeling the excess leptokurtosis, which is not captured by the ARCH 
process (Filis et al., 2011; Chkili et al., 2012).

Figure 3: Squared daily returns of BTS, MONA, and XRP
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According to Bauwens et al. (2006), it is difficult to guarantee 
the positivity of Ht in the VEC representation without imposing 
strong restrictions on the parameters. This is why Engle and 
Kroner (1995) propose a new parametrization for Ht that easily 
imposes its positivity, i.e. the Baba, Engle, Kraft and Kroner 
(BEKK) model. The BEKK(1,1,K)-GARCH model is described 
as follows:

 

*' * *' ' *

1 1

*' *

1 1
1 1

K q

t ik t i t i ikk i

pK
K p

jk t j jkk j
k j

H C C A A

B H B

 − −= =

−= =
= =

= +

+ +

∑ ∑
∑ ∑ ∑∑  (7)

Where C* Ak
* and Bk

* are n×n matrices, but C* is upper triangular. 
The BEKK model is a special case of the VEC model. If C*’ C* 
is positive definite, so is the Ht matrix. For the bivariate case, the 
BEKK model requires the estimation of eleven parameters.

The generality of the BEKK process is determined by the 
summation limit K. Following Bauwens et al. (2006), the 
parameters of the BEKK model do not represent directly the impact 
of the different lagged terms on the elements of Ht, like in the VEC 
model. Note that the BEKK model is a special case of the VEC 
model. For instance, to avoid observationally equivalent structures, 
Engle and Kroner (1995) provide sufficient conditions to identify 
BEKK models with K=1. These conditions are that Ak ,

*
11 , Bk ,

*
11  

and the diagonal elements of C* are restricted to be positive. The 

number of parameters in the BEKK(1,1,1) model is 
n n5 1

2

+( )
. To 

reduce this number, and consequently to reduce the generality, a 
diagonal BEKK model is imposed (Engle and Kroner, 1995; 
Bauwens et al., 2006), i.e. Ak

* and Bk
*  in Eq. 7 are diagonal 

matrices.

The constant conditional correlation (CCC) model has been 
proposed by Bollerslev (1990). This model is characterized 
by time-varying conditional variances and covariances, but 
conditional correlations are constant. The variances and 
covariances can be modeled separately using univariate models 
to allow different specifications. Based on these conditional 
variances, the conditional correlation matrix can subsequently be 
modeled. Assuming constant conditional correlations implies that 
the conditional covariances are proportional to the product of the 
corresponding conditional standard deviations, and this reduces 
the number of parameters to be estimated. The CCC model is 
defined as follows:

 H D RD h ht t t ij ii t jj t= = ( )ρ , ,  (8)

Where D diag h ht
t

nn
t= …( )11, , , hii,t can be any univariate GARCH 

process, and R=(ρij)is the constant correlation matrix, with ρii=1∀i, 
and Ht is positive definite if all n conditional variances are well 
defined and R is positive definite.

The DCC model has been proposed by Engle (2002). It combines 
the flexibility of univariate GARCH models with parsimonious 

parametric models for the correlations. The DCC model is 
estimated in two steps based on the likelihood function. The 
GARCH parameters are estimated in the first step, while the 
correlations are estimated in the second step.

  Ht=Dt Rt Dt (9)

In Eq. 9, Ht is the n×n conditional covariance matrix, RT is the 
conditional correlation matrix, and Dt is a diagonal matrix with 
time varying standard deviations on the diagonal.

  D diag h ht t nn t= …( )11
1 2 1 2

,
/

,
/, ,  (10)

R D H D diag q q Q diag qt t t t t nn t t t= = …( ) …− − − − −1 1
11

1 2 1 2
11

1 2
,
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 Q Q u u Qt t t t= − −( ) + +− − −1 1 2 1 1 1 2 1θ θ θ θ’  (12)

Where Qt=(qij,t) is a n×n symmetric positive definite matrix, and 
Q  is the n×n unconditional correlation matrix of the standardized 
residuals ui,t. The parameters θ1 and θ2 are non-negative with a sum 
of less than unity. The correlation estimator is given by,

   ρij t
ij t

ii t jj t

q

q q
,

,

, ,

=  (13)

Relaxing the constraint of constant correlations is a very significant 
step forward, but it creates the difficulty that the time dependent 
conditional correlation has to be positive definite. The DCC model 
nests the CCC model as a special case since Rt=R and Rij=ρij. 
Besides, ρij=0 for all i and j in the diagonal MGARCH model. The 
diagonal case is very restrictive since it assumes that the DCCs 
between variables are all zero (hij=0,∀i≠j). An unconditional 
covariance matrix is computed by using the standardized residuals 
from the MGARCH diagonal model.

The MGARCH models are estimated by either the maximum 
likelihood estimation (MLE) or the Quasi- MLE (QMLE) using 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm4. 
T statistics are computed using a robust estimate of the 
covariance matrix. For instance, the estimate of the DCC model 
is carried out using a two-step maximum likelihood of the 
probability density function of a bivariate Student-t distribution 
(Engle, 2002):

( ) ( ) ( )

( ) ( ) ( ) ( )' 1

2õ
È / õ 2

2 2

1 1
2 1 / 2

2 2

t

t t t t

l Log

Log H Log H


 

   −

    +    = −               

 − − + + − 

 

  

 (14)
Where Γ(.) denotes the Gama function, υ is the degree of freedom 
for the Student-t distribution, Ht is a conditional variance-
covariance matrix. Θ is a parameter vector with all of the 
coefficients of the DCC model.

4 All computations are carried out using WinRats 8.0.
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4. EMPIRICAL RESULTS

In this section, we report the empirical results obtained from 
estimating multivariate GARCH models. Note that the BEKK 
model is used as the benchmark and compared to three restricted 
correlation models (diagonal BEKK, CCC, and DCC). Besides, 
the BEKK model is the most computationally intensive of the 
models studied.

4.1. Regression Results
Turning first to the VAR for the returns, one of the strongest 
effects is that a one period lag of XRP positively affects current 
period BTS (Table 4). The estimated coefficient of XRP in the 
BTS equation (m13) is positive, of the same order of magnitude, 
and statistically significant at the 1% level for both CCC and 
DCC MGARCH models. This result is important in establishing a 
positive relationship between current period BTS returns and last 
period XRP returns. In other words, current period BTS returns 
are influenced by last period XRP returns. Besides, according to 
the statistical significance of the coefficient m12 in the case of both 
CCC and DCC MGARCH models, current period BTS returns are 
positively influenced by last period MONA returns.

In addition, one period lag of XRP negatively affects current period 
MONA (Table 4). The estimated coefficient of XRP in the MONA 
equation (m23) is negative, of the same order of magnitude, and 
statistically significant at the 1% level for both CCC and DCC 
MGARCH models. This finding indicates evidence of a negative 
association between current period MONA returns and last period 
XRP returns. In other words, current period MONA returns are 
influenced by last period XRP returns. Furthermore, according to 
the statistical significance of both coefficients m31 and m32, there is 
a significant negative linkage between XRP and BTS and between 
XRP and MONA.

Otherwise, the own conditional mean effects (mii) are clearly 
important in explaining conditional mean (Table 4). The coefficient 
m11 refers to the mean term in the BTS equation, while m22 refers to 
the mean term in the MONA equation and m33 refers to the mean 
term in the XRP equations. Note that the estimated m11 and m22 
coefficients on the own conditional mean effects are negative and 
statistically significant at the 1% level. However, the estimated 
m33 coefficient is positive and statistically different from zero in 
the case of both CCC and DCC MGARCH models.

The own conditional GARCH effects (βii) measure the long-
term persistence and are important in explaining the conditional 
volatility. In each of the considered MGARCH models, the estimated 
coefficients on the own conditional volatility effects are statistically 
significant at the 1% level. The coefficient β11 stands for the GARCH 
term in the BTS equation, while β22 and β33 refer to the GARCH 
terms in the MONA and XRP equations, respectively. For a particular 
crypto currency i, the estimated coefficients for βii are almost similar 
across the different MGARCH models. BTS shows the most amount 
of long-term persistence followed by XRP and MONA.

The own conditional ARCH effects (αii) measure the short-term 
persistence, and are also important in explaining the conditional 

volatility. As shown in Table 4, for each i, the estimated αii values 
are smaller than their respective estimated βii values in the case of 
both BEKK and CCC MGARCH models. This indicates that own 
volatility long-run (GARCH) persistence is larger than short-run 
(ARCH) persistence. However, the reverse effect is observed for 
both Diagonal-BEKK and DCC MGARCH models, stipulating 
that own volatility long-run persistence is smaller than short-run 
persistence.

Looking across the overall regression results of MGARCH models, 
the strongest evidence for volatility spillovers effects is found 
from the estimates of the DCC-MGARCH model. For short-term 
persistence, there is evidence of significant volatility spillovers 
between BTS and MONA (the terms α12 and α21), between BTS and 
XRP (the terms α13 and α31), and between MONA and XRP (the 
terms α23 and α32). Furthermore, there is evidence of statistically 
significant long-term persistence volatility spillovers between 
BTS and MONA (the terms β12 and	β21), between BTS and XRP 
(the terms β13 and	β31), and between MONA and XRP (the terms 
β23 and β32).

For the CCC-MGARCH model, the correlation between BTS 
and MONA (ρ21), BTS and XRP (ρ31) and MONA and XRP (ρ32) 
are each positive and statistically significant at the 1% level. The 
highest correlation is between BTS and XRP and the second 
highest correlation is between BTS and MONA.

For the DCC-MGARCH model, the estimated coefficients on θ1 
and θ2 are each positive and statistically significant at the 1% level. 
Note that these estimated coefficients sum to a value which is less 
than unity (θ1+θ2<1), meaning that the DCCs are mean reverting.

Otherwise, both the AIC and BIC criteria5 show that the DCC-
MGARCH model is the best model. Besides, the diagnostic tests 
for the standardized residuals and standardized residuals squared 
show no evidence of serial correlation in the squared standardized 
residuals at the 1% level in the case of DCC-MGARCH model 
(Table 5). However, the DCC-MGARCH model shows more 
evidence of autocorrelation in the standardized residuals. It is 
also worth noting that the AIC and SIC rank the CCC-MGARCH 
model as the second best. Based on the information criterion and 
residual diagnostic tests, the DCC-MGARCH model is chosen as 
the best of the models considered. Finally, the DCC-MGARCH 
model will be used to construct DCCs, optimal hedge ratios and 
portfolio weights.

4.2. DCCs Analysis
The time-varying conditional correlations from the DCC-
MGARCH model are shown in Figure 4. Note that a pattern of 
volatility clustering is evident for each crypto currency series. 
Besides, the DCCs can vary a lot from the constant conditional 
correlations (ρ21 = 0.0436, ρ31 = 0.2259, and ρ32 = 0.0359). This 

5 The following equations are used to estimate the AIC (Akaike, 1974) and 
BIC (Stone, 1979) of a model:

 AIC=(2×k)-(2×LogL),
 BIC=(2×k×LogN)-(2×LogL)
 Where L denotes the value of the likelihood, N is the number of recorded 

measurements, and k is the number of estimated parameters.
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emphasizes the need to calculate DCCs. Notice that the DCCs 
between BTS and XRP are all positive and generally larger 
than 0.5. This indicates that there is little scope for portfolio 
diversification between these two crypto currency time series. 
The DCCs between BTS and MONA do alternate in sign and 
cover a range of values between −0.5 and 0.60. These periods 
of negative correlation provide an opportunity for meaningful 
portfolio diversification. The time-varying conditional correlations 
between MONA and XRP show a similar pattern to that of BTS 
and MONA.

The DCCs between BTS and MONA reached low values around 
March 2014, October 2014 and October 2016. These DCCs surpass 
the 0.6 value for the first time in July of 2014. By September of 
2016, the DCCs are back above 0.6.

The DCC between BTS and XRP reach low values around June 
2014. The DCC between BTS and XRP surpass the 0.6 value 
for the first time in July of 2014 before lessening somewhat. By 
September of 2016, the DCCs are back above 0.6.

The DCC between MONA and XRP reach low values around 
June 2014, August 2014, and October 2014. The DCC 
between MONA and XRP surpass the 0.4 value for the first 
time around September of 2016. These findings show that for 
each pair of series, DCCs reached their highest values in the 
fall of 2016. Besides, as shown in Figure 4, the time series 
plots indicate that, for each pair of series, the DCCs provide 
much more useful information than do the correlations from 

the CCC-MGARCH model. Notice also that the DCCs were, 
for each pair of series, much larger than their corresponding 
values from the constant conditional correlations. This result 
illustrates that any computations done with the correlations 
from the CCC-MGARCH model would have been very miss-
leading.

5. IMPLICATIONS FOR PORTFOLIO 
DESIGNS AND HEDGING STRATEGIES

In this section, we use the estimates from the best multivariate 
GARCH model for portfolio design and hedging strategies.

5.1. Hedge Ratios
Following Kroner and Sultan (1993), the conditional volatility 
estimates can be used to construct hedge ratios. A long position in 
one asset i can be hedged with a short position in a second asset j. 
The hedge ratio between asset i and asset j is given by

   βij t
ij t

jj t

h

h,
,

,

=  (15)

For most of the hedge ratios, computed from the DCC model, 
the graphs (Figure 5) show a considerable variability. For BTS/
XRP, BTS/MONA and MONA/XRP many of the hedge ratios, the 
maximum values were recorded at the end of the sample period. 
The exceptions are the XRP/MONA, XRP/BTS, MONA/BTS 
and hedges where the largest values for these hedge ratios were 
recorded near the beginning of the sample period.

Figure 4: Time-varying conditional from DCC model

Figure 5: Time-varying hedge ratios computed from DCC model
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The average value of the hedge ratio between BTS and MONA 
is 0.15 while the average value of the hedge ratio between BTS 
and XRP is 0.59 (Table 6). The average value of the hedge ratio 
between MONA and XRP is 0.14. These findings are important 
and show that a $1 long position in BTS can be hedged for 15% 
with a short position in MONA. A $1 long position in MONA can 
be hedged for 14% with a short position in XRP. As shown from 
the previous DCC analysis, it is not, however, useful to hedge 
BTS with a short position in XRP. The cheapest hedge is long 
XRP and short MONA. The most expensive hedge is long BTS 
and short XRP. Notice that all the hedge ratios record maximum 
values in excess of unity.

5.2. Portfolio Weights
Following Kroner and Ng (1998), the conditional volatilities from 
MGARCH models can be used to construct optimal portfolio 
weights.

  w
h h

h h hij t
jj t ij t

ii t ij t jj t
,

, ,

, , ,

=
−

− +2
 (16)

  w

if w

w if w

i

ij t

ij t

ij t ij t,

,

, ,=

<

≤ ≤

0 0

0 1

1 ff wij t, >







 1

 (17)

Where wij,t denotes the portfolio weights between two assets. It 
represents the weight of the first asset in a one dollar portfolio of 
two assets (asset i, asset j) at time t. hij,t stands for the conditional 
covariance between assets i and j, while hij,t denotes the conditional 
variance of asset j. In addition, the weight of the second asset 
is 1-wij,t.

Table 7 reports the summary statistics for portfolio weights 
computed from the DCC-MGARCH model. The average weight 
for the BTS/MONA portfolio is 0.48. This result indicates that for 
a $1 portfolio, 48% should be invested in BTS and 52% invested 
in MONA. Besides, the average weight for the BTS/XRP portfolio 
indicates that 27% should be invested in BTS and 73% invested 
in XRP. Furthermore, the average weight for the MONA/XRP 
portfolio indicates that 33% should be invested in MONA and 
67% invested in XRP.Ta
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Table 6: Hedge ratio (long/short) summary statistics
Variables Mean±SD Min. Max.
BTS/MONA 0.15±0.21 −0.94 1.58
BTS/XRP 0.59±0.34 −0.06 2.62
MONA/BTS −2.12±80.82 −2919.34 1.21
MONA/XRP 0.14±0.28 −1.96 2.27
XRP/BTS 0.42±5.57 −0.48 2.01
XRP/MONA 0.06±0.14 −0.83 1.10
SD: Standard deviation

Table 7: Portfolio weights summary statistics
Variables Mean±SD Min. Max.
BTS/MONA 0.48±0.26 0.00 1.00
BTS/XRP 0.27±0.27 0.00 1.00
MONA/XRP 0.33±0.25 0.00 1.00
SD: Standard deviation
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6. CONCLUSIONS

Since the amount of money invested in the cryptocurrency 
sectors grows, it is important to have a better understanding of 
the volatility dynamics of the cryptocurrency prices. This study 
examines own volatility, shocks and inter-shock and volatility 
transmissions in three biggest cryptocurrencies. It uses multivariate 
GARCH models to investigate correlations and the volatility 
spillovers between cryptocurrency prices. Empirical findings show 
that the DCC MGARCH model is preferred over the other models, 
although the CCC-MGARCH is a close second in model choice 
to the DCC-MGARCH model. For each pair of cryptocurrency 
series, the DCCs vary considerably from their respective constant 
conditional correlations.

The conditional volatilities from the DCC-MGARCH model can 
be used to estimate dynamic hedge ratios. On average, a $1 long 
position in BTS can be hedged for 15% with a short position in 
MONA. On average, a $1 long position in MONA can be hedged 
for 14% with a short position in XRP. It is not, however, useful 
to hedge an investment in BTS with a short position in XRP. The 
cheapest hedge is long XRP and short MONA, while the most 
expensive hedge is long BTS and short XRP.

Finally, the conditional variances and covariances from the DCC 
model can be used to construct optimal two cryptocurrency 
portfolios. The average weight for the BTS/MONA portfolio is 
0.48, indicating that for a $1 portfolio, 48% should be invested 
in BTS and 52% invested in MONA. The average weight for the 
BTS/XRP portfolio indicates that 27% should be invested in BTS 
and 73% invested in XRP. Furthermore, the average weight for 
the MONA/XRP portfolio indicates that 33% should be invested 
in MONA and 67% invested in XRP.
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